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Abstract

Let F be an n-uniform hypergraph on 2n vertices. Suppose
that |F1 ∩ F2 ∩ F3| ≥ 1 and |F1 ∪ F2 ∪ F3| ≤ 2n− 1 holds for all
F1, F2, F3 ∈ F . We prove that the size of F is at most

(
2n−2
n−1

)
.

1 Introduction

A family F ⊂ 2X is called r-wise intersecting if F1∩ · · ·∩Fr 6= ∅ holds for all
F1, . . . , Fr ∈ F . A family F ⊂ 2X is called r-wise union if F1 ∪ · · · ∪ Fr 6= X
holds for all F1, . . . , Fr ∈ F . The Erdős–Ko–Rado theorem[2] states that if
n ≥ 2k and F ⊂ (

n
k

)
is 2-wise intersecting then |F| ≤ (

n−1
k−1

)
. By considering
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the complement, the theorem can be restated as follows: if n ≤ 2k and
F ⊂ (

n
k

)
is 2-wise union then |F| ≤ (

n−1
k

)
.

We can extend the Erdős–Ko–Rado theorem for r-wise intersecting fam-
ilies as follows.

Theorem 1 [3] If F ⊂ (
[n]
k

)
is r-wise intersecting and (r − 1)n ≥ rk then

|F| ≤ (
n−1
k−1

)
. If r ≥ 3 then equality holds iff F = {F ∈ (

[n]
k

)
: i ∈ F} holds

for some i ∈ [n].

The equivalent complement version is the following. If F ⊂ (
[n]
k

)
is r-wise

union and rk ≥ n then |F| ≤ (
n−1

k

)
.

Gronau[6], and Engel and Gronau[1] proved the following.

Theorem 2 Let r ≥ 4, s ≥ 4 and F ⊂ (
[n]
k

)
. Suppose that F is r-wise

intersecting and s-wise union, and

n− 1

s
+ 1 ≤ k ≤ r − 1

r
(n− 1).

Then we have |F| ≤ (
n−2
k−1

)
.

In this note we prove the following.

Theorem 3 Let F ⊂ (
[2n]
n

)
be a 3-wise intersecting and 3-wise union family.

Then we have |F| ≤ (
2n−2
n−1

)
. Equality holds iff F = {F ∈ (

[2n]−{j}
n

)
: i ∈ F}

holds for some i, j ∈ [2n].

2 Proof of Theorem 3

We can prove the theorem for n ≤ 3 easily, so we assume that n ≥ 4. Let
F ⊂ (

[2n]
n

)
be a 3-wise intersecting and 3-wise union family. If F ⊂ (

[2n]−{j}
n

)
holds for some j ∈ [2n] then Theorem 1 implies that |F| ≤ (

2n−2
n−1

)
and

equality holds iff there exists some i ∈ [2n] such that i ∈ F holds for all
F ∈ F , which verifies the theorem. From now on we assume that there is no
such j, in other words, we assume that

⋃
F∈F

F = [2n]. (1)
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Considering the complement, we may assume that
⋂

F∈F
F = ∅. (2)

Now suppose that

|F| ≥
(

2n− 2

n− 1

)
(3)

and we shall prove that there is no such F .
For A ∈ (

[2n]
n

)
, we define the corresponding walk on Z2, denoted by

walk(A), in the following way. The walk is from (0, 0) to (n, n) with 2n
steps, and if i ∈ A (resp. i 6∈ A) then we move one unit up (resp. one unit to
the right) at the i-th step. Let us define

Ai := {A ∈ (
[2n]
n

)
: |A ∩ [1 + 3`]| ≥ 1 + 2` first holds at ` = i},

Aj̄ := {A ∈ (
[2n]
n

)
: |A ∩ [2n− 3`, 2n]| ≤ ` first holds at ` = j}.

If A ∈ Ai then, after starting from the origin, walk(A) touches the line
y = 2x + 1 at (i, 2i + 1) for the first time. If A ∈ Aj̄ then walk(A) touches
the line y = 1

2
(x− (n− 1)) + n at (n− 2j − 1, n− j) and after passing this

point this walk never touches the line again. Set Aij̄ := Ai ∩ Aj̄, and

ai := |Ai|/
(
2n−2
n−1

)
, aj̄ := |Aj̄|/

(
2n−2
n−1

)
, aij̄ := |Aij̄|/

(
2n−2
n−1

)
.

Set also
Fi := Ai ∩ F , Fj̄ := Aj̄ ∩ F , Fij̄ := Aij̄ ∩ F ,

fi := |Fi|/
(
2n−2
n−1

)
, fj̄ := |Fj̄|/

(
2n−2
n−1

)
, fij̄ := |Fij̄|/

(
2n−2
n−1

)
,

and
Gij̄ := {F ∩ [3i + 2, 2n− 3j − 1] : F ∈ Fij̄}.

