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1.
Prototype

A linear programming approach
to an intersection problem
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Let G = (V ,E) be a graph.

U ⊂ V is independent if uv ̸∈ E for all

u, v ∈ U.

The independence number α(G) is the max

size of independent sets.

Problem
Determine or estimate the independence number

of a given graph.
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Petersen graph
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α(G) ⩾ 4
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Let A = (ax,y) be the adjacency matrix of

G = (V ,E), i.e., a |V |× |V | matrix such that

ax,y =

{
1 if xy ∈ E,

0 otherwise.

If G is ‘symmetric’ then eigenvalues of A

provide a good bound for α(G):

α(G) ⩽ −λmin

λmax − λmin
|V |.

Hoffman’s ratio bound, Delsarte’s LP bound, Lovász’ θ bound
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Example (Petersen graph)

We have

det(xI−A) = (x− 3)(x− 1)5(x+ 2)4,

λmax = 3, λmin = −2,

and

α(G) ⩽ −λmin

λmax − λmin
|V | =

−(−2)

3− (−2)
10 = 4.
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Consequently the independence number of

Petersen graph is 4.

This can be viewed as a result concerning an

intersection problem.
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[n] := {1, 2, . . . ,n}

2[n] : the power set(
[n]
k

)
: the set of k-element subsets

F ⊂ 2[n] is intersecting if F ∩ F ′ ̸= ∅ for any

F, F ′ ∈ F.

Problem

What is the max size of int. families in
(
[n]
k

)
?
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(
[n]
k

)
: the set of k-element subsets

F ⊂ 2[n] is intersecting if F ∩ F ′ ̸= ∅ for any

F, F ′ ∈ F.

Let

H = {H ∈
(
[n]
k

)
: 1 ∈ H}.

Then H is intersecting, and |H| =
(
n−1
k−1

)
.

Erdős–Ko–Rado Theorem

If n ⩾ 2k and F ⊂
(
[n]
k

)
is intersecting, then

|F| ⩽
(
n− 1

k− 1

)
.
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Kneser graph Gn,k = (V ,E) is defined by

V :=
(
[n]
k

)
E := {uv : u, v ∈ V , u ∩ v = ∅}.

U ⊂ V is indep. in Gn,k iff U is intersecting.
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V =

(
[5]

2

)

uv ∈ E iff

u ∩ v = ∅.
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V =

(
[5]

2

)

uv ∈ E iff

u ∩ v = ∅.

max int. family

{12, 13, 14, 15}

4 =
(
5−1
2−1

)
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One can compute the eigenvalues of the

adjacency matrix of the Kneser graph Gn,k.

Then the ratio bound gives the upper bound

for the independence number of Gn,k.

This implies EKR.

We will extend this idea to solve

cross-intersection problems by using SDP.
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2.
Cross-intersection problems

and results obtained by SDP approach
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Two families A,B ⊂ 2[n] are cross-intersecting if

A ∩ B ̸= ∅ for all A ∈ A,B ∈ B.

Theorem (Pyber, Matsumoto-T, Bey)

If A ⊂
(
[n]
a

)
and B ⊂

(
[n]
b

)
are cross-intersecting,

and n ⩾ 2a and n ⩾ 2b, then

|A||B| ⩽
(
n− 1

a− 1

)(
n− 1

b− 1

)
.

shifting & Kruskal–Katona theorem on shadows,

Katona’s cyclic permutation, Sperner inequality
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V : n-dim vector space over Fq[
V
k

]
: the set of k-dim subspaces of V

A,B ⊂ V are cross-intersecting if

A ∩ B ̸= {0} for all A ∈ A,B ∈ B.

Theorem (Suda–Tanaka)

If A ⊂
[
V
a

]
and B ⊂

[
V
b

]
are cross-intersecting,

and n ⩾ 2a and n ⩾ 2b, then

|A||B| ⩽
[
n− 1

a− 1

][
n− 1

b− 1

]
.

No combinatorial proof is known so far.
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One can also obtain ‘measure’ variants of

cross-intersecting EKR:

Suda–Tanaka–T, arXiv:1504.00135
SDP approach provides a unified way to solve

these problems, and it is the only way to

prove some of them.
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3.
SDP and Weak Duality
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Linear Programming problem

(primal form) minimize cTx,

subject to A x = b,

x ⩾ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given,

x ∈ Rn is the variable.

(dual form) maximize bTy,

subject to yTA ⩽ cT,

where y ∈ Rm is the variable.
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LP problem

(P) min cTx, (D) max bTy,

subj. to A x = b, subj. to yTA ⩽ cT.

x ⩾ 0.

