THE MAXIMUM SIZE OF 3-WISE t-INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

Dedicated to Professor Hikoe Enomoto on the occasion of his sixtieth birthday

ABSTRACT. Let $t \geq 26$ and let \mathscr{F} be a k-uniform hypergraph on n vertices. Suppose that $|F_1 \cap F_2 \cap F_3| \geq t$ holds for all $F_1, F_2, F_3 \in \mathscr{F}$. We prove that the size of \mathscr{F} is at most $\binom{n-t}{k-t}$ if $p = \frac{k}{n}$ satisfies

$$p \le \frac{2}{\sqrt{4t+9}-1}$$

and n is sufficiently large. The above inequality for p is best possible.

1. Introduction

A family $\mathscr{F} \subset {[n] \choose k}$ is called *r*-wise *t*-intersecting if $|F_1 \cap \cdots \cap F_r| \ge t$ holds for all $F_1, \ldots, F_r \in \mathscr{F}$. Let us define *r*-wise *t*-intersecting families $\mathscr{F}_i(n,k,r,t)$ as follows:

$$\mathscr{F}_i(n,k,r,t) = \{F \in {[n] \choose k} : |F \cap [t+ri]| \ge t + (r-1)i\}.$$

Let m(n,k,r,t) be the maximal size of k-uniform r-wise t-intersecting families on n vertices.

Conjecture 1. $m(n,k,r,t) = \max_{i} |\mathscr{F}_{i}(n,k,r,t)|$.

It is known that the conjecture is true for the case r = 2, see [1, 2, 4, 6].

Fix $r, t \in \mathbb{N}$ and $p \in \mathbb{Q}$ with $0 . Suppose that <math>p = \frac{k}{n}$ and let us consider the situation $n \to \infty$ (and hence $k = pn \to \infty$). Writing $\mathscr{F}_i(n, k, r, t)$ as \mathscr{F}_i we have

$$|\mathscr{F}_0| = \binom{n-t}{k-t},\tag{1}$$

$$|\mathscr{F}_1| = (t+r) \binom{n-(t+r)}{k-(t+r-1)} + \binom{n-(t+r)}{k-(t+r)}, \tag{2}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 05D05 Secondary: (05C65).

Key words and phrases. intersecting family; Erdős–Ko–Rado Theorem.

The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027. Copy produced October 6, 2005, 06:22pm.

and

$$\begin{split} &\lim_{n\to\infty}|\mathscr{F}_0|/\binom{n}{k} &= p^t,\\ &\lim_{n\to\infty}|\mathscr{F}_1|/\binom{n}{k} &= (t+r)p^{t+r-1}(1-p)+p^{t+r}\\ &= (t+r)p^{t+r-1}-(t+r-1)p^{t+r}. \end{split}$$

Thus $|\mathscr{F}_0| \ge |\mathscr{F}_1|$ (for *n* large and *p* fixed) holds iff $p^t \ge (t+r)p^{t+r-1} - (t+r-1)p^{t+r}$, that is,

$$(t+r)p^{r-1} - (t+r-1)p^r - 1 \le 0. (3)$$

If r = 2 then (3) gives $p \le \frac{1}{t+1}$. In fact $|\mathscr{F}_0(n,k,2,t)| \ge |\mathscr{F}_1(n,k,2,t)|$ holds iff $\frac{k-t+1}{n} \le \frac{1}{t+1}$. If r = 3 then (3) gives $p \le p_t$ where

$$p_t = \frac{2}{\sqrt{4t+9}-1}.$$

The following conjecture is a weaker version (and a special case) of Conjecture 1.

Conjecture 2. Let $t \in \mathbb{N}$ and $p \in \mathbb{Q}$ be given. Suppose that $t \geq 2$ and $0 . Then there exists <math>n_0(p,t)$ such that $m(n,k,3,t) = \binom{n-t}{k-t}$ holds for $p = \frac{k}{n}$ and $n > n_0(p,t)$.

If the conjecture is true then the condition on p is sharp. In this paper, we prove the following.

Theorem 1. Conjecture 2 is true for $t \ge 26$. Moreover, the maximum size $\binom{n-t}{k-t}$ is attained only by $\mathscr{F}_0(n,k,3,t)$ (up to isomorphism).

Comparing (1) and (2) directly, we have $|\mathscr{F}_0(n,k,3,t)| \ge |\mathscr{F}_1(n,k,3,t)|$ iff

$$n \ge \frac{1}{2} \left(\sqrt{(4t+9)k^2 - 2(4t^2 + 11t + 3)k + 4t^3 + 13t^2 + 6t + 1} - k + 3(t+1) \right),\tag{4}$$

namely, k/n is at most k/R, where R is the RHS of (4). Some computation shows that $k/R > p_t$ for $t \ge 2$ and $k > k_0(t)$, but $k/R \to p_t$ as $k \to \infty$. Thus for $\frac{k}{n} = p_t$ we have $|\mathscr{F}_0(n,k,3,t)| > |\mathscr{F}_1(n,k,3,t)|$ while $|\mathscr{F}_0(n,k,3,t)|/|\mathscr{F}_1(n,k,3,t)| \to 1$ as $k \to \infty$ (and hence $n \to \infty$). Therefore the following result is slightly better than Theorem 1.

