A semidefinite programming approach to cross-intersection problems

Norihide Tokushige

Ryukyu University

International Workshop on Graph Theory and Combinatorics 2016 Feb 17–20 @ Ewha Womans University, Seoul

based on joint work with Sho Suda and Hajime Tanaka www.cc.u-ryukyu.ac.jp/~hide/slides.pdf

1.

Prototype

A linear programming approach to an intersection problem

Let G = (V, E) be a graph.

- $U \subset V$ is independent if $uv \notin E$ for all $u, v \in U$.
- The independence number $\alpha(G)$ is the max size of independent sets.

Problem

Determine or estimate the independence number of a given graph.

• Let $A=(a_{x,y})$ be the adjacency matrix of G=(V,E), i.e., a $|V|\times |V|$ matrix such that

$$\alpha_{x,y} = \begin{cases} 1 & \text{if } xy \in E, \\ 0 & \text{otherwise}. \end{cases}$$

• If G is 'symmetric' then eigenvalues of A provide a good bound for $\alpha(G)$:

$$\alpha(G) \leqslant \frac{-\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} |V|.$$

Hoffman's ratio bound, Delsarte's LP bound, Lovász' θ bound

Example (Petersen graph)

We have

$$\det(xI - A) = (x - 3)(x - 1)^5(x + 2)^4,$$

 $\lambda_{\text{max}} = 3, \quad \lambda_{\text{min}} = -2,$

and

$$\alpha(G) \leqslant \frac{-\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} |V| = \frac{-(-2)}{3 - (-2)} \operatorname{10} = 4.$$

- Consequently the independence number of Petersen graph is 4.
- This can be viewed as a result concerning an intersection problem.

- $[n] := \{1, 2, ..., n\}$
- $2^{[n]}$: the power set
- $\binom{[n]}{k}$: the set of k-element subsets
- $\mathcal{F} \subset 2^{[n]}$ is intersecting if $F \cap F' \neq \emptyset$ for any $F, F' \in \mathcal{F}$.

Problem

What is the max size of int. families in $\binom{[n]}{k}$?

- $\binom{[n]}{k}$: the set of k-element subsets
- $\mathcal{F} \subset 2^{[n]}$ is intersecting if $F \cap F' \neq \emptyset$ for any $F, F' \in \mathcal{F}$.
- Let

$$\mathcal{H} = \{ H \in \binom{[n]}{k} : 1 \in H \}.$$

Then \mathcal{H} is intersecting, and $|\mathcal{H}| = \binom{n-1}{k-1}$.

Erdős–Ko–Rado Theorem

If $n \ge 2k$ and $\mathcal{F} \subset \binom{[n]}{k}$ is intersecting, then

$$|\mathfrak{F}|\leqslant \binom{n-1}{k-1}.$$

• Kneser graph $G_{n,k} = (V, E)$ is defined by

$$\begin{split} V &:= \binom{[n]}{k} \\ E &:= \{uv : u, v \in V, \ u \cap v = \emptyset\}. \end{split}$$

• $U \subset V$ is indep. in $G_{n,k}$ iff U is intersecting.

- One can compute the eigenvalues of the adjacency matrix of the Kneser graph $G_{n,k}$.
- Then the ratio bound gives the upper bound for the independence number of $G_{n,k}$.
- This implies EKR.
- We will extend this idea to solve cross-intersection problems by using SDP.

2.

Cross-intersection problems and results obtained by SDP approach

Two families $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ are cross-intersecting if $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.

Theorem (Pyber, Matsumoto-T, Bey)

If $\mathcal{A}\subset \binom{[n]}{\mathfrak{a}}$ and $\mathcal{B}\subset \binom{[n]}{\mathfrak{b}}$ are cross-intersecting, and $n\geqslant 2\mathfrak{a}$ and $n\geqslant 2\mathfrak{b}$, then

$$|\mathcal{A}||\mathcal{B}| \leqslant {n-1 \choose a-1}{n-1 \choose b-1}.$$

shifting & Kruskal-Katona theorem on shadows,

Katona's cyclic permutation, Sperner inequality

- ullet V : n-dim vector space over $\mathbb{F}_{\mathfrak{q}}$
- $\binom{V}{k}$: the set of k-dim subspaces of V
- \mathcal{A} , $\mathcal{B} \subset V$ are cross-intersecting if $A \cap B \neq \{0\}$ for all $A \in \mathcal{A}$, $B \in \mathcal{B}$.