Weak duality

If x is feasible in (P) and y is feasible in (D),

then cTx ⩾ (yTA)x = yT(Ax) = yTb = bTy.

Any feasible solution to (D) gives a lower bound

for the objective value of (P).
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Semidefinite Programming problem

An extension of LP.

Extend the space of the variables from R to

SRn×n (the set of n× n symm. matrices).

For A,B ∈ SRn×n let

A • B := trace(ATB) =
∑
i,j

aijbij ∈ R,

We write A ⪰ 0 for positive semidefinite A.
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SDP problem

(P) min C • X,
subject to Ai • X = bi, i = 1, 2, . . . ,m,

X ⪰ 0,

Ai ∈ SRn×n, b ∈ Rm, C ∈ SRn×n are given,
X ∈ SRn×n is the variable.

(D) max bTy,
subject to C−

∑m
i=1 yiAi ⪰ 0,

y ∈ Rm is the variable.

(Weak duality) C • X ⩾ bTy.
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4.
SDP for EKR
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Kneser graph Gn,k = (V ,E) is defined by

V :=
(
[n]
k

)
E := {uv : u, v ∈ V , u ∩ v = ∅}.

U ⊂ V is indep. in Gn,k iff U is intersecting.

Theorem (EKR, reprise)

If n ⩾ 2k then α(Gn,k) =
(
n−1
k−1

)
.
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Let G = Gn,k, N =
(
n
k

)
, A the adj. matrix.

Let U ⊂ V(G) be an independent set.

Let x ∈ RN be the char. vector of U and

XU :=
1

|U|
x xT ∈ SRN×N.

XU ⪰ 0, XU ⩾ 0.

J • XU = |U|.

I • XU = 1.

A • XU = 1
|U|

∑
i,j ai,jxixj = 0.
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SDP problem for EKR

(P) maximize J • X,
subject to I • X = 1, A • X = 0,

X ⪰ 0, X ⩾ 0.

The max J • X gives an upper bound for the

independence number. This is the strengthening of

Lovász’s θ-function bound due to Schrijver.
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SDP problem for EKR

(P) maximize J • X,
subject to I • X = 1, A • X = 0,

X ⪰ 0, X ⩾ 0.

(D) minimize α,

subject to αI− J− γA− Z ⪰ 0,

Z ⩾ 0.

Weak Duality

If X is feasible in (P), and (α,γ,Z) is feasible in

(D), then J • X ⩽ α.
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SDP problem for EKR

(D) minimize α,

subject to αI− J− γA− Z ⪰ 0,

Z ⩾ 0.

Optimal feasible solution (unique)

α =
(
n−1
k−1

)
γ = α/λmin = −

(
n−1
k−1

)(
n−k−1
k−1

)−1

Z = 0

This gives us α(Gn,k) ⩽
(
n−1
k−1

)
.
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5.
SDP for cross-intersecting EKR
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Let G = (V1 ⊔ V2,E) be a bipartite graph.

(U1,U2) ⊂ V1 × V2 is cross-independent if

uv ̸∈ E for all u ∈ U1, v ∈ U2.

Define α̃(G) := max
√
|U1||U2|.

Define Gn,k,l = (V1 ⊔ V2,E) by

V1 :=
(
[n]
k

)
, V2 :=

(
[n]
l

)
,

E := {uv : (u, v) ∈ V1 × V2, u ∩ v = ∅}.

(U1,U2) is cross-independent in Gn,k,l iff

U1 and U2 are cross-intersecting.
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Define Gn,k,l = (V1 ⊔ V2,E) by

V1 :=
(
[n]
k

)
, V2 :=

(
[n]
l

)
,

E := {uv : (u, v) ∈ V1 × V2, u ∩ v = ∅}.

α̃(G) = max{
√

|U1||U2| : (U1,U2)cross-indep}.

Theorem (cross-intersecting EKR, reprise)

If n ⩾ 2k and n ⩾ 2l, then

α̃(Gn,k,l) =

√(
n− 1

k− 1

)(
n− 1

l− 1

)
.
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Let G = Gn,k,l, N1 =
(
n
k

)
, N2 =

(
n
l

)
.

Let A ∈ RN1×N2 be the bip. adj. matrix.

Let (U1,U2) be cross-independent.

Let xi ∈ RNi be the unit char. vector of Ui.

Let x = (x1, x2) ∈ RN1+N2.

Define

XU1,U2 := x xT ∈ SR(N1+N2)×(N1+N2).