Theorem 2. Let $n, k, t \in \mathbb{N}$ be such that $t \geq 26$, $n > n_0(t)$ and (4). Then we have $m(n, k, 3, t) = \binom{n-t}{k-t}$ and equality is attained only by $\mathscr{F}_0(n, k, 3, t)$ or $\mathscr{F}_1(n, k, 3, t)$ (up to isomorphism).

Note that R can be an integer, and \mathscr{F}_1 is one of the extremal configurations only if $n = R \in \mathbb{N}$.

2. Tools

For integers $1 \le i < j \le n$ and a family $\mathscr{F} \subset \binom{[n]}{k}$, define the (i,j)-shift S_{ij} as follows.

$$S_{ij}(\mathscr{F}) = \{S_{ij}(F) : F \in \mathscr{F}\},\$$

where

$$S_{ij}(F) = \begin{cases} (F - \{j\}) \cup \{i\} & \text{if } i \notin F, j \in F, (F - \{j\}) \cup \{i\} \notin \mathscr{F}, \\ F & \text{otherwise.} \end{cases}$$

A family $\mathscr{F} \subset \binom{[n]}{k}$ is called shifted if $S_{ij}(\mathscr{F}) = \mathscr{F}$ for all $1 \leq i < j \leq n$. For a given family \mathscr{F} , one can always obtain a shifted family \mathscr{F}' from \mathscr{F} by applying shifting to \mathscr{F} repeatedly. Then we have $|\mathscr{F}'| = |\mathscr{F}|$ because shifting preserves the size of the family. It is easy to check that if \mathscr{F} is r-wise t-intersecting then $S_{ij}(\mathscr{F})$ is also r-wise t-intersecting. Therefore if \mathscr{F} is an r-wise t-intersecting family then we can find a shifted family \mathscr{F}' which is also r-wise t-intersecting with $|\mathscr{F}'| = |\mathscr{F}|$.

We use the random walk method originated from [3, 4] by Frankl. Let us introduce a partial order in $\binom{[n]}{k}$ by using shifting. For $F, G \in \binom{[n]}{k}$, define $F \succ G$ if G is obtained by repeating a shifting to F. The following fact follows immediately from definition.

Fact 1. Let $\mathscr{F} \subset {[n] \choose k}$ be a shifted family. If $F \in \mathscr{F}$ and $F \succ G$, then $G \in \mathscr{F}$.

For $F \in {[n] \choose k}$ we define the corresponding walk on \mathbb{Z}^2 , denoted by walk (F), in the following way. The walk is from (0,0) to (n-k,k) with n steps, and if $i \in F$ (resp. $i \notin F$) then the i-th step is one unit up (resp. one unit to the right).

Fact 2 ([3]). Let $\mathscr{F} \subset {[n] \choose k}$ be a shifted r-wise t-intersecting family. Then for all $F \in \mathscr{F}$, walk(F) must touch the line L : y = (r-1)x + t.

Proof. We only prove the case r=3 (but one can prove the general case in exactly the same way). Let $i_0=\lfloor\frac{k-t}{2}\rfloor$, $i_1=\lfloor\frac{k-t-1}{2}\rfloor$ and set

$$G_0 = [t-1] \cup \{t+3i+1: 0 \le i \le i_0\} \cup \{t+3i+2: 0 \le i \le i_1\},$$

$$G_1 = [t-1] \cup \{t+3i: 0 \le i \le i_0\} \cup \{t+3i+2: 0 \le i \le i_1\},$$

$$G_2 = [t-1] \cup \{t+3i: 0 \le i \le i_0\} \cup \{t+3i+1: 0 \le i \le i_1\}.$$

Assume that $G_0 \in \mathscr{F}$. Since $G_0 \succ G_1 \succ G_2$ we also have $G_1, G_2 \in \mathscr{F}$ by Fact 1. But this is impossible because $G_0 \cap G_1 \cap G_2 = [t-1]$, which contradicts the 3-wise t-intersecting property of \mathscr{F} . Thus we must have $G_0 \notin \mathscr{F}$. Note that G_0 is the "minimal" set (in the shifting order poset) whose corresponding walk does not touch the line L: y = 2x + t.

Thus if $F \in \mathscr{F}$ and walk(F) does not touch the line, then we have $F \succ G_0$, and by Fact 1 we have $G_0 \in \mathscr{F}$, which is a contradiction.

The next result (Corollary 8 and Theorem 4 in [5]) enables us to upper bound the number of walks which touch a given line.

Proposition 1. Let $p \in \mathbb{Q}$, $r,t,u,v \in \mathbb{N}$ be fixed constants and let $n,k \in \mathbb{N}$ with $p = \frac{k}{n}$, $p < \frac{r-1}{r+1}$ and $r \ge 2$. Let $\alpha \in (p,1)$ be the unique root of the equation $(1-p)x^r - x + p = 0$ and let g(n) be the number of walks from (u,v) to (n-k,k) which touch the line y = (r-1)(x-u) + v + s. Then for any $\varepsilon > 0$ there exists n_0 such that

$$\frac{g(n)}{\binom{n-u-v}{k-v}} \le (1+\varepsilon)\alpha^{s}$$

holds for all $n > n_0$. Moreover if u = 0 then we can choose $\varepsilon = 0$.

