方程式の解に関する組合せ論の紹介

徳重 典英(琉球大学教育学部)

2022 早稲田整数論研究集会

問題設定と関連する結果

極値組合せ論 (extremal combinatorics)

• 有限集合 Ω の部分集合 S が、構造 Q を含まないとき、 $\max |S|$ は? 特に $|\Omega| \to \infty$ では?

例
$$\Omega = [n] := \{1, 2, ..., n\},$$

 $Q: 3$ -AP つまり $\{x, x + d, x + 2d\}$ $(d \neq 0)$

問題 $S \subset [n]$ が 3-AP を含まないとき、 $\max |S|$ は?

3-AP $\{x, y, z\}$ は一次方程式 X - 2Y + Z = 0 の解。 (ただし「自明な解」(x, x, x) は除く)

今日の話 Qが「一次方程式の解」で、 Ω が [n] or \mathbb{F}_p^n

その前に、ちょっと歴史とか背景とか。。。

問題 (Erdős-Turán 1930') $S \subset [n]$ が 3-AP を含まないとき、 $\max |S| =: r(n)$ は?

- Behrend (1946) $ne^{-c/\sqrt{\log n}} < r(n)$
- Roth (1953) $r(n) < cn/(\log \log n)$
- Heath-Brown, Szemerédi, Bourgain, Sanders, ...
- Bloom-Sisask (2020) $r(n) < n/(\log n)^{1+c}$

とにかく r(n) = o(n).

定理 (Szemerédi 1975) $S \subset [n]$ が k-AP を含まないとき、 $\max |S| = o(n)$.

定理 (density HJ) $S \subset [k]^n$ が組合せ的直線を含まないとき、 $\max |S| = o(k^n)$.

(Hales–Jewett '63, Furstenberg–Katznelson '91, DHJ Polymath 2012)

定理 (Green-Tao 2008) 素数の集合は k-AP を含む。

問題 (Erdős) $S \subset \mathbb{N}$ が $\sum_{x \in S} \frac{1}{x} = \infty$ を満たせば、S は k-AP を含むか。(3-AP は OK. Bloom—Sisask 2020)

定理(東北大チーム 2020) 数体の素元星座定理 甲斐亘 見村万佐人 宗政昭弘 関真一郎 吉野聖人

関氏の本 Green-Tao の定理の証明(正則化の手法)

- \mathbb{F}_p^n 内の k-AP とは、 $\{x, x+d, x+2d, \ldots, x+(k-1)d\}$ をみたす $x, d \in \mathbb{F}_p^n$ で $d \neq 0$ のもの。
- $S \subset \mathbb{F}_p^n$ が k-AP を含まなければ、 $|S| = o(p^n)$ であることが density Hales—Jewett からしたがう。

定理 (Ellenberg-Gijswijt 2016) (the cap set problem) $S \subset \mathbb{F}_3^n$ が 3-AP を含まなければ、 $|S| < (2.76)^n = 3^{0.924n}$.

• $S \subset \mathbb{F}_p^n$ が 3-AP を含まなければ、 $|S| < p^{cn}$ となる定数 c = c(p) < 1 がとれる。

問題 $S \subset \mathbb{F}_p^n$ が 4-AP を含まなければ、 $|S| < p^{cn}$ となる c < 1 がとれるか? p = 5 では?

4-AP は連立方程式 $x_1 - 2x_2 + x_3 = 0$, $x_2 - 2x_3 + x_4 = 0$ の解。

3-APを含まない集合の上界 正則化の手法

正則化の手法 X の中で Y を数えたい。

- X をランダムな X' で近似する。(正則化)
- ランダムな X′ で Y を数える。(数え上げ、除去)

グラフ正則化補題 (Szemerédi) 密なグラフは(例外部分を除いて)密なランダムグラフで(適切な誤差で)近似できる。

三角形除去補題 n 点グラフのどの辺もちょうど一つの三角形に含まれるなら、辺の本数は $o(n^2)$.

