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Large subset without 3-AP
and the Slice Rank
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Let G be a finite abelian group.

A 3-AP (arithmetic progression of length 3) in G is a
triple of elements {x, x+ d, x+ 2d} with d ̸= 0.

Problem
Suppose that X ⊂ G contains no 3-AP.
Then how large |X| can be?

For example,

G = Zn ... Roth’s theorem, |X| ≪ n/(log log n).

G = Zn
4 ... Croot–Lev–Pach (2016), |X| < 3.61n.

G = Fn
3 ... today’s topic, |X| < 2.76n.
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Let

m(n) := max{|X| : X ⊂ Fn
3 has no 3-AP}.

Trivially m(n) < 3n.

Theorem (Edel 2004, Ellenberg–Gijswijt 2016)

2.21n < m(n) < 2.76n.

lower bound : by construction, e.g., {0, 1}n.
upper bound : by polynomial method due to CLP.

Tao reformulated the proof in terms of “slice rank.”
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Tao’s idea: Extend the fact that

“a diagonal matrix without zero diagonal is of full rank.”

Setup
Let X be a finite set, and F be a field.

Let f : X3 → F.
f is sliced if it is written in one of the following:

f(x, y, z) = a(x)b(y, z) or a(y)b(x, z) or a(z)b(x, y).
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Any function f : X3 → F can be written as a sum
of |X| sliced functions.
Define the slice rank of f by

sr(f) := min

{
r : f =

r∑
i=1

gi, gi is sliced

}
We have sr(f) ≤ |X|.

Lemma (Tao)

Suppose that f : X3 → F satisfies the diagonal condition

f(x, y, z) ̸= 0 if and only if x = y = z.

Then sr(f) = |X|.
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How to use the slice rank
to bound the size of
3-AP-free subset
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Proof of the Theorem (upper bound).
If X ⊂ Fn

3 has no 3-AP, then |X| < cn for some c < 3.

Observation
If x, y, z ∈ Fn

3 form a 3-AP (in this order), then

x+ z = 2y,

or equivalently
x+ y + z = 0.

On the other hand if x, y, z ∈ Fn
3 satisfy

x+ y + z = 0,

then they form a 3-AP, or x = y = z.
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Proof (continued)

Let X ⊂ Fn
3 be 3-AP-free. For all x, y, z ∈ X we have

x+ y + z = 0 if and only if x = y = z.

Write x = (x1, . . . , xn), and define f : X3 → F3 by

f(x, y, z) =
n∏

i=1

(
(xi + yi + zi)

2 − 1
)

Then f fulfills the diagonal condition

f(x, y, z) ̸= 0 if and only if x = y = z.

By Tao’s lemma we get sr(f) = |X|.
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Proof (ending)
Define g : (0, 1) → R by g(x) = x−2/3(1 + x+ x2).
Then g(x) takes minimum at α ∈ (0, 1), and

g(x) ≤ g(α) < 2.76.

A technical lemma
The slice rank of the function

f(x, y, z) =
n∏

i=1

(
(xi + yi + zi)

2 − 1
)

satisfies
sr(f) < g(α)n < 2.76n.
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Summary of the proof
Let X ⊂ Fn

3 be 3-AP-free. Define f : X3 → F3 by

f(x, y, z) =
n∏

i=1

(
(xi + yi + zi)

2 − 1
)
.

Then f has the diagonal condition with small slice rank:

f(x, y, z) ̸= 0 iff x = y = z, and

sr(f) < 2.76n.

Thus by Tao’s lemma we have

|X| = sr(f) < 2.76n.
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The slice rank method
Suppose that X ⊂ G has property (P), and we
want to say |X| < m.

Find a function f : Xk → F which reflects (P) in
such a way that for all x1, . . . , xk ∈ X,

f(x1, . . . , xk) ̸= 0 iff x1 = · · · = xk,

and moreover sr(f) < m.

Then by Tao’s lemma we have

|X| = sr(f) < m.
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Applications
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Let [n] = {1, 2, . . . , n} and(
[n]
k

)
= {F ⊂ [n] : |F | = k}.

Three distinct subsets A,B,C ⊂ [n] form a
sunflower if A ∩B = B ∩ C = C ∩ A.

Identify A ⊂ [n] with its char. vec. a = (a1, . . . , an)
where ai = 1 if i ∈ A, and ai = 0 if i ̸∈ A.

Theorem 2 (Naslund and Sawin 2016)

If X ⊂
(
[n]
k

)
contains no sunflowers then |X| < 1.9n.

Define f : X3 → R by f(x, y, z)=
∏n

i=1(xi+ yi+ zi− 2).
Then f satisfies the diag. cond., and sr(f) < 1.9n.
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Let χk(Rn) denote the minimum number of colors
needed to color Rn so that it does not contain a
monochromatic regular k-simplex of side length 1.

5 ≤ χ1(R2) ≤ 7.

(1.2 + o(1))n ≤ χ1(Rn) ≤ (3 + o(1))n.

(1+ 1

22k+4 +o(1))n ≤ χk(Rn) ≤ (1+(2+ 2
k)

1
2+o(1))n.

F–R, L–R, etc.

