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1.
Prototype

A linear programming approach
to an intersection problem
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Let G = (V, E) be a graph.
e U C Vis independent if uv ¢ E for all
u,ve U

e The independence number o(G) is the max
size of independent sets.

Problem
Determine or estimate the independence number

of a given graph.
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Petersen graph
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o Let A = (ayy) be the adjacency matrix of
G = (V,E), ie,, a |V| x |V| matrix such that

1 ifxy €L,
axly — .
0 otherwise.

o If G is ‘symmetric’ then eigenvalues of A
provide a good bound for o(G):
_}\min
}\max - )\min

Hoffman’s ratio bound, Delsarte’s LP bound, Lovdsz' 8 bound

x(G) < VI.
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Example (Petersen graph)
We have

det(xI — A) = (x — 3)(x — 1)°(x + 2)%,
}\max — 3: }\min — _21

_}\min |V| _(_2)

< = —10 =4.
}\max - }\min 3— (_2)
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e Consequently the independence number of
Petersen graph is 4.

e This can be viewed as a result concerning an
intersection problem.
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o n]:={1,2,..., n}
o 2M - the power set

° ([E]) : the set of k-element subsets

o F C 2 s intersecting if FNF' #  for any
FF ed.

Problem

What is the max size of int. families in ([“])?

k
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° ([E]) . the set of k-element subsets

o F C 2 s intersecting if FNF' ) for any
F.F e7.
o Let
H={He (V):1eH}
Then H is intersecting, and |H| = (L‘:i)
Erdos—Ko—Rado Theorem

lf n > 2k and F C ( ) is intersecting, then

n—1
F| < .
T (k_1>

~
N
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o Kneser graph G x = (V, E) is defined by

Vs ()

E={uw:u,veV, unv=_0}

o U C Vs indep. in Gy i iff U is intersecting.
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12

34

uv € E iff
o5 Is unv=~a0,
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(5]
; v=(3)

45

/\ wv € E iff
\25 14/35 unv=190.

max int. family
{12, 13, 14, 15}

13
N ey

34

23

N
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e One can compute the eigenvalues of the
adjacency matrix of the Kneser graph G;, k.

e Then the ratio bound gives the upper bound
for the independence number of G, .
e This implies EKR.

e We will extend this idea to solve
cross-intersection problems by using SDP.
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2.

Cross-intersection problems
and results obtained by SDP approach
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Two families A, B 2 are cross-intersecting if

ANB#(Qforall AcABEcB.

Theorem (Pyber, Matsumoto-T, Bey)

If A C ([2]) and B C ([E]) are cross-intersecting,
and n > 2a and n > 2b, then

n—1 n—1
Bl < .
AP (a—l) (b—l)

shifting & Kruskal-Katona theorem on shadows,

Katona's cyclic permutation, Sperner inequality
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e V : n-dim vector space over [
° Dﬂ . the set of k-dim subspaces of V

o A, B C V are cross-intersecting if
ANB #{0}forall A € A, B e B.
Theorem (Suda—Tanaka)

It A C Dﬂ and B C Dﬂ are cross-intersecting,
and n > 2a and n > 2b, then

n—1(|In—1
Bl < .
AllB| [G_J [b_J

No combinatorial proof is known so far.
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@ One can also obtain ‘measure’ variants of
cross-intersecting EKR:

Suda—Tanaka—T, arXiv:1504.00135

e SDP approach provides a unified way to solve
these problems, and it is the only way to
prove some of them.
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3.
SDP and Weak Duality
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Linear Programming problem

(primal form) minimize c¢'x,
subject to Ax =D,
x = 0,

where A € R™" b € R™, ¢ € R™ are given,
X € R"™ is the variable.

(dual form) maximize by,
subject to yTA <cl,

where y € R™ is the variable.
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LP problem

(P) min  c¢'x, (D) max b'y,
subj. to AXx =D, subj. to yTA <cl.
x > 0.

Weak duality

If x is feasible in (P) and y is feasible in (D),
then ¢'x > (yT"A)x =y (Ax) =y'b=Db"y.

Any feasible solution to (D) gives a lower bound
for the objective value of (P).
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Semidefinite Programming problem

e An extension of LP.

e Extend the space of the variables from R to
SR™ ™ (the set of N X M symm. matrices).

o For A, B € SR™™ let

A e B := trace( AT Z a;;by; € R,

o We write A > 0 for positive semidefinite A.
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SDP problem

(P) min CeX,
subjectto AjeX=Db;, 1=1,2,..., m,
X >0,

A; € SR™™ b € R™, C € SR™™ are given,
X € SR™™ is the variable.

(D) max by,
subject to C—3 ™ yiA; = 0,

Yy € R™ is the variable.

(Weak duality) CeX>b'y. J
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SDP for EKR
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o Kneser graph G, x = (V, E) is defined by

Vs ()
E={uv:u,veV, unv=70.

o U C Vs indep. in Gy i iff U is intersecting.

Theorem (EKR, reprise)

If n > 2k then a(Gnx) = (Ej)
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o Let G =Gk, N= (E) A the adj. matrix.
o Let U C V(G) be an independent set.
o Let x € RN be the char. vector of U and

1
Xy = —xx' < SRNXN.

[y
o Xy ~0, Xy = 0.
o Jo Xy =|U|
o Je X =1.

o Ae Xu — L Zi' ai,inXj =0.
u J
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(P) maximize JeX,
subjectto TeX =1 AeX=0,
X>=0, X2>=0.

