The maximum product of measures of cross *t*-intersecting families

Norihide Tokushige

Ryukyu University

May 22th, 2017 @ TSIMF

based on joint work with S.J. Lee and M. Siggers

Notation and Definition

- $[n] := \{1, 2, ..., n\}$: the vertex set.
- $\Omega_n := 2^{[n]}$: the power set of [n].
- A family of subsets $\mathcal{F} \subset \Omega_n$.
- \mathcal{F} is *t*-intersecting if $|F \cap F'| \geq t$ for all $F, F' \in \mathcal{F}$.
- For $p \in (0,1)$ and $\mathcal{F} \subset \Omega_n$ the measure $\mu_p(\mathcal{F})$ is defined by

$$\mu_p(\mathcal{F}) := \sum_{F \in \mathcal{F}} p^{|F|} (1-p)^{n-|F|}.$$

• We write Ω and μ instead of Ω_n and μ_p .

$$\Omega = 2^{[n]}.$$

$$\mu(\Omega) = \sum_{F \in \Omega} p^{|F|} (1 - p)^{n - |F|}$$

$$= \sum_{k=0}^{n} \sum_{F \in {[n] \choose k}} p^{|F|} (1 - p)^{n - |F|}$$

$$= \sum_{k=0}^{n} {n \choose k} p^{k} (1 - p)^{n - k}$$

$$= (p + (1 - p))^{n}$$

$$= 1.$$

- Let $\mathcal{F} := \{ F \in \Omega : [t] \subset F \}$.
- \mathcal{F} is a t-intersecting family.
- $[n] = [t] \sqcup [t+1, n], \ \Omega' := 2^{[t+1, n]}.$
- $\bullet \ \mathcal{F} = \{ [t] \sqcup G : G \in \Omega' \}.$

•

$$\mu(\mathcal{F}) = \sum_{G \in \Omega'} p^t \cdot p^{|G|} (1 - p)^{(n-t)-|G|}$$
$$= p^t \cdot \mu(\Omega') = p^t$$

• \mathcal{F} is a t-intersecting family with $\mu(\mathcal{F}) = p^t$.

Theorem

If $p \leq \frac{1}{t+1}$ and $\mathcal{F} \subset \Omega$ is t-intersecting, then $\mu(\mathcal{F}) \leq p^t$.

- Define $\mathcal{F}_r := \{ F \subset [n] : |F \cap [t+2r]| \ge t+r \}.$
- \mathcal{F}_r is a *t*-intersecting family.

Theorem (Ahlswede-Khachatrian)

If $A \subset \Omega$ is t-intersecting, then

$$\mu(\mathcal{A}) \leq \max_{r} \mu(\mathcal{F}_r).$$

Moreover equality holds only if $A \cong \mathcal{F}_r$ for some r.

• If
$$p \in \left[\frac{r}{t+2r-1}, \frac{r+1}{t+2r+1}\right] := I_{r,t}$$
, then
$$\mu(\mathcal{F}_0) < \mu(\mathcal{F}_1) < \dots < \mu(\mathcal{F}_{r-1}) \leq \mu(\mathcal{F}_r)$$
$$\mu(\mathcal{F}_r) \geq \mu(\mathcal{F}_{r+1}) > \mu(\mathcal{F}_{r+2}) > \dots$$

t-intersecting families with the maximal measures

• Consider the case $t \gg r$.

•
$$I_{r,t} = \left[\frac{r}{t+2r-1}, \frac{r+1}{t+2r+1}\right] \approx \left[\frac{r}{t}, \frac{r+1}{t}\right]$$

• Define $\mathcal{F}_r := \{ F \subset [n] : |F \cap [t+2r]| \ge t+r \}.$

Theorem (Ahlswede-Khachatrian, reprise)

If $p \in I_{r,t}$ and $\mathcal{A} \subset \Omega$ is *t*-intersecting, then

$$\mu(\mathcal{A}) \leq \mu(\mathcal{F}_r).$$

Moreover equality holds only if $A \cong \mathcal{F}_{r-1}, \mathcal{F}_r, \mathcal{F}_{r+1}$.

- Frankl–Füredi 1991 (uniform version, for $t \gg r$)
- Ahlswede-Khachatrian 1998, Bey-Engel 1998 (method of generating sets)
- Dinur–Safra 2005, T 2005 (from complete EKR)
- Friedgut 2008 (spectral method, for r = 0, stability)

• Two families $\mathcal{A}, \mathcal{B} \subset \Omega$ are cross *t*-intersecting if $|A \cap B| \geq t$ for all $A \in \mathcal{A}, B \in \mathcal{B}$.

Question

Is it true that if $p \in I_{r,t}$, and $\mathcal{A}, \mathcal{B} \subset \Omega$ are cross t-intersecting, then

$$\mu(\mathcal{A})\mu(\mathcal{B}) \leq \mu(\mathcal{F}_r)^2$$
?