三角形除去補題から Roth の定理 r(n) = o(n) がしたがう。

グラフ正則化補題 (Szemerédi) 密なグラフは(例外部分を除いて)密なランダムグラフで(適切な誤差で)近似できる。

三角形除去補題 n 点グラフのどの辺もちょうど一つの三角 形に含まれるなら、辺の本数は $o(n^2)$.

証明のアイデア

(背理法)n 点グラフの G どの辺もちょうど一つの三角形に含まれるのに、辺の本数は cn^2 と仮定。

G の三角形の個数は $cn^2/3$.

G を正則化し、よく観察すると $c'n^3$ 個の三角形が見つかる。

Roth の定理

 $\max\{|S|: S \subset [n] \text{ は 3-AP を含まない }\} = o(n).$

証明

頂点集合 $X = Y = Z = \mathbb{Z}/(2n+1)\mathbb{Z}$ の 3 部グラフ G を $x \sim y \Leftrightarrow y - x \in S$, $y \sim z \Leftrightarrow z - y \in S$, $x \sim z \Leftrightarrow (z - x)/2 \in S$, と定める。

G の頂点数を N とすると、辺数は 3N|S|. 各辺はちょうど 1 個の三角形に含まれ、辺数は $o(N^2)$. 以上から |S|=o(N).

$$N = 3(2n+1) \ \ \ \ \ \ \ |S| = o(n).$$

Behrend の構成

3-APを含まない大きな集合

アイデア: 球面上の格子点は 3-AP を含まない。これをうまく \mathbb{Z} にうつす。(Freiman 2-isomorphism)

cube $\{0,1,\ldots,k-1\}^d$ には k^d 個の点があり、これらは球面 $x_1^2+\cdots+x_d^2=t$ $(t=0,1,\ldots,d(k-1)^2)$ の上にある。ある球面上に $> k^d/dk^2$ 個の点がありその集合を A とおく。

A は球面上の集合で、3-AP を含まない。 $f: A \to \mathbb{Z}$ を

$$f(x_1,...,x_d) := x_1 + x_2(2k) + x_3(2k)^2 + \cdots + x_d(2k)^{d-1}$$

と定めると $x + z = 2y \Leftrightarrow f(x) + f(z) = 2f(y)$ で f(A) に 3-AP はない。また $f(k-1,...,k-1) < (2k)^d$.

 $n:=(2k)^d$ とおくと $f(A)\subset [n]$ で、k,d を適切に選べば、 $|f(A)|=|A|>k^d/dk^2\sim ne^{-c\sqrt{\log n}}$.

$\mathbf{3} ext{-}\mathbf{AP}$ を含まない $S \subset \mathbb{F}_3^n$ の上界 スライスランク法

- X: 有限集合、ℙ: 体
- $f: X^3 \to \mathbb{F}$ がスライス関数とは、f(x, y, z) が

$$a(x)b(y,z)$$
 or $a(y)b(x,z)$ or $a(z)b(x,y)$

と表記できること。

◆ スライスランク sr(f) は、f をスライス関数の和に書い たとき、必要なスライス関数の個数の最小値。

例
$$f(x, y, z) = (x + y + z)^2 - 1.$$

$$f = x^2 + 2x(y+z) + ((y+z)^2 - 1)$$

よって $\operatorname{sr}(f) \leq 3$.

- X: 有限集合、ℙ: 体
- $f: X^3 \to \mathbb{F}$ がスライス関数とは、f(x, y, z) が

$$a(x)b(y,z)$$
 or $a(y)b(x,z)$ or $a(z)b(x,y)$

と表記できること。

◆ スライスランク sr(f) は、f をスライス関数の和に書い たとき、必要なスライス関数の個数の最小値。

補題 (Tao) $f: X^3 \to \mathbb{F}$ が「対角条件」すなわち

$$f(x, y, z) \neq 0 \iff x = y = z$$

をみたせば、sr(f) = |X|.

