THE MAXIMUM SIZE OF 3-WISE t-INTERSECTING FAMILIES
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ABSTRACT. Lett > 26 and let.# be ak-uniform hypergraph om vertices.

Suppose thaF NFNFs| >t holds for allF, R, Fs € .%. We prove that the
size of. 7 is at most(}, ;) if p= X satisfies

2
L —
P= Vatro-1

andn is sufficiently large. The above inequality fpiis best possible.

1. INTRODUCTION

A family . C ([”]) is calledr-wiset-intersecting if[Fy N ---NF| >t holds
forall Fy,...,F € #. Let us define-wiset-intersecting families#;(n,k,r,t) as
follows:

Finkrt)={F € (T) CFN[t4ri]| >t4(r—1)i}.

Let m(n,k,r,t) be the maximal size df-uniform r-wiset-intersecting families
onn vertices.

Conjecture 1. m(n,k,r,t) = max |.Z(n,k,r,1)].

It is known that the conjecture is true for the case 2, see [1, 2, 4, 6].
Fix r,t € Nandp € Q with 0 < p < 1. Suppose thap = X and let us consider

n
the situatiom — o (and hencd& = pn— ). Writing .%;(n,k,r,t) as.%#; we have

7 = (3 1) &
B T
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and
im [Zol/(7) = P
N—soo 0 k )
. n
im1731/() = (0p i p

— (t+r)pt+r—1—(t+r—1)pt+r.

Thus|.%| > |.71| (for nlarge andp fixed) holds iffpt > (t +r)p* =1 — (t+r -
1)pT, that is,

t+r)pt—(t+r—1)p —1<0. (3)
If r =2 then (3) givesp < Hil In fact|.Zo(n,k,2,t)| > |.Z1(n,k, 2,t)| holds iff
Kt < L If r = 3then (3) givesp < pr where
B 2
= aro-1

The following conjecture is a weaker version (and a special case) of Conjecture 1.

Conjecture 2. Lett € N andp € Q be given. Suppose that> 2 and0 < p <
p. Then there existso(p,t) such tham(n,k,3,t) = (1) holds forp =X and
n> nO(p7t)'

If the conjecture is true then the condition pns sharp. In this paper, we
prove the following.

Theorem 1. Conjecture 2 is true fdr> 26. Moreover, the maximum sizg_,)
is attained only byZo(n,k, 3,t) (up to isomorphism).

Comparing (1) and (2) directly, we hay&o(n,k,3,t)| > |.Z1(n,k, 3,t)| iff

n> % (\/(4t+9)k2—2(4t2+1]1+3)k+4t3+13tZ+6t+1—k+3(t+1)> :
4)

namelyk/nis at mosk/R, whereRis the RHS of (4). Some computation shows
thatk/R > p; fort > 2 andk > ko(t), butk/R— p; ask — . Thus for‘ﬁ‘ = py we
have|.Zp(n,k,3,t)| > |.#1(n,k,3,t)| while | Zo(n,k,3,t)|/|-Z#1(n,k,3,t)| — 1 as

k — oo (and hencen — ). Therefore the following result is slightly better than
Theorem 1.

Theorem 2. Letn,k,t € N be such that > 26, n > ng(t) and (4). Then we have
m(n,k,3,t) = (1) and equality is attained only bfo(n,k,3,t) or Z1(n,k, 3,t)
(up to isomorphism).

Note thatR can be an integer, an&#; is one of the extremal configurations
onlyifn=ReN.
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2. TooLs
For integersl <i < j < nand a family.# c ([E]), define the(i, j)-shift Sj as
follows.
Sj(#)={Sj(F):F e 7},
where

S”.(,:):{ I(:':—{J'})U{i} ifigF, jeF, (F-{jhulit¢ 7,

otherwise.

Afamily Z c () is called shifted ifS; (#) = .# forall 1<i < j <n. Fora
given family.Z, one can always obtain a shifted fami%’ from.# by applying
shifting to.# repeatedly. Then we haye#'| = |.7| because shifting preserves
the size of the family. It is easy to check that# is r-wiset-intersecting then
Sj(-#) is alsor-wiset-intersecting. Therefore if# is anr-wiset-intersecting
family then we can find a shifted family’ which is alsor-wiset-intersecting
with |.#'| = |.Z|.

We use the random walk method originated from [3, 4] by Frankl. Let us intro-
duce a partial order il(l[E]) by using shifting. FoF,G € ([E}), defineF - Gif G
is obtained by repeating a shifting ko The following fact follows immediately
from definition.