Note that |Gij̄| ≤ |Fij̄| and equality holds if both of i and j are at most 1.
We also use the following basic facts about shifting. (See e.g., [8, 4, 5] for

the details.) We may assume that F ⊂ (
[2n]
n

)
is shifted, i.e., for all F ∈ F

and 1 ≤ i < j ≤ 2n, if i 6∈ F and j ∈ F then (F − {j}) ∪ {i} ∈ F . It follows
then for all F ∈ F , walk(F ) must touch the line y = 2x + 1 because F is
a shifted 3-wise 1-intersecting family. In the same way, walk(F ) must touch
the line y = 1

2
(x− (n− 1)) + n because F is a shifted 3-wise 1-union family.

Claim 1 G00̄ ⊂
(
[2,2n−1]

n−1

)
is 2-wise intersecting.
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Proof. Otherwise we have A,B ∈ F00̄ such that A ∩ B = {1}. This forces⋂
F∈F F = {1}, contradicting (2).

By Claim 1 and the Erdős–Ko–Rado theorem, we have |F00̄| = |G00̄| ≤(
2n−3
n−2

)
and

f00̄ ≤
(

2n− 3

n− 2

)
/

(
2n− 2

n− 1

)
=

1

2
. (4)

Claim 2 G10̄ ⊂
(
[5,2n−1]

n−3

)
is 2-wise intersecting.

Proof. Suppose on the contrary that there exist A,B ∈ G10̄ such that
A ∩ B = ∅. Then {2, 3, 4} ∪ A, {2, 3, 4} ∪ B ∈ F10̄. Since F is shifted we
also have {1, 3, 4} ∪ B ∈ F10̄. If there is F ∈ F such that |F ∩ [4]| ≤ 2 then
we may assume that F ∩ [2] = {1, 2} by the shiftedness of F . But this is
impossible because ({2, 3, 4} ∪ A) ∩ ({1, 3, 4} ∪B) ∩ F = ∅.

Thus we may assume that |F ∩ [4]| ≥ 3 holds for all F ∈ F . Let

F(1̄234) := {F ∩ [5, 2n] : F ∈ F , F ∩ [4] = {2, 3, 4}} ⊂ (
[5,2n]
n−3

)
,

F(12̄34) := {F ∩ [5, 2n] : F ∈ F , F ∩ [4] = {1, 3, 4}} ⊂ (
[5,2n]
n−3

)
,

F(123̄4) := {F ∩ [5, 2n] : F ∈ F , F ∩ [4] = {1, 2, 4}} ⊂ (
[5,2n]
n−3

)
.

Then |F(1̄234)|+ |F(12̄34)|+ |F(123̄4)| ≤ 3
(
2n−4
n−3

)
. Let

F(123) := {F ∩ [4, 2n] : {1, 2, 3} ⊂ F ∈ F} ⊂ (
[4,2n]
n−3

)
.

Then F(123) is 3-wise union and it follows from the complement version of
Theorem 1 that |F(123)| ≤ (

2n−4
n−3

)
. Therefore we have

|F| = |F(1̄234)|+|F(12̄34)|+|F(123̄4)|+|F(123)| ≤ 4

(
2n− 4

n− 3

)
<

(
2n− 2

n− 1

)
,

which contradicts (3).

By Claim 2 and the Erdős–Ko–Rado theorem, we have |F10̄| = |G10̄| ≤(
2n−6
n−4

)
and

f10̄ ≤
(

2n− 6

n− 4

)
/

(
2n− 2

n− 1

)
=

(n− 1)(n− 3)

4(2n− 3)(2n− 5)
.

Considering the complement, we have the same estimation for f01̄. Therefore
we have

f10̄ + f01̄ ≤
(n− 1)(n− 3)

2(2n− 3)(2n− 5)
. (5)
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Claim 3 G11̄ ⊂
(
[5,2n−4]

n−4

)
is 2-wise intersecting.

Proof. Suppose that there are A,B ∈ G11̄ such that A ∩ B = ∅. Then we
have F1 := {2, 3, 4, 2n}∪A ∈ F . Since F is shifted and {2, 3, 4, 2n}∪B ∈ F ,
we also have F2 := {1, 3, 4, 2n − 1} ∪ B ∈ F . If |F ∩ [4]| ≥ 3 holds for all
F ∈ F then we are done as we saw in the proof of Claim 2. So there is
G ∈ F such that |G ∩ [4]| ≤ 2 and by the shiftedness we may assume that
G ∩ [4] = {1, 2}. Then F1 ∩ F2 ∩G = ∅, which is a contradiction.

By Claim 3 and the Erdős–Ko–Rado theorem, we have |F11̄| = |G11̄| ≤(
2n−9
n−5

)
and

f11̄ ≤
(

2n− 9

n− 5

)
/

(
2n− 2

n− 1

)
=

(n− 1)(n− 2)(n− 3)

16(2n− 3)(2n− 5)(2n− 7)
. (6)

By (4), (5) and (6), we have the following.

Claim 4 f00̄ + f10̄ + f01̄ + f11̄ ≤ H1, where

H1 :=
1

2
+

(n− 1)(n− 3)

2(2n− 3)(2n− 5)
+

(n− 1)(n− 2)(n− 3)

16(2n− 3)(2n− 5)(2n− 7)
.

