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Abstract

Let F be an n-uniform hypergraph on 2n vertices. Suppose
that |F1 N F2 N Fg‘ Z 1 and |F1 U F2 U F3| S 2n — 1 holds for all
F, Fy, F3 € F. We prove that the size of F is at most (2::12).

1 Introduction

A family F C 2% is called r-wise intersecting if £y N---N F,. # () holds for all
Fi,...,F, € F. A family F C 2% is called r-wise union if F; U---UF, # X
holds for all Fi,..., F, € F. The Erdés-Ko-Rado theorem[2] states that if
n > 2k and F C (Z) is 2-wise intersecting then |F| < (Zj) By considering
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the complement, the theorem can be restated as follows: if n < 2k and
F C (}) is 2-wise union then |F| < (" 1).

We can extend the Erdos—Ko-Rado theorem for r-wise intersecting fam-
ilies as follows.
Theorem 1 [3] If F C ([Z]) is r-wise intersecting and (r — 1)n > rk then
\F| < (171). Ifr > 3 then equality holds iff F = {F € (")) : i € F} holds

for some i € [n].

The equivalent complement version is the following. If F C ([Z}) is r-wise
union and rk > n then |F| < (";1)
Gronau[6], and Engel and Gronau[l] proved the following.

Theorem 2 Let r > 4, s > 4 and F C ([Z]). Suppose that F is r-wise
intersecting and s-wise union, and
n—1 r—1

+1<k<
s r

(n—1).

Then we have |F| < (177).

In this note we prove the following.

Theorem 3 Let F C ([2;:]) be a 3-wise intersecting and 3-wise union family.

Then we have |F| < (*"?). Equality holds iff F = {F € ([2"};{j}) t1 € F}

n

holds for some i,j € [2n].

2 Proof of Theorem 3

We can prove the theorem for n < 3 easily, so we assume that n > 4. Let
F C ([2:]) be a 3-wise intersecting and 3-wise union family. If F C ([2"];“ })

holds for some j € [2n] then Theorem 1 implies that |F| < (*'-7) and
equality holds iff there exists some i € [2n]| such that i € F holds for all
F € F, which verifies the theorem. From now on we assume that there is no

such 7, in other words, we assume that

| F=1[2n. (1)

refF



Considering the complement, we may assume that

Now suppose that
2n — 2
> 3
7= (227 Q

and we shall prove that there is no such F.

For A € ([2:}), we define the corresponding walk on Z2, denoted by
walk(A), in the following way. The walk is from (0,0) to (n,n) with 2n
steps, and if i € A (resp. i € A) then we move one unit up (resp. one unit to
the right) at the i-th step. Let us define

—{AG( ) |[AN[1+ 3] > 1+ 2¢ first holds at ¢ = i},

A;={A¢e ([2:]) c|AN[2n — 3¢,2n]| < ¢ first holds at ¢ = j}.

If A € A; then, after starting from the origin, walk(A) touches the line
y =2x+ 1 at (i,2i + 1) for the first time. If A € A; then walk(A) touches
the line y = 3(z — (n — 1)) + n at (n — 2j — 1,n — j) and after passing this
point this walk never touches the line again. Set Ai; = AN A;, and

|A‘/(2n 2) ’A ’/(2n 2)7 aij = |Am‘/(2n 2)
Set also

Fi=ANF, F=A40F F;=A;nF,

=|F/CD), =150, fi= 15100,
and

Gy ={FN[3i+22n-3—1]: F e F}.

Note that |G;;| < |F;;| and equality holds if both of 4 and j are at most 1.
We also use the following basic facts about shifting. (See e.g., [8, 4, 5] for
the details.) We may assume that F C ([2:]) is shifted, i.e., for all ' € F
and 1 <i<j<2n,ifi ¢ F and j € F then (F — {j})U{i} € F. It follows
then for all F' € F, walk(F') must touch the line y = 2z 4+ 1 because F is
a shifted 3-wise 1-intersecting family. In the same way, walk(F") must touch
the line y = (2 — (n — 1)) + n because F is a shifted 3-wise 1-union family.

Claim 1 Gy C (2 2”11]) is 2-wise intersecting.
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Proof. Otherwise we have A, B € Fy; such that AN B = {1}. This forces

Nper F = {1}, contradicting (2). []
By Claim 1 and the Erdés—Ko—Rado theorem, we have |Fu5| = |Gos| <
(=) and
2n —3 2n — 2 1
0 < =—. 4
ha< (220020 - (@)

Claim 2 G5 C (5 20 1]) is 2-wise intersecting.

Proof. Suppose on the contrary that there exist A, B € G5 such that
AN B = 1. Then {2,3,4} U A, {2,3,4} U B € Fy5. Since F is shifted we
also have {1,3,4} U B € Fyp. If there is F' € F such that |F' N [4]| < 2 then
we may assume that F'N[2] = {1,2} by the shiftedness of F. But this is
impossible because ({2,3,4}UA)N ({1,3,4} UB)NF =1.