Theorem (Suda-Tanaka)

If $\mathcal{A} \subset {V \brack a}$ and $\mathcal{B} \subset {V \brack b}$ are cross-intersecting, and $n \geqslant 2\alpha$ and $n \geqslant 2b$, then

$$|\mathcal{A}||\mathcal{B}| \leqslant {n-1 \brack a-1} {n-1 \brack b-1}.$$

No combinatorial proof is known so far.

- One can also obtain 'measure' variants of cross-intersecting EKR:
 Suda-Tanaka-T, arXiv:1504.00135
- SDP approach provides a unified way to solve these problems, and it is the only way to prove some of them.

3. SDP and Weak Duality

Linear Programming problem

(primal form) minimize
$$c^{\mathsf{T}}x$$
, subject to $Ax = b$, $x \geqslant 0$,

where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$ are given, $\mathbf{x} \in \mathbb{R}^n$ is the variable.

(dual form) maximize
$$\mathbf{b}^\mathsf{T}\mathbf{y}$$
, subject to $\mathbf{y}^\mathsf{T}A\leqslant \mathbf{c}^\mathsf{T}$,

where $\mathbf{y} \in \mathbb{R}^{m}$ is the variable.

LP problem

(P) min
$$\mathbf{c}^\mathsf{T}\mathbf{x}$$
, subj. to $A\mathbf{x} = \mathbf{b}$, subj. to $\mathbf{y}^\mathsf{T}A \leqslant \mathbf{c}^\mathsf{T}$. $\mathbf{x} \geqslant 0$.

Weak duality

If x is feasible in (P) and y is feasible in (D), then $\mathbf{c}^\mathsf{T} \mathbf{x} \geqslant (\mathbf{y}^\mathsf{T} A) \mathbf{x} = \mathbf{y}^\mathsf{T} (A \mathbf{x}) = \mathbf{y}^\mathsf{T} \mathbf{b} = \mathbf{b}^\mathsf{T} \mathbf{y}$.

Any feasible solution to (D) gives a lower bound for the objective value of (P).

Semidefinite Programming problem

- An extension of LP.
- Extend the space of the variables from \mathbb{R} to $S\mathbb{R}^{n\times n}$ (the set of $n\times n$ symm. matrices).
- For A, B \in S $\mathbb{R}^{n \times n}$ let

$$A \bullet B := \mathsf{trace}(A^\mathsf{T} B) = \sum_{i,j} \alpha_{ij} b_{ij} \in \mathbb{R},$$

• We write $A \succeq 0$ for positive semidefinite A.

SDP problem

(P) min
$$C \bullet X$$
, subject to $A_i \bullet X = b_i$, $i = 1, 2, ..., m$, $X \succeq 0$,

 $A_i \in S\mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $C \in S\mathbb{R}^{n \times n}$ are given, $X \in S\mathbb{R}^{n \times n}$ is the variable.

(D) max
$$\mathbf{b}^{\mathsf{T}}\mathbf{y}$$
, subject to $C - \sum_{i=1}^{m} y_i A_i \succeq 0$,

 $y \in \mathbb{R}^{m}$ is the variable.

(Weak duality)
$$C \bullet X \geqslant b^{\mathsf{T}} y$$
.

4. SDP for EKR

• Kneser graph $G_{n,k} = (V, E)$ is defined by

$$\begin{split} V &:= \binom{[n]}{k} \\ E &:= \{ u \nu : u, \nu \in V, \ u \cap \nu = \emptyset \}. \end{split}$$

• $U \subset V$ is indep. in $G_{n,k}$ iff U is intersecting.