XU1,U2 ⪰ 0, XU1,U2 ⩾ 0.
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Consider matrices in SR(N1+N2)×(N1+N2)

1

2

[
0 J

JT 0

]
• XU1,U2 =

√
|U1||U2|.[

I1 0

0 0

]
• XU1,U2 =

[
0 0

0 I2

]
• XU1,U2 = 1.[

0 A

AT 0

]
• XU1,U2 = 0.

N. Tokushige (Ryukyu Univ.) SDP approach to intersection problems 34 / 43



SDP problem for cross-intersecting EKR

(P) maximize J̃ • X,
subject to Ĩ • X = 2, Ã • X = 0,

X ⪰ 0, X ⩾ 0,
where

Ĩ =

[
I1 0

0 I2

]
, J̃ =

1

2

[
0 J

JT 0

]
, Ã =

[
0 A

AT 0

]
.

This is a bipartite variant of Lovász’ θ-bound

(and Schrijver’s θ ′-bound)
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SDP problem for cross-intersecting EKR
(D) minimize 2α,

subject to αĨ− J̃− γÃ− Z ⪰ 0, Z ⩾ 0,
where

Ĩ =

[
I1 0
0 I2

]
, J̃ =

1

2

[
0 J

JT 0

]
, Ã =

[
0 A

AT 0

]
.

one of the optimal solutions (1-param. family)

2α =
√(

n−1
k−1

)(
n−1
l−1

)
, γ = −1

2

(
n−1
l

)(
n−k
l

)−1

Z = ϵ

[
A1 0

0 0

]
A1 : adj. mat. of Gn,k

ϵ = k−l
k
α
(
n−k
k

)−1
(k ⩾ l)
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6.
SDP for

general cross-intersection problems
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SDP for a general cross-int. problem

Let G = (V1 ∪ V2,E) be a bipartite graph.

For i = 1, 2 let µi : Vi → R⩾0 be a

probability measure, i.e.,
∑

x∈Vi
µ({x}) = 1.

Let ∆i be the |Vi|× |Vi| diagonal matrix with

(∆i)xx := µ({x}).

Let Exy be the |V1|× |V2| matrix with a 1 at

(x,y)-entry and 0 elsewhere.
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SDP problem for general cross-int. problem
(D) minimize α+ β,

subject to[
α∆1 0
0 β∆2

]
−

1

2

[
0 ∆1J∆2

∆2J
T∆1 0

]
−
∑
xy∈E

γxy

[
0 Exy

Eyx 0

]
− Z ⪰ 0,

Z ⩾ 0.

Theorem
If U1 ⊂ V1 and U2 ⊂ V2 are cross-independent

in G, and (α,β,γxy,Z) is feasible in (D), then

µ1(U1)µ2(U2) ⩽ (α+ β)2.
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For p ∈ (0, 1) the product measure

µp : 2[n] → R⩾0 is defined by

µp(F) :=
∑
F∈F

p|F|(1− p)n−|F|

If H = {H ⊂ [n] : 1 ∈ H}, then µp(H) = p.

Theorem

If A,B ⊂ 2[n] are cross-intersecting, and

p1 ⩽ 1/2 and p2 ⩽ 1/2, then

µp1(A)µp2(B) ⩽ p1p2.
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Fishburn–Frankl–Freed–Lagarias–Odlyzko (1986)

defined a probability measure µ on 2[n] with

respect to p = (p1,p2, . . . ,pn) ∈ (0, 1)n by

µ(F) :=
∑
F∈F

∏
i∈F

pi

∏
j∈[n]\F

(1− pj).

Theorem (FFFLO)

Let µ be a measure as above with

p1 ⩾ p2 ⩾ . . . ⩾ pn and 1/2 ⩾ p2.

If F ⊂ 2[n] is intersecting, then µ(F) ⩽ p1.
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Theorem (Suda–Tanaka–T)

Let µ and µ ′ be FFFLO measures on 2[n] with

respect to p and p ′, respectively. Suppose that

A,B ⊂ 2n are cross-intersecting.

(i) If p1 = max{pi}, 1/2 ⩾ max{p2, . . . ,pn},

and p ′
1 = max{p ′

i}, 1/2 ⩾ max{p ′
2, . . . ,p

′
n}.

Then µ(A)µ ′(B) ⩽ p1p
′
1.

(ii) If p1p
′
1 = max{pi p

′
i : 1 ⩽ i ⩽ n}, and

pi,p
′
i ⩽ 1/3 for all i, then

µ(A)µ ′(B) ⩽ p1p
′
1.

1/3 can be replaced with 1/2 ???
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