The max ] e X gives an upper bound for the
independence number. This is the strengthening of

Lovasz's O-function bound due to Schrijver.
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(P) maximize JeX
subjectto TeX =1 A eX=0,
X>=0, X=>=0.

(D) minimize «,
subjectto I —]—vA -2 >0,
Z>0.

Weak Duality

If X is feasible in (P), and (¢, v, Z) is feasible in
(D), then J ¢ X < «.
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SDP problem for EKR

(D) minimize «,
subject to ol —] —vA —Z =0,

Z>0.
Optimal feasible solution (unique)
o = (o)

oY = o/Amin = _(Ej) (n;]_tl)_l
o Z — 0
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SDP for cross-intersecting EKR
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Let G = (V1 U V5, E) be a bipartite graph.
o (Ui, Us) C Vi x V5 is cross-independent if
uv € E for allu € Uy, v € U,.

o Define &(G) := max +/|U;||U>|.

o Define Gp1 = (Vi LU Vy, E) by

V= (3), Vo= (1),
E={uv:(u,v)eV;xV,, unv =10

o (U, Uy) is cross-independent in Gy, i iff
U; and U, are cross-intersecting.
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o Define Gy, x1 = (V1 U Vy, E) by

V= (1), Vai= ()
E={w:(uv)eVixVy, unv=_0h

o &(G) = max{\/ |U1||U2| . (Ul, UQ)cross—indep}.

Theorem (cross-intersecting EKR, reprise)
If n > 2k and n > 21, then

(Grt) = \/ -G
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o Let G = Gyt Ny = (), Ny = (%),
o Let A € RN1*N2 pe the bip. adj. matrix.

o Let (Uq, Uy) be cross-independent.

o Let x; € RN be the unit char. vector of U,.
o Let x = (x1,%xy) € RN1HN2,

o Define

Xul,uz — XXT c SR(Nﬁ-Nz)X(Nﬁ—Ng).

o Xy, u, = 0, Xy, u, = 0.
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Consider matrices in SR(N1HN2)x(N1+N2)

. [;’T (J)] e Xuyu, = /T

1; 0 00

o 01 O] ® Xu1,u2 = [0 12] ® XU1,U2 = 1.
(0 A

° AT O] ¢ XU—l.U-2 = 0.
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(P) maximize JeX,
subjectto 1eX =2 AeX=0,
X>=0 X220,

This is a bipartite variant of Lovasz' 0-bound

(and Schrijver’s 8’-bound)
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SDP problem for cross-intersecting EKR
(D) minimize 2«,

subject to ocT—T—y/:\—Z ~0, Z>0,
where

i I L Rl

one of the optimal solutions (1-param. family)

o 20 = /(D). v=3 )
o/ =c¢ [/21 8] Aj : adj. mat. of Gk

e ='Fa(H 7 (k2
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6.

SDP for

general cross-intersection problems
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SDP for a general cross-int. problem

o Let G = (V7 U V,, E) be a bipartite graph.

o Fori=12let ni:V; —+ Ry bea
probability measure, i.e., 3 .y p({x}) = 1.

o Let A; be the |Vi| x |V;| diagonal matrix with
(Ai)xx := p({x}).

o Let E, be the [Vi| x [V,| matrix with a 1 at
(x,y)-entry and 0 elsewhere.
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SDP problem for general cross-int. problem

(D) minimize o+ f3,
subject to
OCAl 0 1 0 A1]A2
0 ot 3 lag 0
—Zny [EO Egy} — L =0,
xy€ek ux
>0

If U; C Vi and Uy C V, are cross-independent
in G, and (¢, 3, Yxy, Z) is feasible in (D), then

b (Up)pa(Up) < (o + B)°.
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o For p € (0,1) the product measure
Hp 2 R is defined by

=> pf—pn T

FeF

o If H ={H C [n]: 1€ H}, then p,(H) =p.

Theorem

If A, B C 2™ are cross-intersecting, and
< 1/2 and py < 1/2, then

tp, (A)tp, (B) < p1p2.
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Fishburn—Frankl-Freed—Lagarias—Odlyzko (1986)
defined a probability measure p on 2™ with

respect to p = (p1, P2 - - -, Pn) € (0,1)™ by

Lllvl 11 (1—7pj).

FeF ieF

Theorem (FFFLO)

Let 1 be a measure as above with
epP1=P2=>=... =2 Ppnand 1/2 > po

If 7 c 2™ is intersecting, then u(F) < pi.
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Theorem (Suda—Tanaka-T)

Let 1 and ' be FFFLO measures on 2™ with

respect to p and p’, respectively. Suppose that
A, B C 2" are cross-intersecting.

(i) If p1 = max{pi}, 1/2 > max{pa, ..., pn}
and p; = max{p;}, 1/2 > max{p,, ..., pl}.
Then p(A)n'(B) < p1p;.

(ii) h‘plp1 = max{pip; : 1 < i< n}, and
Pi, i < 1/3 for all i, then
w(A)u'(B) < pip1.

1/3 can be replaced with 1/2 777
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