Theorem (EKR, reprise)

If
$$n \ge 2k$$
 then $\alpha(G_{n,k}) = \binom{n-1}{k-1}$.

- Let $G = G_{n,k}$, $N = \binom{n}{k}$, A the adj. matrix.
- Let $U \subset V(G)$ be an independent set.
- Let $x \in \mathbb{R}^N$ be the char. vector of U and

$$\mathbf{X}_{\mathbf{U}} := \frac{1}{|\mathbf{U}|} \mathbf{x} \mathbf{x}^{\mathsf{T}} \in S\mathbb{R}^{N \times N}.$$

- $X_{U} \succeq 0$, $X_{U} \geqslant 0$.
- $J \bullet X_{U} = |U|$.
- $I \bullet X_{11} = 1$.
- $A \bullet X_{U} = \frac{1}{|U|} \sum_{i,j} \alpha_{i,j} x_{i} x_{j} = 0.$

SDP problem for EKR

(P) maximize
$$J \bullet X$$
, subject to $I \bullet X = 1$, $A \bullet X = 0$, $X \succeq 0$, $X \geqslant 0$.

The max $J \bullet X$ gives an upper bound for the independence number. This is the strengthening of Lovász's θ -function bound due to Schrijver.

SDP problem for EKR

(P) maximize $J \bullet X$, subject to $I \bullet X = 1$, $A \bullet X = 0$, $X \succeq 0$, $X \geqslant 0$.

(D) minimize
$$\alpha$$
, subject to $\alpha I - J - \gamma A - Z \succeq 0$, $Z \geqslant 0$.

Weak Duality

If X is feasible in (P), and (α, γ, Z) is feasible in (D), then $J \bullet X \leq \alpha$.

SDP problem for EKR

(D) minimize
$$\alpha$$
, subject to $\alpha I - J - \gamma A - Z \succeq 0$, $Z \geqslant 0$.

Optimal feasible solution (unique)

$$\bullet \ \alpha = \binom{n-1}{k-1}$$

•
$$\gamma = \alpha/\lambda_{\min} = -\binom{n-1}{k-1}\binom{n-k-1}{k-1}^{-1}$$

•
$$Z = 0$$

This gives us $\alpha(G_{n,k}) \leqslant \binom{n-1}{k-1}$.

5.

SDP for cross-intersecting EKR

Let $G = (V_1 \sqcup V_2, E)$ be a bipartite graph.

- $(U_1, U_2) \subset V_1 \times V_2$ is cross-independent if $uv \notin E$ for all $u \in U_1, v \in U_2$.
- Define $\tilde{\alpha}(G) := \max \sqrt{|U_1||U_2|}$.
- Define $G_{n,k,l} = (V_1 \sqcup V_2, E)$ by

$$\begin{split} V_1 &:= \binom{[n]}{k}, \quad V_2 := \binom{[n]}{l}, \\ E &:= \{ uv : (u,v) \in V_1 \times V_2, \ u \cap v = \emptyset \}. \end{split}$$

• (U_1, U_2) is cross-independent in $G_{n,k,l}$ iff U_1 and U_2 are cross-intersecting.

• Define $G_{n,k,l} = (V_1 \sqcup V_2, E)$ by

$$\begin{split} V_1 &:= \tbinom{[n]}{k}, \quad V_2 := \tbinom{[n]}{l}, \\ E &:= \{uv: (u,v) \in V_1 \times V_2, \ u \cap v = \emptyset\}. \end{split}$$

 $\bullet \ \tilde{\alpha}(G) = \max\{\sqrt{|U_1||U_2|}: (U_1,U_2) \text{cross-indep}\}.$

Theorem (cross-intersecting EKR, reprise)