Our result: This is true if $t \gg r$.

Theorem 1

For every $r \geq 0$, there is $t_0 = t_0(r)$ such that for all $t \geq t_0$ and $p \in I_{r,t}$ the following holds: If $\mathcal{A}, \mathcal{B} \subset \Omega$ are cross t-intersecting, then

$$\mu(\mathcal{A})\mu(\mathcal{B}) \le \mu(\mathcal{F}_r)^2.$$

Equality holds iff

- \bullet $\mathcal{A} = \mathcal{B} \cong \mathcal{F}_{r-1}$ and $p = \min I_{r,t}$,
- $\mathbf{Q} \ \mathcal{A} = \mathcal{B} \cong \mathcal{F}_r \text{ and } p \in I_{r,t}$

Theorem 1 (reprise)

If $t \gg r$, $p \in I_{r,t}$, and \mathcal{A}, \mathcal{B} are cross t-intersecting, then $\mu(\mathcal{A})\mu(\mathcal{B}) \leq \mu(\mathcal{F}_r)^2$.

Question about stability

Is it true that if $\mu(\mathcal{A})\mu(\mathcal{B})$ is close to $\mu(\mathcal{F}_r)^2$, then both \mathcal{A} and \mathcal{B} are close to one of $\mathcal{F}_{r-1}, \mathcal{F}_r, \mathcal{F}_{r+1}$?

- Assume further that \mathcal{A} and \mathcal{B} are shifted. if $A \in \mathcal{A}$, $A \cap \{i, j\} = \{j\}$, i < j, then $(A \setminus \{j\}) \cup \{i\} \in \mathcal{A}$.
- Then it is true if $p \in (\frac{r+\epsilon}{t}, \frac{r+1-\epsilon}{t})$ and $t > t_0(r, \epsilon)$.
- If $p \approx \frac{r}{t}$ or $\frac{r+1}{t}$, then there are other structures!

Almost optimal cross t-intersecting families at $p = \frac{r}{t}$

- Write \mathcal{F}_r^t instead of \mathcal{F}_r .
- $\mathcal{F}_r^t := \{ F \in \Omega : |F \cap [t+2r]| \ge t+r \}.$
- $\mathcal{F}_r^{t-1} = \{ F \in \Omega : |F \cap [t+2r-1]| \ge t+r-1 \}.$
- $\mathcal{F}_{r-1}^{t+1} = \{ F \in \Omega : |F \cap [t+2r-1]| \ge t+r \}.$
- $\mathcal{G} := \mathcal{F}_r^{t-1}$ is (t-1)-intersecting.
- $\mathcal{H} := \mathcal{F}_{r-1}^{t+1}$ is (t+1)-intersecting.
- $\mathcal{H} \subset \mathcal{F}_r^t \subset \mathcal{G}$.
- ullet $\mathcal G$ and $\mathcal H$ are cross t-intersecting.
- If $p = \frac{r}{t}$ then $\mu(\mathcal{F}_r^t)^2 > \mu(\mathcal{G})\mu(\mathcal{H})$ but

$$\lim_{t \to \infty} \frac{\mu(\mathcal{F}_r^t)^2}{\mu(\mathcal{G})\mu(\mathcal{H})} = 1.$$

cross t-int. families with max product of measures

What happens at around p = r/t ?

- Let $\mathcal{G}:=\mathcal{F}_r^{t-1}$, $\mathcal{H}:=\mathcal{F}_{r-1}^{t+1}$.
- if p = r/t then

$$\mu(\mathcal{F}_r^t)^2 \approx \mu(\mathcal{G})\mu(\mathcal{H}) \approx \mu(\mathcal{F}_{r-1}^t)^2.$$

• if $p = (r - \epsilon)/t$ then

$$\mu(\mathcal{F}_r^t)^2 < \mu(\mathcal{G})\mu(\mathcal{H}) < \mu(\mathcal{F}_{r-1}^t)^2.$$

• if $p = (r + \epsilon)/t$ then

$$\mu(\mathcal{F}_r^t)^2 > \mu(\mathcal{G})\mu(\mathcal{H}) > \mu(\mathcal{F}_{r-1}^t)^2.$$

Theorem 2

For every $r\geq 1$ and every $0<\epsilon<1/2$, there is $t_0=t_0(r,\epsilon)$ such that for all $t\geq t_0$ and

$$p \in \left(\frac{r+\epsilon}{t}, \frac{r+1-\epsilon}{t}\right) \subsetneq I_{r,t}$$

the following holds: If $A, B \subset \Omega$ are shifted cross t-intersecting families, and

$$\sqrt{\mu(\mathcal{A})\mu(\mathcal{B})} = (1 - \eta)\,\mu(\mathcal{F}_r^t),$$

for some $0 < \eta < \frac{\epsilon}{2(r+1)}$, then

$$\mu(\mathcal{A}\triangle\mathcal{F}_r^t) + \mu(\mathcal{B}\triangle\mathcal{F}_r^t) < 3\eta\,\mu(\mathcal{F}_r^t).$$

Let
$$m:=rac{\epsilon}{2(r+1)}$$
, and $\mathcal{F}:=\mathcal{F}_r^t$.

