# Alon's transmitting problem in Hamming graphs

Norihide Tokushige (University of the Ryukyus)
International Workshop on Sets, Designs, and Graphs
July 21th, 2024 @Shimane University

## A lights puzzle



Consider  $n \times n$  array of lights.

Each light has two states.

To each row and column, there is a switch.

Turning the switch changes the state of each light in that row and column.

Goal: minimize the discrepancy!



Consider  $n \times n$  array of lights.

Each light has two states.

To each row and column, there is a switch.

Turning the switch changes the state of each light in that row and column.

Goal: minimize the discrepancy!

David Gale (attributed), Elwyn Berlekamp (1960's tea room of math dept in Bell Labs), Leo Moser (conjecture), János Komlós and Miklós Sulyok (sufficiently large *n*, 1970) József Beck and Joel Spencer (complete solution, 1983)

#### Lemma (Beck-Spencer 1983)

For  $1 \le i \le n$ , let  $a_i \in \{\pm 1\}^n$  be given. Then there is  $x \in \{\pm 1\}^n$  such that  $|a_i \cdot x| < 2i$  for all  $1 \le i \le n$ .

- This lemma is a main tool for analyzing the puzzle.
- The lemma is proved by the floating variable method introduced by József Beck and Tibor Fiala (1981).
- We will extend the lemma from  $\{\pm 1\}^n$  to  $\{1, 2, ..., q\}^n$ . (multicolor setting)

## Alon's problem

- A finite graph G is given.
- There is a Sender outside the graph, and Sender has a sequence of vertices  $x_1, x_2, \dots$  (called a burning sequence).
- Sender sends a message to a vertex  $x_i$  at round i.
- A vertex received the message at any round will transmit it to its neighbors at the next round.
- What is the minimum length of a sequence required for all vertices to receive the message?
- Let b(G) be the minimum length (called a burning number).



- $(x_1, x_2, x_3)$  is a burning seq. of length 3, so  $b(G) \le 3$ .
- Indeed b(G) = 3.

# Some facts about burning number

- b(G) was first introduced by Noga Alon (1992), but recently the concept has been rediscovered and called "burning number."
- $b(K_n) = 2$ ,  $b(P_n) = \lceil \sqrt{n} \rceil$ . Dense G likely has small b(G).
- Burning number conjecture (Bonato et al. 2016) For every connected n-vertex graph G,  $b(G) \leq \lceil \sqrt{n} \rceil$ .
- Graph burning problem is NP-complete. (Instance) n-vertex graph G and  $k \ge 2$ . (Question) Is  $b(G) \le k$ ?
- It looks interesting to find a graph G which is not so dense, but b(G) is relatively small. How about hypercube?

Let  $G_n$  denote the n-dim hypercube, that is,

- $V(G_n) = \{0,1\}^n = \{(v_1,\ldots,v_n) : v_i \in \{0,1\}\}$ , and
- two vertices **u** and **v** are adjacent if  $\#\{i: u_i \neq v_i\} = 1$ .

#### Theorem (Alon 1992)

$$b(G_n) = \lceil \frac{n}{2} \rceil + 1.$$

- $b(G_n) \leq \lceil \frac{n}{2} \rceil + 1$  is easy. Let  $\mathbf{x}_1 = \mathbf{0}$  and  $\mathbf{x}_2 = \mathbf{1}$ .
- $b(G_n) \ge \lfloor \frac{n}{2} \rfloor + 1$  follows from Beck–Spencer Lemma.
- $b(G_n) \ge \lceil \frac{n}{2} \rceil + 1$  is more difficult. (Alon's trick)

# **Extension to Hamming graphs**

Let H = H(n, q) denote the Hamming graph, that is,

- $V(H) = [q]^n = \{(v_1, \dots, v_n) : v_i \in \{1, 2, \dots, q\}\},$  and
- two vertices **u** and **v** are adjacent if  $\#\{i: u_i \neq v_i\} = 1$ .
- n-dim hypercube is H(n, 2).
- Hamming distance  $d(\mathbf{u}, \mathbf{v}) := \#\{i : u_i \neq v_i\}.$

Let H = H(n, q) denote the Hamming graph, that is,

- $V(H) = [q]^n = \{(v_1, \dots, v_n) : v_i \in \{1, 2, \dots, q\}\},$  and
- two vertices **u** and **v** are adjacent if  $\#\{i: u_i \neq v_i\} = 1$ .

#### Our result

$$\lfloor (1-\tfrac{1}{q})n\rfloor + 1 \leq b(H(n,q)) \leq \lfloor (1-\tfrac{1}{q})n + \tfrac{q+1}{2}\rfloor.$$

- The upper bound is easy. (by construction)
- For the lower bound we extend Beck–Spencer Lemma.
- If  $n \gg q$  then the upper bound is true b(H)?

## Lemma (Beck-Spencer 1983)

For  $1 \le i \le n$ , let  $a_i \in \{\pm 1\}^n$  be given.

Then there is  $\mathbf{x} \in \{\pm 1\}^n$  such that  $|\mathbf{a}_i \cdot \mathbf{x}| < 2i$  for all  $1 \le i \le n$ .

We can think of  $\{\pm 1\}^n$  as the vertex set of H(n,2). Then  $a \cdot x = n - 2d(a,x)$ .

#### Lemma (BS restated)

For  $1 \le i \le n$ , let  $\mathbf{v}_i$  be a given vertex in  $H(n,2) \cong G_n$ .

Then there is w such that  $|n-2d(\mathbf{v}_i,\mathbf{w})| < 2i$  for all  $1 \le i \le n$ .

Thus  $d(\mathbf{v}_i, \mathbf{w}) > \frac{n}{2} - i$  and  $b(G_n) > \frac{n}{2}$ .