3. Proof of Theorem 1

We first prove the theorem for $t \ge 75$ in subsection 3.1, where all the basic ideas are included. Then in subsection 3.2 we improve the lower bound for t using more detailed casewise analysis.

3.1. **Proof for** $t \ge 75$. Let $p \in \mathbb{Q}$ with 0 be given. Set <math>q = 1-p and $\alpha = \alpha_p = \frac{1}{2}(\sqrt{\frac{1+3p}{1-p}}-1)$. Note that $\alpha \in (p,1)$ is the root of the equation $(1-p)x^3 - x + p = 0$.

Let $p = \frac{k}{n}$ and let $\mathscr{H} \subset {[n] \choose k}$ be a shifted 3-wise *t*-intersecting family. Then by Fact 2 walk(H) hits the line L: y = 2x + t for all $H \in \mathscr{H}$. Thus by Proposition 1

(setting u = v = 0, s = t) we have $|\mathcal{H}| \le \alpha^t \binom{n}{k}$. Our goal is to prove that $|\mathcal{H}| < \binom{n-t}{k-t}$ unless $\mathcal{H} \cong \mathcal{F}_0(n,k,3,t)$.

For $0 \le i \le \lfloor \frac{k-t}{2} \rfloor$ let us define

$$\mathscr{G}_i = \{G \in {[n] \choose k} : |G \cap [t+3\ell]| \ge t+2\ell \text{ first holds at } \ell = i\}.$$

In other words, $G \in \mathcal{G}_i$ iff walk(G) reaches the line L at (i,t+2i) for the first time. Set $\mathcal{H}_i = \mathcal{H} \cap \mathcal{G}_i$. For an infinite set $A = \{a_1, a_2, \ldots\} \subset \mathbb{N}$ with $a_1 < a_2 < \cdots$, let us define $\mathrm{First}_k(A) = \{a_1, a_2, \ldots, a_k\}$. Set

$$\begin{split} T(i) &= \{i, i+3, i+6, \ldots\} = \{i+3j : j \ge 0\}, \\ A_i^* &= [t] \cup \{t+i+1\} \cup T(t+i+3) \cup T(t+i+4), \\ B_i^* &= [t-1] \cup \{t+1, t+2, t+3\} \cup T(t+i+4) \cup T(t+i+6), \end{split}$$

and $A_i = \operatorname{First}_k(A_i^*)$, $B_i = \operatorname{First}_k(B_i^*)$. We will use only small i so that $A_i, B_i \in \binom{[n]}{k}$, and then we have $A_i \in \mathscr{G}_0$ and $B_i \in \mathscr{G}_1$. We consider three cases according to the structure of \mathscr{H} . If \mathscr{H} is (somewhat)

We consider three cases according to the structure of \mathcal{H} . If \mathcal{H} is (somewhat) similar to $\mathcal{F}_0(n,k,3,t)$ then we compare \mathcal{H} with $\mathcal{F}_0(n,k,3,t)$ and this is Case 2. In Case 3 we compare \mathcal{H} with $\mathcal{F}_1(n,k,3,t)$. If \mathcal{H} is neither similar to \mathcal{F}_0 nor \mathcal{F}_1 then it is less likely that \mathcal{H} has large size, but in this case we do not have an appropriate comparison object, which makes it difficult to bound the size of \mathcal{H} . We deal with this situation in Case 1, and we will refine the estimation for this case in the next subsection again.

Case 1. $A_1 \notin \mathcal{H}$ and $B_1 \notin \mathcal{H}$.

Suppose that $H \in \mathcal{H}_0$. Then after passing the point (0,t), walk(H) goes to (0,t+1) or (1,t). So we can divide $\mathcal{H}_0 = \mathcal{H}_0^{(0,t+1)} \cup \mathcal{H}_0^{(1,t)}$ according to the next point to (0,t) in the walk. For $\mathcal{H}_0^{(0,t+1)}$ we use a trivial bound

$$|\mathscr{H}_0^{(0,t+1)}| \le {n-(t+1) \choose k-(t+1)} \approx p^{t+1} {n \choose k},$$
 (5)

where we denote $a \approx b$ iff $\lim_{n\to\infty} a/b = 1$. If $H \in \mathscr{H}_0^{(1,t)}$ then $\operatorname{walk}(H)$ must touch the line L after passing (1,t). Otherwise we get $H \succ A_1$, which means $H \notin \mathscr{H}$, a contradiction. Here we used the fact that A_1 is the minimal set (in the shifting order poset) whose walk does not touch the line L after passing (1,t). Thus by Proposition 1 (setting u=1, v=t, s=2) we have

$$|\mathscr{H}_0^{(1,t)}| \le (1+\varepsilon)\alpha^2 \binom{n-(t+1)}{k-t} \approx \alpha^2 p^t q \binom{n}{k}. \tag{6}$$

Next suppose that $H \in \mathcal{H}_1$. Then after passing (1,t+2), walk(H) goes to (1,t+3) or (2,t+2). So we can divide $\mathcal{H}_1 = \mathcal{H}_1^{(1,t+3)} \cup \mathcal{H}_1^{(2,t+2)}$. Noting that there are t ways of walking from (0,0) to (1,t+3) which avoid passing (0,t), we have

$$|\mathcal{H}_1^{(1,t+3)}| \le t \binom{n-(t+4)}{k-(t+3)} \approx t p^{t+3} q \binom{n}{k}. \tag{7}$$