Next we consider fij̄ where max{i, j} = 2. Let ci be the number of walks
from (0, 0) to (i, 2i + 1) which touch the line y = 2x + 1 only at (i, 2i + 1).
Then it follows that ci = 1

3i+1

(
3i+1

i

)
(see e.g. Fact 3 in [7]).

If A ∈ Aij̄ then walk(A) goes through the two points P = (i, 2i + 1)
and Q = (n − 2j − 1, n − j). Since the number of walks from P to Q is(
2n−(3i+3j+2)
n−(i+2j+1)

)
, we get the following simple estimation.

fij̄ ≤ aij̄ = cicj

(
2n− (3i + 3j + 2)

n− (i + 2j + 1)

)
/

(
2n− 2

n− 1

)
=: g(i, j).

Thus we have

(f20̄ + f02̄) + (f21̄ + f12̄) + f22̄ ≤ 2(g(2, 0) + g(2, 1)) + g(2, 2) =: H2. (7)

Finally we consider fi, fī for i ≥ 3. We use the following fact which we
prove in the next section.

Lemma 1 We have
bn−1

2
c∑

i=0

|Ai| ≤ α

(
2n

n

)

for all n ≥ 1 where α =
√

5−1
2

.
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We also use the following trivial estimation.

max{fi, fī} ≤ ai = aī = ci

(
2n− 3i− 1

n− i

)
/

(
2n− 2

n− 1

)
.

Then this together with Lemma 1 implies

∑
i>2

fi ≤
∑
i>2

ai ≤ α

(
2n

n

)
/

(
2n− 2

n− 1

)
−

2∑
i=0

ai =: H3 (8)

By Claim 4, (7) and (8), we have

|F|/
(

2n− 2

n− 1

)
≤

∑
0≤i≤2, 0≤j≤2

fij̄ +
∑
i>2

fi +
∑
j>2

fj̄ ≤ H1 + H2 + 2H3 =: H4(n),

where

H4(n) = 4
√

5− 32551

4096
− 2(

√
5− 2)

n
+

1

220

(
6237

2n− 13
+

2835

2n− 11
+

+
28770

2n− 9
− 156090

2n− 7
+

923313

2n− 5
+

298295

2n− 3

)
.

Note that limn→∞ H4(n) = 4
√

5 − 32551
4096

= 0.997 . . .. In fact one can check
that H4(n) < 1 for n ≥ 34. For the remainder cases 4 ≤ n ≤ 33, one can
directly check that

|F|/
(

2n− 2

n− 1

)
≤ H1 + H2 + 2

bn−1
2
c∑

i=3

ai < 1.

Consequently we showed that |F| < (
2n−2
n−1

)
for all n ≥ 4 and this contradicts

(3). This completes the proof of Theorem 3.

3 Proof of Lemma 1

Since |Ai| = ci

(
2n−3i−1

n−i

)
we need to prove that

bn−1
2
c∑

i=0

ci

(
2n− 3i− 1

n− i

)
/

(
2n

n

)
≤ α.
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We use the following fact (cf. (6) in [7]):

bn−1
2
c∑

i=0

ci

(
1

2

)3i+1

≤
∞∑
i=0

ci

(
1

2

)3i+1

= α.

Thus to prove the lemma, it suffices to show that

(
2n− 3i− 1

n− i

)
/

(
2n

n

)
≤

(
1

2

)3i+1

(9)

for 0 ≤ i ≤ bn−1
2
c. We prove this inequality by induction on i. For the case

i = 0, one can check that the equality holds in (9). Now let i > 0 and we
assume (9) for i and we show the case i + 1, that is,

(
2n− 3i− 4

n− i− 1

)
/

(
2n

n

)
≤

(
1

2

)3i+4

,

or equivalently, (
2n

n

)
≥ 23i+4

(
2n− 3i− 4

n− i− 1

)
.

By the induction hypothesis, we have
(

2n

n

)
≥ 23i+1

(
2n− 3i− 1

n− i

)
,

and so it suffices to show that

23i+1

(
2n− 3i− 1

n− i

)
≥ 23i+4

(
2n− 3i− 4

n− i− 1

)
,

or equivalently,

f(i) := 5i3 − (10n + 6)i2 + (4n2 − 17)i + 6n− 6 ≥ 0.

Since f ′′(i) = −2(10n− 15i + 6) < 0, the function f(i) is concave on the do-
main 0 ≤ i ≤ bn−1

2
c. Thus it suffices to check that f(0) ≥ 0 and f(bn−1

2
c) ≥

0. Indeed, f(0) = 6(n − 1) ≥ 0, and f(bn−1
2
c) ≥ min{f(n−1

2
), f(n−2

2
)} =

f(n−1
2

) = 1
8
(n + 1)(n − 1)(n − 3) ≥ 0 if n ≥ 3. For the case n ≤ 2, we only

have 0 ≤ i ≤ b1
2
c = 0, that is, i = 0 and we already checked this case.
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[6] H.-D.O.F. Gronau. An Erdős–Ko–Rado type theorem. Finite and infinite
sets, Vol. I,II (Eger, 1981) Colloq. Math. Soc. J. Bolyai, 37:333–342, 1984.

[7] N. Tokushige. A frog’s random jump and the Pólya identity. Ryukyu
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