Thus we may assume that |F' N [4]| > 3 holds for all F' € F. Let

F(1234):={FN[52n]: FeF, Fnld ={2,3,4}} c (B2,
F(1234) := {F N [5,2n] : F € F, FN[4] = {1,3,4}}  (>2),
F(1234):={Fn[52n]: FeF, Fnld ={1,2,4}} c (52
Then | F(1234)] + [F(1234)| + [F(1234)| < 3(*"). Let
F(123) = {FN[4,2n] : {1,2,3} ¢ F e F} (%),

Then F(123) is 3-wise union and it follows from the complement version of
Theorem 1 that |F(123)] < (" 4) Therefore we have

2 4 2n — 2
| = |F(1234) |+ F(1234) |+ | F(1234) |+ F (123)] < 4( " 3) < (:_ 1),
which contradicts (3). []
By Claim 2 and the Erdés—Ko—Rado theorem, we have |Fi5| = |Gi5| <

(=) and
2n —6 2n —2 n—1)(n-3
fio < / - ed)
n—4 n—1 4(2n — 3)(2n — 5)
Considering the complement, we have the same estimation for fy;. Therefore
we have

(n—1)(n—3)
= Yon—3)(2n—5) (5)

Jio + for <



Claim 3 G1 C ([5’354]) is 2-wise Intersecting.

Proof. Suppose that there are A, B € G;7 such that AN B = (). Then we
have Fy := {2,3,4,2n}UA € F. Since F is shifted and {2,3,4,2n}UB € F,
we also have Fy := {1,3,4,2n — 1} U B € F. If |[FFN [4]| > 3 holds for all
F € F then we are done as we saw in the proof of Claim 2. So there is
G € F such that |G N [4]| < 2 and by the shiftedness we may assume that
G N4 ={1,2}. Then F; N F; NG = (), which is a contradiction. M

By Claim 3 and the Erdés—Ko—Rado theorem, we have |Fi7| = |Gi7]| <
(2n79) and

s (I - e e

By (4), (5) and (6), we have the following.

Claim 4 fo5 + fio + fo1 + fi1 < Hi, where

1 (n—1)(n—3) (n—1)(n—2)(n—3)
H1 ==+ .
2 2(2n—3)(2n—5) ' 16(2n—3)(2n — 5)(2n — 1)

Next we consider f;; where max{s,j} = 2. Let ¢; be the number of walks
from (0, 0) to (7,2i + 1) which touch the line y = 22 + 1 only at (i,2i + 1).
Then it follows that ¢; = 37+ (**F1) (see e.g. Fact 3 in [7]).

If A e A; then walk(A) goes through the two points P = (4,2i + 1)
and @ = (n — 25 — 1,n — j). Since the number of walks from P to @ is

(QZ:E?f;?ﬂ?))’ we get the following simple estimation.

(M- Bi+3j+2)N 22\
fijgaij—czcg<n_(i+2j+1))/(n_l)—~g(2,])~

Thus we have

(fao + foz) + (o1 + fiz) + foz < 2(9(2,0) +9(2,1)) +9(2,2) = Hy. ()

Finally we consider f;, f; for i > 3. We use the following fact which we
prove in the next section.

Lemma 1 We have
DR 2n
3l < a( )
i=0 n

V5-1
5

for all n > 1 where oo =



We also use the following trivial estimation.

max{f;, fi} < a; =a; = ¢ <2n —3i - 1)/(2n - 2).

n—1 n—1
Then this together with Lemma 1 implies

ZfiSZaiSa(QS)/(?__s—iaz::ffs (8)

1>2 1>2

By Claim 4, (7) and (8), we have

|f\/<2:__12) < > S+ D Y f < Hi+ Hy+2H; = Hy(n),

0<i<2,0<5<2 1>2 i>2
where
32551 2(v/5—2) 1 [ 6237 2835
Hy(n) = 4v5 — - —
) = 4V~ S5 w2 (2n—13+2n—11+

n 28770 _ 156090 n 923313 n 298295
n—9 2m—7 2n—5 2n—-3)°

Note that lim, .. Hy(n) = 4v/5 — % = 0.997.... In fact one can check

that Hy(n) < 1 for n > 34. For the remainder cases 4 < n < 33, one can
directly check that
| 251 ]

o — 2
Ifl/(:_1> <H +H+2)» a<l.
=3

Consequently we showed that |F| < (2::12) for all n > 4 and this contradicts

(3). This completes the proof of Theorem 3. ]

3 Proof of Lemma 1
Since |A;| = ¢;(*".%""") we need to prove that
125

Z N (Qn ;fzz— 1)/(2??) <a

=0



We use the following fact (cf. (6) in [7]):

5]

1 3Ji+1 00 1 3i+1
>ols) =xels) -

Thus to prove the lemma, it suffices to show that

L) =6) @

for0<:< L”T’lj We prove this inequality by induction on 7. For the case
i = 0, one can check that the equality holds in (9). Now let i > 0 and we
assume (9) for ¢ and we show the case ¢ + 1, that is,

on—3i—4\  (2n 1\ ¥
. / <z ;
n—1i—1 n 2
2n S 93t 2n—3t—4 .
nj) n—i—1
By the induction hypothesis, we have

2n S 9Bitl 2n —3i—1
n) n—i ’

and so it suffices to show that
o3i+1 2n—31—1 g 2n—31—4
n—i - n—i—1 )’

f(i) :==5i* — (10n + 6)i* + (4n* — 17)i + 6n — 6 > 0.

or equivalently,

or equivalently,

Since f”(i) = —2(10n — 15¢ + 6) < 0, the function f (i) is concave on the do-
main 0 < ¢ < | 2% |. Thus it suffices to check that f(0) > 0 and f([%5]) >
0. Indeed, £(0) = 6(n— 1) > 0, and f(|"51]) > min{ f(%52), f(252]} =
f(251) = s(n+1)(n—1)(n —3) > 0 if n > 3. For the case n < 2, we only
have 0 <@ < 3] =0, that is, ¢ = 0 and we already checked this case. []
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