If $H \in \mathcal{H}_1^{(2,t+2)}$, then walk(H) must touch L after passing (2,t+2). Otherwise we get $H \succ B_1$, which means $H \notin \mathcal{H}$, a contradiction. Thus by Proposition 1 (setting u = 2, v = t + 2, s = 2) we have

$$|\mathcal{H}_1^{(2,t+2)}| \le (1+\varepsilon)t\alpha^2 \binom{n-(t+4)}{k-(t+2)} \approx (1+\varepsilon)t\alpha^2 p^{t+2} q^2 \binom{n}{k}. \tag{8}$$

Finally we count the number of H in $\bigcup_{i\geq 2} \mathscr{H}_i \subset \bigcup_{i\geq 2} \mathscr{G}_i$. Then we have

$$|\bigcup_{i\geq 2} \mathcal{H}_{i}| \leq |\bigcup_{i\geq 0} \mathcal{G}_{i}| - |\mathcal{G}_{0}| - |\mathcal{G}_{1}|$$

$$\leq \alpha^{t} \binom{n}{k} - \binom{n-t}{k-t} - t \binom{n-(t+3)}{k-(t+2)}$$

$$\approx (\alpha^{t} - p^{t} - tp^{t+2}q) \binom{n}{k}. \tag{9}$$

Therefore by (5), (6), (7), (8) and (9) we have

$$\frac{|\mathcal{H}|}{\binom{n}{k}} \le (1+o(1))(p^{t+1} + \alpha^2 p^t q + t p^{t+3} q + t \alpha^2 p^{t+2} q^2 + \alpha^t - p^t - t p^{t+2} q)$$
 (10)

as $n \to \infty$. On the other hand we have $\binom{n-t}{k-t} \approx p^t \binom{n}{k}$. Consequently it suffices to show that

$$p^{t+1} + \alpha^2 p^t q + t p^{t+3} q + t \alpha^2 p^{t+2} q^2 + \alpha^t - p^t - t p^{t+2} q < p^t, \tag{11}$$

or equivalently,

$$(\alpha/p)^t - t(1 - \alpha^2)p^2q^2 + \alpha^2q + p - 2 < 0.$$
 (12)

Since the LHS is an increasing function of t, it suffices to show the inequality for $p = p_t$ and this is true for $t \ge 75$. In fact we can find $\gamma > 0$ such that the LHS of (12) is less than $-\gamma$, or equivalently, the LHS of (11) is less than $(1-\gamma)p^t$. See Appendix for more details. Thus by (10) we have

$$|\mathscr{H}| \le (1+o(1))(1-\gamma)p^t \binom{n}{k} < \binom{n-t}{k-t}$$

for $n > n_0(p, t)$ and $t \ge 75$.

Case 2. $A_1 \in \mathcal{H}$.

If $[t] \subset H$ holds for all $H \in \mathcal{H}$ then it follows that $|\mathcal{H}| \leq \binom{n-t}{k-t}$ and equality holds iff $\mathscr{H} \cong \mathscr{F}_0(n,k,3,t)$. Thus we may assume that $[t] \not\subset H$ holds for some $H \in \mathscr{H}$ and in particular since \mathcal{H} is shifted we may assume that $D' = [k+1] - \{t\} \in \mathcal{H}$.

Let
$$i_0 = \lceil \frac{k+1-t}{4} \rceil$$
 and set

$$\tilde{A} = [t] \cup (\bigcup_{j=0}^{i_0-1} \{t+i_0+3j+1, t+i_0+3j+3\}) \cup \{t+4i_0+j: j \ge 1\},$$

$$\tilde{C} = [t+i_0] \cup \{t+i_0+3j+2: 0 \le j \le i_0-1\} \cup \{t+4i_0+j: j \ge 1\},$$

and let $A' = \operatorname{First}_k(\tilde{A})$, $C' = \operatorname{First}_k(\tilde{C})$.

Suppose that $A' \in \mathcal{H}$. Then $A' \succ C'$ implies that $C' \in \mathcal{H}$. Since $4i_0 + t \ge k + 1$ we have $A' \cap C' \cap D' = [t-1]$ but this is impossible because \mathcal{H} is 3-wise tintersecting. Thus we have $A' \notin \mathcal{H}$, and since $A_i \succ A'$ for $i \ge i_0$ we also have $A_i \notin \mathcal{H} \text{ if } i \geq i_0.$

Now let $1 \le i < i_0$ be such that $A_i \in \mathcal{H}$ but $A_{i+1} \notin \mathcal{H}$. Let

$$C^* = [t+i] \cup \{t+i+3j+2 : 0 \le j < i\}$$
$$\cup (\bigcup_{j>0} \{t+4i+3j+1, t+4i+3j+2\}),$$

$$\bigcup \left(\bigcup_{j \ge 0} \left\{ t + 4i + 3j + 1, t + 4i + 3j + 2 \right\} \right),$$

$$D^* = [t - 1] \cup [t + 1, t + 4i] \cup \left(\bigcup_{j \ge 0} \left\{ t + 4i + 3j + 2, t + 4i + 3j + 3 \right\} \right),$$

and let $C = \operatorname{First}_k(C^*)$, $D = \operatorname{First}_k(D^*)$

Then we have $C \in \mathcal{H}$ because $A_i \in \mathcal{H}$ and $A_i \succ C$. Since \mathcal{H} is 3-wise *t*-intersecting and $A_i \cap C \cap D = [t-1]$ we can conclude that $D \notin \mathcal{H}$.