Theorem 2 (reprise)

Let $p \in (\frac{r+\epsilon}{t}, \frac{r+1-\epsilon}{t})$, $0 < \eta < m$. If \mathcal{A}, \mathcal{B} are shifted cross t-intersecting and $\sqrt{\mu(\mathcal{A})\mu(\mathcal{B})} = (1-\eta)\,\mu(\mathcal{F})$, then $\mu(\mathcal{A}\triangle\mathcal{F}) + \mu(\mathcal{B}\triangle\mathcal{F}) < 3\eta\,\mu(\mathcal{F})$.

m cannot be replaced with $\gamma := 1 - \sqrt{1 - \frac{\epsilon}{r+1}} > m$.

Example

Let
$$p = \frac{r+1-\epsilon}{t}$$
, $\mathcal{G} = \mathcal{F}_{r+1}^{t-1}$, $\mathcal{H} = \mathcal{F}_{r}^{t+1}$, and $\mathcal{F} := \mathcal{F}_{r}^{t}$.
Then $\sqrt{\mu(\mathcal{G})\mu(\mathcal{H})} \approx (1-\gamma)\,\mu(\mathcal{F})$, but $\mu(\mathcal{G}\triangle\mathcal{F}) = \mu(\mathcal{G}\setminus\mathcal{F}) \gg \mu(\mathcal{F})$.

Some problems

Theorem 1

For every $r \geq 0$, there is $t_0 = t_0(r)$ such that for all $t \geq t_0$ and $p \in I_{r,t}$ the following hold: If $\mathcal{A}, \mathcal{B} \subset \Omega$ are cross t-intersecting, then $\mu(\mathcal{A})\mu(\mathcal{B}) \leq \mu(\mathcal{F}_r)^2$.

Problem 1

Does this true for all t > 1?

Problem 2

In Theorem 2 we assumed that both families are shifted. Does the same hold without assuming shiftedness?

Some ideas for proof (based on Frankl–Füredi 1991)

• Regard a subset $F \subset [n]$ as a walk defined below.

- $\bullet \ \ \mathsf{Example:} \ F = \{1,4\} \subset [5]$
- For $\mathcal{F} \subset \Omega$ let

$$\lambda(\mathcal{F}) := \max\{l : \text{if } F \in \mathcal{F} \text{ then } F \text{ hits } y = x + l\}.$$

- $\mu(\mathcal{F}) \leq \alpha^{\lambda(\mathcal{F})}$, where $\alpha := \frac{p}{1-p}$.
- If \mathcal{F} is shifted and t-intersecting, then $\lambda(\mathcal{F}) \geq t$, and $\mu(\mathcal{F}) \leq \alpha^t$.

• If \mathcal{A}, \mathcal{B} are shifted and cross t-intersecting, then $\lambda(\mathcal{A}) + \lambda(\mathcal{B}) \geq 2t$. Thus

$$\mu(\mathcal{A})\mu(\mathcal{B}) \le \alpha^{\lambda(\mathcal{A})}\alpha^{\lambda(\mathcal{B})} = \alpha^{\lambda(\mathcal{A})+\lambda(\mathcal{B})} \le \alpha^{2t}.$$

• Let $u=\lambda(\mathcal{A})$ and divide $\mathcal{A}=\tilde{\mathcal{A}}\sqcup\mathcal{A}'$, where $\tilde{\mathcal{A}}=\{A\in\mathcal{A}:A\text{ hits }y=x+(u+1)\},$

$$\mathcal{A}'=\mathcal{A}\setminus \widetilde{\mathcal{A}}.$$

• $\mu(\tilde{\mathcal{A}})$ is small, and \mathcal{A}' is essential.

- Let A, B be shifted and cross t-intersecting families.
- Let $u = \lambda(\mathcal{A})$, $v = \lambda(\mathcal{B})$.
- Then $u + v \ge 2t$ and $\mu(\mathcal{A})\mu(\mathcal{B}) \le \alpha^{u+v}$.
- The case u + v = 2t is essential.
- There are unique $s, s' \ge 0$ such that

$$\mathcal{A}' \subset \mathcal{F}_s^u, \quad \mathcal{B}' \subset \mathcal{F}_{s'}^v.$$

• u = t - |s - s'|, v = t + |s - s'|.

$$\mu(\mathcal{A})\mu(\mathcal{B}) \approx \mu(\mathcal{A}')\mu(\mathcal{B}')$$

$$\leq \mu(\mathcal{F}_s^u)\mu(\mathcal{F}_{s'}^v) \leq \mu(\mathcal{F}_r^t)^2.$$