Fact 1. Let.# C (“k”) be a shifted family. IF € .7 andF = G, thenG € .7.

ForF € ([E}) we define the corresponding walk @R, denoted byvalk(F), in
the following way. The walk is frong0,0) to (n— k, k) with n steps, and if € F
(resp.i € F) then the-th step is one unit up (resp. one unit to the right).

Fact 2([3]). Let.F C ([E}) be a shifted -wiset-intersecting family. Then for all
F € #, walk(F) must touch the linké :y = (r — 1)x+t.

Proof. We only prove the case= 3 (but one can prove the general case in ex-
actly the same way). Lég = [5t], i1 = [*-5-1] and set

G = [t—JU{t+3i+1:0<i<ipjuU{t+3i+2:0<i<is},

G = [t-JU{t+3i:0<i<igtu{t+3i+2:0<i<iq},

G = [t—JU{t+3i:0<i<igju{t+3i+1:0<i<iy}.

GG 00 00 ©00 00 o
GG 000 00 00 00
G 0000 00 00 o

t




4 NORIHIDE TOKUSHIGE

Assume thaGp € .#. SinceGq - G; - G, we also havés,, G, € .# by Fact 1.

But this is impossible becaus& N G; N G, = [t — 1], which contradicts the 3-
wiset-intersecting property of#. Thus we must havgg ¢ .%. Note thatGg is

the “minimal” set (in the shifting order poset) whose corresponding walk does
not touch the lind : y = 2x+-t.

(n—k,Kk)

Oy [ walk(Gp)

ThusifF € # andwalk( ) does not touch the line, then we have- Gy, and
by Fact 1 we hav&, € .#, which is a contradiction. O

The next result (Corollary 8 and Theorem 4 in [5]) enables us to upper bound
the number of walks which touch a given line.

Proposition 1. Letpe Q,r,t,u,ve N be fixed constants and latk € N with
p= n, p < {d andr > 2. Leta € (p,1) be the unique root of the equation
(1— p)X" —x+ p=0and letg(n) be the number of walks froffu,v) to (n—k,Kk)
which touch the ling/ = (r — 1)(x—u) +v+s. Then for anye > 0 there exists
No such that

g(n)

(")

holds for alln > ng. Moreover ifu = 0 then we can choose= 0.

<(1+¢)a®

3. PROOF OFTHEOREM 1

We first prove the theorem fdr> 75 in subsection 3.1, where all the basic
ideas are included. Then in subsection 3.2 we improve the lower bourid for
using more detailed casewise analysis.

3.1. Proof for t > 75. Letpe Q with 0 < p < p(= ) be given. Set

\/AW 1
g=1-panda=ap= z(\/lligg’— 1). Note thata € (p,1) is the root of the
equation(l p)x® —x+p=0.

Letp= 7 Kand let# C ([ }) be a shifted 3-wiseintersecting family. Then by
Fact 2walk( ) hits the lineL : y=2x+t for all H € #. Thus by Proposition 1
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(settingu=v =0, s=t) we havel.%#’| < a'(};). Our goal is to prove thap?’| <
(r71) unlesss# = Fo(n,k,3,t).
For0 <i < |&!| let us define

4 ={Ge ([E]) LGNt +30]| >t +2¢first holds at’ = i}

In other wordsG € % iff walk(G) reaches the link at(i,t+ 2i) for the first time.
Set s = 7 N%. For an infinite seA = {aj,ap,...} CNwithay <ay < ---,
let us defingrirsi(A) = {ag, a2, ...,ak}. Set

T@i) = {i,i+3,i+6,...} ={i+3j:j>0},
A = Hu{t+i+1uTt+i+3)uT(t+i+4),
Bf = [t—-1uU{t+1t+2t+3}UT(t+i+4)UT(t+i+6),

andA; = Firs(A’), Bj = First(B;"). We will use only smali so thatA;,B;j €
([E]), and then we havd; € % andB; € ¥4;.

We consider three cases according to the structugg’otf .77 is (somewhat)
similar to %p(n,k, 3,t) then we compare?’ with .Zp(n,k,3,t) and this is Case
2. In Case 3 we comparg” with .71(n,k,3,t). If 57 is neither similar ta%g
nor.#; then itis less likely tha##” has large size, but in this case we do not have
an appropriate comparison object, which makes it difficult to bound the size of
2. We deal with this situation in Case 1, and we will refine the estimation for
this case in the next subsection again.