Let $H \in \mathcal{H}$. First suppose that walk(H) does not pass (0,t), i.e., $H \cap [t] \neq [t]$. Then walk(H) must go through (at least) one of the points in

$$P = \{(1,0), (1,1), \dots, (1,t-1)\}.$$

Let (1,j) $(0 \le j \le t-1)$ be the first point in P that walk(H) hits. In other words, we have $H \cap [j+1] = [j]$. From the point (1,j), walk(H) must touch the line L: y = 2(x-1) + t + 4i, otherwise we get $H \succ D$ and $D \in \mathcal{H}$, which is a contradiction.

We estimate the number of walks from (1, j) to (n - k, k) which touch the line L. By Proposition 1 (setting u = 1, v = j, s = t + 4i - j) the number is at most

$$(1+\varepsilon)\alpha^{t+4i-j}\binom{n-(j+1)}{k-j}.$$

Therefore the number of $H \in \mathcal{H}$ such that $H \cap [t] \neq [t]$ is at most

$$(1+\varepsilon)\sum_{j=0}^{t-1}\alpha^{t+4i-j}\binom{n-(j+1)}{k-j}.$$
(13)

Next suppose that walk(H) passes (0,t), i.e., $H \cap [t] = [t]$. The number of corresponding walks is at most $\binom{n-t}{k-t}$, but we need to refine this estimation. Suppose that walk(H) passes (i+1,t). Then from this point walk(H) must touch

the line L': y = 2x + t - 2i, otherwise we get $H > A_{i+1}$ and $A_{i+1} \in \mathcal{H}$, which is a contradiction.

The trivial upper bound for the number of walks from (i+1,t) to (n-k,k) is $\binom{n-(t+i+1)}{k-t}$, but those walks in $\mathscr H$ touch the line L' and so by Proposition 1 we will get an improved upper bound for the number of walks of this type. To apply the proposition, it is convenient to neglect the first i+t+1 steps of the walks, in other words, we shift the origin to (i+1,t), and replace n and k by n'=n-(t+i+1) and k'=k-t. Then L' becomes y=2x+2 in the new coordinates, and by setting u=v=0 and s=2, Proposition 1 gives an improved upper bound $\alpha_{p'}^2\binom{n'}{k'}$ where $p'=\frac{k'}{n'}\approx\frac{k}{n-i}$ and $\alpha_{p'}=\frac{1}{2}(\sqrt{\frac{1+3p'}{1-p'}}-1)$. Therefore the number of $H\in\mathscr H$ such that $H\cap [t]=[t]$ is at most

$$\binom{n-t}{k-t} - (1-\alpha_{p'}^2) \binom{n'}{k'}. \tag{14}$$

We shall show $|\mathcal{H}| < \binom{n-t}{k-t}$. By (13) and (14) it suffices to prove that

$$(1+\varepsilon)\sum_{i=0}^{t-1}\alpha^{t+4i-j}\binom{n-(j+1)}{k-j}-(1-\alpha_{p'}^2)\binom{n'}{k'}<0,$$

or equivalently,

$$\sum_{i=0}^{t-1} \alpha^{t-j} \binom{n - (j+1)}{k-j} < \frac{1 - \alpha_{p'}^2}{(1+\varepsilon)\alpha^{4i}} \binom{n'}{k'} := f(i). \tag{15}$$

Claim 1. f(i) is an increasing function of i.

Proof. To show f(i-1) < f(i), let $p'' = \frac{k-t}{n-t-(i-1)-1} = \frac{k'}{n'+1}$. Then we need to show

$$\frac{1-\alpha_{p''}^2}{(1+\varepsilon)\alpha^{4(i-1)}}\binom{n'+1}{k'}<\frac{1-\alpha_{p'}^2}{(1+\varepsilon)\alpha^{4i}}\binom{n'}{k'},$$

which is equivalent to

$$\frac{1 - \alpha_{p''}^2}{1 - \alpha_{p'}^2} < \frac{1}{\alpha^4} \binom{n'}{k'} / \binom{n'+1}{k'} = \frac{1}{\alpha^4} \cdot \frac{n'+1-k}{n'+1}.$$

We have $\frac{n'+1-k}{n'+1}=\frac{n-k-i}{n-t-i}\geq \frac{n-k-i_0}{n-t-i_0}\approx (1-\frac{5}{4}p)/(1-\frac{p}{4})$ and some computation shows $\alpha^4<(1-\frac{5}{4}p)/(1-\frac{p}{4})$ for p<0.55. Thus we can choose $\delta>0$ so small that

$$1+\delta<\frac{1}{\alpha^4}\cdot\frac{n'+1-k}{n'+1}$$

holds for $n > n_0(\delta)$ and p < 0.55. On the other hand, since $\frac{1}{p''} = \frac{1}{p'} + \frac{1}{k'}$ we have $p'' \approx p'$ and hence

$$\frac{1-\alpha_{p''}^2}{1-\alpha_{p'}^2} < 1+\delta$$

for $n > n_1(\delta)$.