χ2(Rn) > (1 + c+ o(1))n.
c = 0.00085. Sagdeev 2018. (26 pages)
c = 0.01446. Naslund 2019+. (4 pages)
arXiv:1909.09856 by Slice Rank Method.
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The slice rank method is useful.
But there are some difficulties:

Dealing with a system of equations is not easy.

We usually require that elements of X satisfies the
given equation iff all the variables are the same.
E.g., for the 3-AP-free case we need

x+ y + z = 0 iff x = y = z.

In some cases this condition is too strong.
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What about 4-AP?

m4(n) := max{|X| : X ⊂ Fn
p has no 4-AP}.

An important open problem
Is it true that m4(n) < (cp)n for some 0 < c < 1?

It follows from the Hales-Jewett Theorem that

lim
n→∞

m4(n)

pn
= 0.
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(x, y, z, w) ∈ (Fn
p)

4 forms a 4-AP
⇐⇒ both (x, y, z) and (y, z, w) form 3-APs.

X ⊂ Fn
p has no 4-AP ⇐⇒

if x, y, z, w ∈ X satisfies{
x− 2y + z = 0

y − 2z + w = 0
then x = y = z = w.

One can apply SRM, but the outcome is |X| ≤ pn.

In general it is not so easy to get a non-trivial bound for
a system of equations using SRM.
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Suppose that X ⊂ Fn
p has no non-trivial solution to

x− y + z − w = 0,

that is, if x, y, z, w ∈ X satisfy the equation, then
x = y = z = w.
In this case one can get |X| < (cp)n for c < 1 by SRM.

But if a, b ∈ X with a ̸= b then

a− a+ b− b = 0.

So X cannot have more than one element!
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Theorem
Let X ⊂ Fn

p . Suppose that the equation

x− y + z − w = 0

has no solution with 4 distinct elements of X. Then,

|X| < √
p n + 1

2 .

If n is even, one can construct X with |X| = √
p n.

Counting a sum set yields the upper bound (Ruzsa’s idea
for weak Sidon sets).
An upper bound coming from SRM is much worse.
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Nevertheless there are some positive
results obtained using SRM.
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Theorem (Sauermann 2019+, arXiv:1904.09560)
Let X ⊂ Fn

p . Suppose that the equation

x1 + x2 + · · ·+ xp = 0

has no solution with p distinct elements of X. Then

|X| < Cp (2
√
p)n.

Proved by SRM plus additional combinatorial ideas.
This gives a good upper bound for Erdős–Ginzburg–Ziv
constant.
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A sequence of k − 1 0’s and k − 1 1’s
(0, 0, . . . , 0, 1, 1, . . . , 1) does not contain a subsequence
of length k which sums to 0 (mod k).

Theorem (Erdős–Ginzburg–Ziv)
Every integer sequence of length 2k − 1 contains a
subsequence of length k which sums to 0 (mod k).

Let s(Fn
p) denote the minimum number s such that any

sequence in Fn
p of length s contains a subsequence of

length p which sums to 0.

Theorem (Sauermann 2019+)
s(Fn

p) < (p− 1)Cp (2
√
p)n + 1.
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Theorem (arXiv:1909.10509)
Let X ⊂ Fn

p . Suppose that the system of equations

x− y + z − u = 0, x− 2z + v = 0

has no solution with 5 distinct elements of X, and |X| is
maximum. Then

(c1p)
n < |X| < (c2p)

n

for some constants 0 < c1 < c2 < 1.

Probabilistic sampling argument gives a simpler proof
with a better upper bound. (Sauermann ’19/12/13)
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Theorem
Let X ⊂ Fn

p . Suppose that the system of equations

x+ y + z − 3u = 0, x+ y + v − 3w = 0

has no solution with 6 distinct elements of X, and |X| is
maximum. Then

(c1p)
n < |X| < (c2p)

n

for some constants 0 < c1 < c2 < 1.

maybe probabilistic sampling argument doesn’t work for
this case?
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Probabilistic sampling is also useful.

Theorem
Let X ⊂ Fn

p . Suppose that the system of equations
x1 + x3 = x2 + x4,

y1 + y3 = y2 + y4,

x1 + y2 = x2 + y1,

x1 + y4 = x4 + y1.

has no solution with 8 distinct elements of X, and |X| is
maximum. Then

c (
√
p)n < |X| < 4

(
p

7
8

)n

.
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An example of probabilistic sampling argument.

Let A ⊂ Fn
p . Suppose that the system of equations

x− y + z − u = 0, x− 2z + v = 0

has no solution with 5 distinct elements of A. In this
case we say that A is W-free for short.

We want to show that if A is W-free then |A| is small.

We know that if A is 3-AP-free then |A| is small.
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Suppose that A ⊂ Fn
p is W-free. Then it follows that

A contains no 5-AP,

A contains no two disjoint 3-AP with the same diff.

This yields that #(3-AP in A) is small.

We want to show that |A| is small. For contradiction
assume that |A| is large.
Let B ⊂ A be a random subset created by selecting each
a ∈ A with some well-chosen probability q.

Let X = |B|. Then E[X] = q|A| is large.
Let Y = #(3-AP in B).
Then E[Y ] = #(3-AP in A) · q3 is small.

Thus E[X − Y ] is large.
Then we find a large 3-AP-free subset. contradiction!
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