定理 (E-G) $X \subset \mathbb{F}_3^n$ が 3-AP を含まなければ、|X| < 3 (2.8) n .

証明 $f: X^3 \to \mathbb{F}_3$ で

- f は対角条件 ($f(x, y, z) \neq 0 \Leftrightarrow x = y = z$) をみたし
- $sr(f) < 3(2.8)^n$

のものを見つける。実際

$$f(x, y, z) = \prod_{i=1}^{n} ((x_i + y_i + z_i)^2 - 1)$$

が条件をみたす。

スライスランク法の欠点

$S \subset \mathbb{F}_p^n$ が 4-AP を含まない。 $\iff S$ が

$$x_1 - 2x_2 + x_3 = 0$$
, $x_2 - 2x_3 + x_4 = 0$

の非自明な解 ((x, x, x, x)) でない解) を含まない。

スライスランク法を k 変数、m 本の連立方程式に(直接) 適用して、よい上界を得られるのは

$$k \ge 2m + 1$$

のとき。

4-AP $d_k = 4$, m = 2 $a_k = 2$ $a_k = 4$

 $S \subset [n]$ が 3-AP を含まない。

 \iff S が x-2y+z=0 の非自明な解を含まない。

ここで自明な解は (x, x, x). (singleton solution)

自明でない解 (x, y, z) は3個の異なる値をとる。(非退化解)

方程式が $x_1 - x_2 + x_3 - x_4 = 0$ の場合は?

この設定ではスライスランク法を(直接は)適用できない。

スライスランク法を直接適用して、よい上界を得られるのは

- (1) 除外する解が singleton solution のみで、かつ
- (2) 変数の個数が方程式の個数より十分大きい場合。
- 今までに(1)の制限を緩める工夫が見つかったが、
- (2)の制限を克服する方法はわかっていない。

$\mathbb{F}_{ ho}^n$ で非退化解を持たない集合 最近の話題から

定理 (Sauermann 2019) $p \ge 5$ とし、 $S \subset \mathbb{F}_p^n$ が $x_1 + x_2 + \cdots + x_p = 0$ の非退化解(p 個の異なる値をとる解)を含まなければ、 $|S| < C_p (2\sqrt{p})^n$.

下界: $|S| > 2.08^n$ (Elsholts) (非退化) を (singleton solution でない) に替えると $|S| \le 4^n$.

問題 ある定数 c が存在して $|S| < c^n$?

上の定理は Erdős-Ginzberg-Ziv の問題に応用がある。 $s(\mathbb{F}_p^n)$ は、 \mathbb{F}_p^n の要素からなるどんな s 項の列からもうまく p 項を選んでその和が 0 となるような最小の s である。

定理 (Sauermann) $s(\mathbb{F}_p^n) < (p-1) C_p (2\sqrt{p})^n + 1$.

 \mathbb{F}_p^n が property D をもてば、 $s(\mathbb{F}_p^n) \leq (p-1)4^n + 1$ (Naslund)

定理 (Mimura-T 2019) $S \subset \mathbb{F}_p^n$ が連立方程式 (W)

$$x_1 - x_2 - x_3 + x_4 = 0$$

$$x_2 - x_3 - x_4 + x_5 = 0$$

の非退化解(5 個の異なる値をとる解)を含まないならば、 $|S| < 2(\lambda^{2/3}p^{1/3})^n$.

 $S \subset \mathbb{F}_p^n$ が 3-AP を含まなければ $|S| < \lambda^n$, ただし $\lambda < p$.

証明 1. Sauermann のアイデア+スライスランク法 証明 2. ランダムサンプリングによる証明 ランダムサンプリングによる証明

(W) を含まない $S \subset \mathbb{F}_p^n$ が $|S| \geq 2\lambda^{\frac{2}{3}n}p^{\frac{1}{3}n}$ をみたすと仮定。

Sには同じ公差の 3-AP は高々 2 個。

 \mathbb{F}_p^n の公差の種類は $(p^n-1)/2 < p^n/2$.