Thus it suffices to show (15) for i=1. Noting that $p'\approx p$, $\binom{n-(j+1)}{k-j}\approx p^jq\binom{n}{k}$ and $\binom{n-(t+2)}{k-t}\approx p^tq^2\binom{n}{k}$, we find that the target inequality is

$$(\alpha/p)^t - 1 < \frac{1-\alpha^2}{\alpha^4}q(1-(p/\alpha)).$$

The LHS is an increasing function of t, and for $p = p_t$ one can verify that the inequality is true for $t \ge 8$.

Case 3. $B_1 \in \mathcal{H}$.

Let $D' = [k+2] - \{t+2,t+3\}$. If $D' \notin \mathcal{H}$ then the shiftedness of \mathcal{H} implies that $\mathcal{H} \subset \mathscr{F}_1(n,k,3,t)$ and we are done. (Recall that we have $|\mathscr{F}_1(n,k,3,t)| < |\mathscr{F}_0(n,k,3,t)| = \binom{n-t}{k-t}$ for $0 .) Thus we may assume that <math>D' \in \mathcal{H}$. Let $i_0 = \lceil \frac{k-t-1}{4} \rceil$ and set

$$\tilde{B} = ([t+3] - \{t\}) \cup (\bigcup_{j=0}^{i_0-1} \{(t+3+i_0) + 3j + 1, (t+3+i_0) + 3j + 3\})$$

$$\cup \{t+3+4i_0+j : j \ge 1\},$$

$$\tilde{C} = ([t+3+i_0] - \{t+1\}) \cup \{(t+3+i_0) + 3j + 2 : 0 \le j \le i_0 - 1\}$$

$$\cup \{t+3+4i_0+j : j \ge 1\}.$$

and let $B' = \operatorname{First}_k(\tilde{B})$, $C' = \operatorname{First}_k(\tilde{C})$.

Suppose that $B' \in \mathcal{H}$. Then $B' \succ C'$ implies that $C' \in \mathcal{H}$. Since $t + 3 + 4i_0 \ge k + 2$ we have $B' \cap C' \cap D' = [t - 1]$, which contradicts the 3-wise *t*-intersecting property of \mathcal{H} . Thus we have $B' \notin \mathcal{H}$ and also $B_i \notin \mathcal{H}$ for $i \ge i_0$.

Now let $1 \le i < i_0$ be such that $B_i \in \mathcal{H}$ but $B_{i+1} \notin \mathcal{H}$. Let

$$C^* = ([t+3+i] - \{t+1\}) \cup \{(t+3+i) + 3j + 2 : 0 \le j < i\}$$

$$\cup (\bigcup_{j \ge 0} \{(t+3+4i) + 3j + 1, (t+3+4i) + 3j + 2\}),$$

$$D^* = ([t+3+4i] - \{t+2, t+3\})$$

$$\cup (\bigcup_{j \ge 0} \{(t+3+4i) + 3j + 2, (t+3+4i) + 3j + 3\}).$$

and let $C = \operatorname{First}_k(C^*)$, $D = \operatorname{First}_k(D^*)$.

Then we have $C \in \mathcal{H}$ because $B_i \in \mathcal{H}$ and $B_i \succ C$. Since \mathcal{H} is 3-wise *t*-intersecting and $B_i \cap C \cap D = [t-1]$ we can conclude that $D \notin \mathcal{H}$.

Let $H \in \mathcal{H}$. First suppose that walk(H) passes (at least) one of the points in $P = \{(2,0),(2,1),\ldots,(2,t+1)\}$, i.e., $|H \cap [t+3]| \le t+1$. Let (2,j) $(0 \le j \le t+1)$ be the first point in P that walk(H) hits. From this point, walk(H) must touch the line L: y = 2(x-2) + t + 4i + 2, otherwise we get $H \succ D$ and $D \in \mathcal{H}$, a contradiction. Thus the number of corresponding walks is at most

$$(j+1)(1+\varepsilon)\alpha^{t+4i+2-j}\binom{n-(j+2)}{k-j},$$

where j+1 is the number of walks from (0,0) to (2,j) which do not touch $\{(2,\ell): 0 \le \ell < j\}$.

Hence the number of $H \in \mathcal{H}$ such that $|H \cap [t+3]| \le t+1$ is at most

$$(1+\varepsilon)\sum_{j=0}^{t+1} (j+1)\alpha^{t+4i+2-j} \binom{n-(j+2)}{k-j}.$$
 (16)

Next suppose that $|H \cap [t+3]| \ge t+2$. Then walk(H) passes (0,t+3) or (1,t+2). The number of walks which pass (0,t+3) is at most

$$\binom{n-(t+3)}{k-(t+3)}.$$
 (17)

The number of walks which pass (1,t+2) is clearly at most $(t+3)\binom{n-(t+3)}{k-(t+2)}$ and we will improve this estimation. Suppose that walk(H) passes (1,t-1), (1,t+2) and (i+2,t+2). Then from (i+2,t+2), this walk must touch the line L': y = 2(x-(i+2))+t+4, otherwise we get $H > B_{i+1}$ and $B_{i+1} \in \mathcal{H}$, a contradiction. Thus the number of walks in \mathcal{H} which pass (1,t+2) is at most

$$(t+3)\binom{n-(t+3)}{k-(t+2)} - t(1-\alpha_{p'}^2)\binom{n'}{k'},\tag{18}$$

where n' = n - t - i - 4, k' = k - t - 2 and $p' = \frac{k'}{n'} \approx \frac{k}{n - i}$.