If $n \ge 2k$ and $n \ge 2l$, then

$$\tilde{\alpha}(G_{n,k,l}) = \sqrt{\binom{n-1}{k-1}\binom{n-1}{l-1}}.$$

- Let $G = G_{n,k,l}$, $N_1 = \binom{n}{k}$, $N_2 = \binom{n}{l}$.
- Let $A \in \mathbb{R}^{N_1 \times N_2}$ be the bip. adj. matrix.
- Let (U_1, U_2) be cross-independent.
- Let $x_i \in \mathbb{R}^{N_i}$ be the unit char. vector of U_i .
- Let $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^{N_1 + N_2}$.
- Define

$$X_{U_1,U_2} := x x^T \in S\mathbb{R}^{(N_1+N_2)\times(N_1+N_2)}.$$

• $X_{U_1,U_2} \succeq 0$, $X_{U_1,U_2} \geqslant 0$.

Consider matrices in $S\mathbb{R}^{(N_1+N_2)\times(N_1+N_2)}$

$$\bullet \ \frac{1}{2} \begin{bmatrix} 0 & J \\ J^T & 0 \end{bmatrix} \bullet X_{U_1,U_2} = \sqrt{|U_1||U_2|}.$$

$$\bullet \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix} \bullet X_{U_1, U_2} = \begin{bmatrix} 0 & 0 \\ 0 & I_2 \end{bmatrix} \bullet X_{U_1, U_2} = 1.$$

$$\bullet \begin{bmatrix} 0 & A \\ A^{\mathsf{T}} & 0 \end{bmatrix} \bullet X_{\mathsf{U}_1,\mathsf{U}_2} = 0.$$

SDP problem for cross-intersecting EKR

(P) maximize
$$\tilde{J} \bullet X$$
, subject to $\tilde{I} \bullet X = 2$, $\tilde{A} \bullet X = 0$, $X \succeq 0$, $X \geqslant 0$,

where

$$\tilde{\mathbf{I}} = \begin{bmatrix} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{bmatrix}$$
, $\tilde{\mathbf{J}} = \frac{1}{2} \begin{bmatrix} \mathbf{0} & \mathbf{J} \\ \mathbf{J}^\mathsf{T} & \mathbf{0} \end{bmatrix}$, $\tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^\mathsf{T} & \mathbf{0} \end{bmatrix}$.

This is a bipartite variant of Lovász' θ -bound (and Schrijver's θ' -bound)

SDP problem for cross-intersecting EKR

(D) minimize 2α , subject to $\alpha \tilde{\mathbf{I}} - \tilde{\mathbf{J}} - \gamma \tilde{\mathbf{A}} - \mathbf{Z} \succeq \mathbf{0}$, $\mathbf{Z} \geqslant \mathbf{0}$, where $\tilde{\mathbf{I}} = \begin{bmatrix} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{bmatrix}, \ \tilde{\mathbf{J}} = \frac{1}{2} \begin{bmatrix} \mathbf{0} & \mathbf{J} \\ \mathbf{J}^\mathsf{T} & \mathbf{0} \end{bmatrix}, \ \tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^\mathsf{T} & \mathbf{0} \end{bmatrix}.$

one of the optimal solutions (1-param. family)

$$\bullet \ 2\alpha = \sqrt{\binom{\mathfrak{n}-1}{k-1}\binom{\mathfrak{n}-1}{l-1}}, \quad \gamma = -\tfrac{1}{2}\binom{\mathfrak{n}-1}{\mathfrak{l}}\binom{\mathfrak{n}-k}{\mathfrak{l}}^{-1}$$

6.

SDP for general cross-intersection problems

SDP for a general cross-int. problem

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- For i=1,2 let $\mu_i:V_i\to\mathbb{R}_{\geqslant 0}$ be a probability measure, i.e., $\sum_{x\in V_i}\mu(\{x\})=1$.
- Let Δ_i be the $|V_i| \times |V_i|$ diagonal matrix with $(\Delta_i)_{xx} := \mu(\{x\})$.
- Let E_{xy} be the $|V_1| \times |V_2|$ matrix with a 1 at (x, y)-entry and 0 elsewhere.