#### Lemma (Beck-Spencer)

For  $1 \le i \le n$ , let  $\mathbf{v}_i$  be a given vertex in H(n, 2).

Then there is w such that  $|n-2d(v_i,w)| < 2i$  for all  $1 \le i \le n$ .

## Our lemma (multicolor Beck-Spencer)

For  $1 \le i \le n$ , let  $\mathbf{v}_i$  be a given vertex in H(n,q).

Then there is w such that  $|(1-\frac{1}{q})n-d(v_i,w)| < i$  for all  $1 \le i \le n$ .

Thus  $d(\mathbf{v}_i, \mathbf{w}) > (1 - \frac{1}{q})n - i$  and  $b(H(n, q)) > (1 - \frac{1}{q})n$ .

# Proof ideas of Beck-Spencer

#### Beck–Spencer Lemma (the case n = 4)

Let  $a_1, a_2, a_3, a_4 \in \{\pm 1\}^4$  be given. Then there is  $\mathbf{x} \in \{\pm 1\}^4$  such that  $|\mathbf{a}_1 \cdot \mathbf{x}| < 2$ ,  $|\mathbf{a}_2 \cdot \mathbf{x}| < 4$ ,  $|\mathbf{a}_3 \cdot \mathbf{x}| < 6$ ,  $|\mathbf{a}_4 \cdot \mathbf{x}| < 8$ .

#### Step 0:

- Solve  $a_1 \cdot x = 0$ ,  $a_2 \cdot x = 0$ ,  $a_3 \cdot x = 0$ ,  $a_4 \cdot x = 0$ .
- a solution  $y_0 = 0$ .

#### Step 0:

- Solve  $a_1 \cdot x = 0$ ,  $a_2 \cdot x = 0$ ,  $a_3 \cdot x = 0$ ,  $a_4 \cdot x = 0$ .
- a solution  $y_0 = 0$ .

#### Step 1:

• Solve  $a_1 \cdot x = 0$ ,  $a_2 \cdot x = 0$ ,  $a_3 \cdot x = 0$ . (3 eqns, 4 variables)

- a solution  $y_1 = (\alpha_1, \alpha_2, -1, \alpha_4)$ .
- $x_1, x_2, x_4$ : floating variables,  $x_3 := -1$  is fixed.

#### Step 2:

• Solve  $a_1 \cdot x = 0$ ,  $a_2 \cdot x = 0$ . (2 eqns, 3 variables  $x_1, x_2, x_4$ )

in 
$$[-1, 1]^3$$
:  $y_1$ 

- a solution  $y_2 = (\beta_1, 1, -1, \beta_4)$ .
- $x_1, x_4$ : floating variables,  $x_2 := 1$  is fixed.

## Step 3:

- Solve  $a_1 \cdot x = 0$ . (1 eqn, 2 variables  $x_1, x_4$ )
- a solution  $y_3 = (1, 1, -1, \gamma_4)$ .  $(x_4 \text{ floating, } x_1 \text{ fixed})$

#### Step 3:

- Solve  $a_1 \cdot x = 0$ . (1 eqn, 2 variables  $x_1, x_4$ )
- a solution  $y_3 = (1, 1, -1, \gamma_4)$ .  $(x_4 \text{ floating, } x_1 \text{ fixed})$

#### Step 4:

• choose  $x_4 \in \{\pm 1\}$  arbitrarily, say,  $y_4 = (1, 1, -1, 1)$ .

$$y_4 = (1, 1, -1, 1)$$
  
 $y_3 = (1, 1, -1, \gamma_4)$   $a_1 \cdot y_3 = 0$   $|a_1 \cdot y_4| < 2$   
 $y_2 = (\beta_1, 1, -1, \beta_4)$   $a_1 \cdot y_2 = a_2 \cdot y_2 = 0$   $|a_2 \cdot y_4| < 4$ 

# Multicolor Beck-Spencer

- Beck-Fiala used the floating variable method to study combinatorial discrepancies.
- Benjamin Doerr and Anand Srivastav (2003) extended results of Beck–Fiala to multicolor setting by introducing a multicolor version of the floating variable method.
- We borrow the ideas of Doerr–Srivastav to get a multicolor version of the Beck–Spencer Lemma.
- For simplicity, consider the case q = 3.

- Let H = H(n,3) on the vertex set  $V = \{1,2,3\}^n$ .
- Let  $c_1 = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$ ,  $c_2 = (-\frac{1}{3}, \frac{2}{3}, -\frac{1}{3})$ ,  $c_3 = (-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3})$ .
- Let  $Q := \{c_1, c_2, c_3\}$ . For  $i \in \{1, 2, 3\}$ , assign  $c_i$ .
- For  $v = (v_1, \ldots, v_n) \in V$ , assign a Q-vector  $(c_{v_1}, \ldots, c_{v_n}) \in Q^n$ .
- For  $v, w \in V$ , assign  $a, x \in Q^n$ , resp. Then  $a \cdot x = \frac{2}{3}n d(v, w)$ .

## Lemma (multicolor Beck-Spencer restated)

For  $1 \le i \le n$ , let  $a_i \in Q^n$  be given.

Then there is  $x \in Q^n$  such that  $|a_i \cdot x| < i$  for all  $1 \le i \le n$ .

#### We have

- $b(H(n,2)) = \lceil \frac{n}{2} \rceil + 1$ ,
- $\cdot \lfloor \frac{2}{3}n \rfloor + 1 \le b(H(n,3)) \le \lfloor \frac{2}{3}n \rfloor + 2.$

#### **Problem**

Is 
$$b(H(n,3)) = \lfloor \frac{2}{3}n \rfloor + 2$$
 for  $n \ge 3$ ?

See arXiv:2406.19945 for more details and other problems.