We shall show that the sum of (16), (17) and (18) is less than $|\mathcal{F}_1(n,k,3,t)| =$ $(t+3)\binom{n-(t+3)}{k-(t+2)} + \binom{n-(t+3)}{k-(t+3)}$, which means $|\mathcal{H}| < |\mathcal{F}_1|$. Our target inequality is

$$(1+\varepsilon)\sum_{j=0}^{t+1}(j+1)\alpha^{t+2-j}\binom{n-(j+2)}{k-j}<\frac{t}{\alpha^{4i}}\big(1-\alpha_{p'}^2\big)\binom{n'}{k'}.$$

The RHS is an increasing function of i. (One can show this fact similarly to the proof of Claim 1.) Thus we show the inequality for i = 1. Consequently it suffices to show

$$\frac{\alpha^4}{t(1-\alpha^2)q}\sum_{j=0}^{t+1}(j+1)(\alpha/p)^{t+2-j}<1.$$

Noting that α/p is an increasing function of p we find that the LHS is an increasing function of p. Then with some routine computation one can check that for $p = p_t$ the inequality is true if $t \ge 7$.

3.2. **Further improvement.** In the previous subsection, we proved the theorem for t > 75 (t > 75 in Case 1, t > 8 in Case 2 and t > 7 in Case 3). Here we will refine the proof for Case 1, and will prove the theorem for $t \ge 26$.

Assume that $A_1 \notin \mathcal{H}$ and $B_1 \notin \mathcal{H}$. Let

Case 1a. $\widetilde{\mathcal{H}}_0^{(0,t+1)}$ is not 2-wise 1-intersecting. In this case we have $G,G'\in\mathcal{H}$ such that $G\cap G'=[t+1]$. Let $H\in\mathcal{H}$. Since \mathcal{H} is 3-wise t-intersecting we have $|H \cap [t+1]| \ge t$. Thus walk(H) hits (0,t+1)1) or (1,t), and walk(H) never hits a point in $\{(2,0),(2,1),\ldots,(2,t-1)\}$. In particular, if $H \in \bigcup_{i \ge 2} \mathcal{H}_i$ then walk(H) reaches the line x = 2 for the first time only at (2,t) or (2,t+1). In both cases walk(H) passes (1,t) and there are t ways of walking from (0,0) to (1,t) which avoid (0,t).

Then after passing (2,t) or (2,t+1), walk(H) must touch the line L: y = 2x + t. Therefore we have

$$|\bigcup_{i\geq 2} \mathcal{H}_{i}| \leq (1+\varepsilon) \left(t\alpha^{4} \binom{n-(t+2)}{k-t} + t\alpha^{3} \binom{n-(t+3)}{k-(t+1)} \right)$$

$$\approx t\alpha^{3} (\alpha+p) p^{t} q^{2} \binom{n}{k}. \tag{19}$$

By (5), (6), (7), (8) and (19) it suffices to show that

$$p^{t+1} + \alpha^2 p^t q + t p^{t+3} q + t \alpha^2 p^{t+2} q^2 + t \alpha^3 (\alpha + p) p^t q^2 < p^t$$

and this is true for $t \ge 8$ and 0 .

Case 1b. Both $ilde{\mathscr{H}}_0^{(0,t+1)}$ and $ilde{\mathscr{H}}_1^{(1,t+3)}$ are 2-wise 1-intersecting. In this case we use the (simplest) Erdős–Ko–Rado Theorem to bound the sizes of $ilde{\mathscr{H}}_0^{(0,t+1)}$ and $ilde{\mathscr{H}}_1^{(1,t+3)}$. Then we have

$$|\mathcal{H}_0^{(0,t+1)}| = |\tilde{\mathcal{H}}_0^{(0,t+1)}| \le {n-(t+1)-1 \choose k-(t+1)-1} \approx p^{t+2} {n \choose k},$$
 (20)

$$|\mathcal{H}_{1}^{(1,t+3)}| = t|\tilde{\mathcal{H}}_{1}^{(1,t+3)}| \le t \binom{n - (t+4) - 1}{k - (t+3) - 1} \approx t p^{t+4} q \binom{n}{k}. \tag{21}$$

Therefore by (20), (6), (21), (8) and (9) it suffices to show that

$$p^{t+2} + \alpha^2 p^t q + t p^{t+4} q + t \alpha^2 p^{t+2} q^2 + \alpha^t - p^t - t p^{t+2} q < p^t$$

and this is true for $t \ge 18$ and 0 .

Case 1c. $\mathscr{H}_0^{(0,t+1)}$ is 2-wise 1-intersecting and $\mathscr{H}_1^{(1,t+3)}$ is not 2-wise 1-intersecting. We use (20) to bound $\mathscr{H}_0^{(0,t+1)}$ again. Now we will bound the size of $\bigcup_{i\geq 2}\mathscr{H}_i$. Since $\mathscr{H}_1^{(1,t+3)}$ is not 2-wise 1-intersecting and \mathscr{H} is shifted, we have $G,G'\in\mathscr{H}$ such that $G\cap G'=[t+4]-\{t\}$. If $F=[k+4]-\{t,t+2,t+3,t+4\}\in\mathscr{H}$ then we also have $F'=[k+4]-\{t+1,t+2,t+3,t+4\}\in\mathscr{H}$ by shifting. But this is impossible because $G\cap G'\cap F'=[t-1]$. Thus we must have $F\not\in\mathscr{H}$. Let

 $H \in \bigcup_{i \geq 2} \mathcal{H}_i$. Then walk(H) never hits a point in $\{(4,0),(4,1),\ldots,(4,t)\}$, otherwise we get $H \succ F \in \mathcal{H}$, a contradiction. In other words, walk(H) passes (2,t+2) or (3,t+1).