SDP problem for general cross-int. problem

$$\begin{split} \text{(D)} \quad & \text{minimize} \quad \alpha + \beta, \\ & \text{subject to} \\ & \left[\begin{matrix} \alpha \Delta_1 & 0 \\ 0 & \beta \Delta_2 \end{matrix} \right] - \frac{1}{2} \begin{bmatrix} 0 & \Delta_1 J \Delta_2 \\ \Delta_2 J^\mathsf{T} \Delta_1 & 0 \end{bmatrix} \\ & - \sum_{xy \in E} \gamma_{xy} \begin{bmatrix} 0 & \mathsf{E}_{xy} \\ \mathsf{E}_{yx} & 0 \end{bmatrix} - \mathsf{Z} \succeq 0, \\ \mathsf{Z} \geqslant 0. \end{split}$$

Theorem

If $U_1 \subset V_1$ and $U_2 \subset V_2$ are cross-independent in G, and $(\alpha, \beta, \gamma_{xy}, Z)$ is feasible in (D), then $\mu_1(U_1)\mu_2(U_2) \leqslant (\alpha + \beta)^2.$

• For $p \in (0,1)$ the product measure $\mu_p: 2^{[n]} \to \mathbb{R}_{\geqslant 0}$ is defined by

$$\mu_p(\mathcal{F}) := \sum_{F \in \mathcal{F}} p^{|F|} (1-p)^{n-|F|}$$

• If $\mathcal{H} = \{H \subset [n] : 1 \in H\}$, then $\mu_p(\mathcal{H}) = p$.

Theorem

If \mathcal{A} , $\mathcal{B}\subset 2^{[\mathfrak{n}]}$ are cross-intersecting, and $\mathfrak{p}_1\leqslant 1/2$ and $\mathfrak{p}_2\leqslant 1/2$, then

$$\mu_{\mathfrak{p}_1}(\mathcal{A})\mu_{\mathfrak{p}_2}(\mathcal{B}) \leqslant \mathfrak{p}_1\mathfrak{p}_2.$$

Fishburn–Frankl–Freed–Lagarias–Odlyzko (1986) defined a probability measure μ on $2^{[n]}$ with respect to $\mathbf{p}=(p_1,p_2,\ldots,p_n)\in(0,1)^n$ by

$$\mu(\mathfrak{F}) := \sum_{F \in \mathfrak{F}} \prod_{i \in F} p_i \prod_{j \in [n] \setminus F} (1 - p_j).$$

Theorem (FFFLO)

Let μ be a measure as above with

•
$$p_1 \geqslant p_2 \geqslant \ldots \geqslant p_n$$
 and $1/2 \geqslant p_2$.

If $\mathcal{F} \subset 2^{[n]}$ is intersecting, then $\mu(\mathcal{F}) \leqslant \mathfrak{p}_1$.

Theorem (Suda-Tanaka-T)

Let μ and μ' be FFFLO measures on $2^{[n]}$ with respect to \mathbf{p} and \mathbf{p}' , respectively. Suppose that $\mathcal{A}, \mathcal{B} \subset 2^n$ are cross-intersecting.

- (i) If $p_1 = \max\{p_i\}$, $1/2 \geqslant \max\{p_2, \dots, p_n\}$, and $p_1' = \max\{p_i'\}$, $1/2 \geqslant \max\{p_2', \dots, p_n'\}$. Then $\mu(\mathcal{A})\mu'(\mathcal{B}) \leqslant p_1p_1'$.
- (ii) If $p_1p_1'=\max\{p_i\,p_i':1\leqslant i\leqslant n\}$, and $p_i,p_i'\leqslant 1/3$ for all i, then $\mu(\mathcal{A})\mu'(\mathcal{B})\leqslant p_1p_1'$. 1/3 can be replaced with 1/2 ???

References

- M. J. Todd, Semidefinite optimization, Acta Numer. 10 (2001) 515-560.
- S. Suda, H. Tanaka, N. Tokushige, A semidefinite programming approach to a cross-intersection problem with measures.
 - arXiv:1504.00135