 $\#(3-APs in S) < 2 \times p^n/2 = p^n.$

S の各点を確率 $q = (\lambda/p)^{\frac{\pi}{3}}$ で選び random subset T を作り、X := |T|.

 $\mathbb{E}[X] = |S| \, q \ge 2\lambda^n.$

 $Y := \#(3-\mathsf{APs} \text{ in } T) \, \mathsf{LS} \, \mathsf{LS} \, \mathsf{LS}$

 $\mathbb{E}[Y] = \#(3\text{-APs in } S) q^3 < \lambda^n.$

 $\mathbb{E}[X-Y]>\lambda^n$. (T の各 3-AP から一点ずつ捨てた) S の subset で 3-AP を含まず、サイズ $>\lambda^n$ のものがある。

定理 (Mimura-T 2019) $S \subset \mathbb{F}_p^n$ が連立方程式 (W)

$$x_1 - x_2 - x_3 + x_4 = 0$$

$$x_2 - x_3 - x_4 + x_5 = 0$$

の非退化解(5 個の異なる値をとる解)を含まないならば、 $|S| < p^{cn}$, ただし c < 1.

その他、いくつかの連立方程式で非退化解を含まない $S \subset \mathbb{F}_p^n$ が $|S| < p^{cn}$ (c < 1) をみたすことを示した。

問題 どんな連立方程式でこのような上界が得られるか?

k 個の変数からなるm本の連立方程式(*) を考える。

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mk}x_k = 0$$

仮定

- $k \geq 2m + 1$, $a_{ij} \in \mathbb{F}_p$, $x_i \in \mathbb{F}_p^n$
- $m \times k$ の係数行列 $A = (a_{ij})$ は full rank (rank A = m)
- $a_{i1} + a_{i2} + \cdots + a_{ik} = 0$ $(1 \le \forall i \le m)$
- (*) の線形結合に $x_j x_{j'} = 0$ は現れない。

k 変数 m 本の連立方程式 (*) (係数行列 A) を考える。 非退化解をもたない $S \subset \mathbb{F}_p^n$ が必ず $|S| < p^{cn}$ (c < 1) をみたすとき、連立方程式 (*) は moderate であるという。

定理 (Sauermann 2021) $k \ge 3m$ で、A の $m \times m$ の小行列が すべて正則ならば、(*) は moderate.

定理 (van Dobben de Bruyn-Gijswijt 2021) *A* が線形従属な列ベクトルのペアをたくさん持てば、(*) は moderate.

Mimura-Tの(W)は上のどちらの定理にも含まれない。

連立方程式 (*) の解 (y_1, \ldots, y_k) が generic $\iff \sum \mu_i y_i = 0$ かつ $\sum \mu_i = 0$ ならば、 $\sum \mu_i x_i = 0$ は (*) の線形結合。

例 $x_1 - x_2 + x_3 - x_4 = 0$ を \mathbb{F}_p^2 $(p \ge 5)$ で考える。

$$\left(\begin{pmatrix}0\\0\end{pmatrix},\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}3\\0\end{pmatrix},\begin{pmatrix}2\\0\end{pmatrix}\right)$$
 非退化だが $x_2+x_3-2x_4=0$ をみたし generic でない。

generic な解をもたない $S \subset \mathbb{F}_p^n$ が必ず $|S| < p^{cn}$ (c < 1) を みたすとき、(*) は temperate であるという。

{generic な解 } ⊂ { 非退化な解 } なので、 (*) が temperate なら moderate. 定理 (Gijwijt 2021) 『連立方程式 (*) から得られる m' 個の独立な方程式に必ず 2m'+1 個以上の変数が含まれる』ならば、(*) は temperate.

この結果は Sauermann 2021, v.D.d.Bruyn-Gijswijt 2021, Mimura-T の結果を含む。

問題 (Gijswijt) 上の定理は『…』の仮定がなくても成り立つか? さらに $k \ge 2m + 1$ でなくても成り立つか?