There are $u_1 = {t+1 \choose 2} + 2{t \choose 1}$ ways (resp. $u_2 = {t+2 \choose 3} + 2{t+1 \choose 2} + 3{t \choose 1}$ ways) of walking from (0,0) to (2,t+2) (resp. from (0,0) to (3,t+1)) which do not touch the line L: y = 2x + t. Then after passing (2,t+2) or (3,t+1), walk(H) must touch the line L. Therefore we have

$$|\bigcup_{i\geq 2} \mathcal{H}_{i}| \leq (1+\varepsilon) \left(u_{1}\alpha^{2} \binom{n-(t+4)}{k-(t+2)} + u_{2}\alpha^{5} \binom{n-(t+4)}{k-(t+1)} \right)$$

$$\approx (u_{1}p + u_{2}\alpha^{3}q)\alpha^{2}p^{t+1}q^{2} \binom{n}{k}. \tag{22}$$

Consequently by (20), (6), (7), (8) and (22) it suffices to show that

$$p^{t+2} + \alpha^2 p^t q + t p^{t+3} q + t \alpha^2 p^{t+2} q^2 + (u_1 p + u_2 \alpha^3 q) \alpha^2 p^{t+1} q^2 < p^t$$

and this is true for $t \ge 26$ and 0 .

4. Proof of Theorem 2

The proof of Theorem 2 is almost identical to the proof of Theorem 1. The only difference is that we assume (4) instead of assuming 0 where <math>p = k/n.

In Case 1, we can choose $\delta > 0$ sufficiently small so that (12) holds for $0 . If <math>n > n_0(t)$ then we may assume that $k/n < p_t + \delta$. Thus the remaining part goes through without changes. (We only need to change γ a little bit smaller.)

Similarly in Case 2 we can check that $\mathscr{H} \subset \mathscr{F}_0(n,k,3,t)$ or $|\mathscr{H}| < \binom{n-t}{k-t}$. Also in Case 3 we can show that $\mathscr{H} \subset \mathscr{F}_1(n,k,3,t)$ or $|\mathscr{H}| < |\mathscr{F}_1(n,k,3,t)|$. Case 1a, Case 1b and Case 1c are similar to Case 1, and we omit the details.

5. APPENDIX

Here we give an outline of proof of (12), namely

$$f(p,t) = (\alpha/p)^t - t(1-\alpha^2)p^2q^2 + \alpha^2q + p - 2 < 0$$

for $0 , <math>\alpha = \frac{1}{2}(\sqrt{\frac{1+3p}{1-p}} - 1)$ and $t \ge 75$. First we check that f(p,t) is an increasing function of t. It suffices to show $\frac{\partial f}{\partial t}(p,t) > 0$, or equivalently,

$$(\alpha/p)^t > \frac{(1-\alpha^2)p^2q^2}{\log(\alpha/p)}.$$

In fact, one can show (with some computation) that the RHS is at most 1, while the LHS is clearly more than 1 because $\alpha > p$.

Now we assume that $p = p_t$. Setting $t = \frac{1}{x^2}$, the Taylor expansion of f(p,t) at x = 0 gives

$$f(p,t) = -3 + e + 2x + \left(6 - \frac{e}{2}\right)x^2 - \left(\frac{15}{4} + e\right)x^3 - \left(17 - \frac{47e}{24}\right)x^4 + Rx^5,$$

where $e = \exp(1)$ and $0 \le R \le 26$ for 0 < x < 0.116. Thus we have f(p,t) < 0 if 0 < x < 0.1156, i.e., $t = \frac{1}{x^2} \ge 74.83$, moreover we have $f(p,t) < -\gamma$ for $\gamma = 0.0004$ and t > 75.

The inequalities in the other cases can be proved similarly, and we omit the technical details.

REFERENCES

- [1] R. Ahlswede, L.H. Khachatrian. The complete intersection theorem for systems of finite sets. *European J. Combin.*, 18:125–136, 1997.
- [2] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. *Quart. J. Math. Oxford* (2), 12:313–320, 1961.
- [3] P. Frankl. Families of finite sets satisfying an intersection condition. *Bull. Austral. Math. Soc.*, 15:73–79 1976.
- [4] P. Frankl. The Erdős–Ko–Rado theorem is true for n = ckt. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthey, 1976), Vol. I, 365–375, Colloq. math. Soc. János Bolyai, 18, North–Holland, 1978.
- [5] N. Tokushige. The maximum size of 4-wise 2-intersecting and 4-wise 2-union families. *European J. Combin.*, in press.
- [6] R.M. Wilson. The exact bound in the Erdős–Ko–Rado theorem. *Combinatorica*, 4:247–257, 1984.

College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan

E-mail address: hide@edu.u-ryukyu.ac.jp