Case 1.A1 & 77 andB, ¢ 7.
Suppose thatl € 7. Then after passing the poif@,t), walk(H) goes ta(0,t +

1) or (L t). Sowe can dividerp = .7, U™ according to the next point
to (0,t) in the walk. Fors %™

A< () =P (), ©)

we use a trivial bound

where we denota ~ b iff lim,_.a/b=1. If H € %(1’” thenwalk(H) must
touch the lineL after passing1,t). Otherwise we geH > A;, which means
H ¢ 27, a contradiction. Here we used the fact tAais the minimal set (in the
shifting order poset) whose walk does not touch the lirefter passing1,t).
Thus by Proposition 1 (setting= 1, v=t, s= 2) we have

™ < @ eja?(" ) < atday) ©



6 NORIHIDE TOKUSHIGE

walk(B;)

(2,t+2)

Next suppose thatl € 7. Then after passingl,t + 2), walk(H) goes to

(1,t+3) or (2,t +2). So we can divider4 = 42 U /> Noting that
there ardg ways of walking from(0,0) to (1,t + 3) which avoid passing0,t),

we have
(L43)) n—(t+4) ~tpit3g( "
A (1) () )

If H e %”1(2“2), thenwalk(H) must touchL after passing2,t 4 2). Otherwise
we getH > Bj, which meandd ¢ 7, a contradiction. Thus by Proposition 1
(settingu=2,v=t+2, s= 2) we have

22 < (1+£)t0{2(E: 812) ~ (1+e)ta’p 2 (E) (8)

Finally we count the number ¢ in U, 74 C Ui>2%. Then we have

U < [U%l-I%l -4

i>2 i>0
-
~ (a'—p' —tp*) (E) 9)

Therefore by (5), (6), (7), (8) and (9) we have

A
Cape (1+o(1)(p T+ a?p'g+tp g +ta®p P2g? +at - pt—tptt2g) (10)

()
asn — . On the other hand we ha¥g™}) ~ p'(})). Consequently it suffices to
show that

t+1

{+3
p

+a2ptq+tp q+t02pt+2q2_’_at . pt _tpt+2q < pt, (11)
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or equivalently,
(a/p)' —t(1-a®)p’q’ + a’q+p—2<0. (12)

Since the LHS is an increasing functiontoit suffices to show the inequality for
p = p; and this is true fot > 75. In fact we can find/ > 0 such that the LHS of
(12) is less than-y, or equivalently, the LHS of (11) is less thah— y)p'. See
Appendix for more details. Thus by (10) we have

|| < (1+0(1))(1—y)p' (E) < (E::)

for n> ng(p,t) andt > 75.

Case 2.A; € 7.
If [t] € H holds for allH € 27 then it follows that#| < (}}) and equality holds
iff 7 = Zo(n,k,3,t). Thus we may assume that¢ H holds for soméH € o7
and in particular sinceg?’ is shifted we may assume tHat= [k+ 1] — {t} € /7.
Letio = [¥1=1] and set
N io—1
A = [Ju(|J{t+io+3j+1Lt+io+3j+3})U{t+dio+j:j>1},
j=0
C = [t+io]U{t+io+3j+210§ j < io—l}U{t+4io+j D> 1},

and letA’ = First(A), C' = First(C).

A 000 @ 00 00 oo
C 000000 O @ @ @
DD 00 000000000000

t Ig 3ig

Suppose thal/ € 7. ThenA’ = C' implies thatC' € #. Sincedip+t > k+1
we haveA'NC'N D’ = [t — 1] but this is impossible becaus#’ is 3-wiset-
intersecting. Thus we haw ¢ 7, and sinceA; = A’ for i > ig we also have
A& 0 i >o.
Now letl <i < ig be such that € 77 butA 1 € 7. Let
C' = [t+iJu{t+i+3j+2:0<j<i}
U {t+4i+3j+1Lt+4i+3j+2}),
j>0
D* = [t—-1Uft+1t+4u((J{t+4i+3j+2t+4i+3j+3}),
j>0

and letC = First(C*), D = First(D*).
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AL @00 @ 00 00 00 o0 o0
C 00000 © @ 606 0060 o0 o
D 00 00000000 060 090

t [ 3

Then we haveC € 77 becauseA; € 77 and A = C. SinceZ is 3-wiset-
intersecting anéd\y NCN D = [t — 1] we can conclude thd ¢ .77
LetH € 7. First suppose thatalk(H) does not pasf,t), i.e.,H N [t] # [t].
Thenwalk(H) must go through (at least) one of the points in
P={(1,0),(1,1),...,(L,t—1)}.

Let (1,j) (0 < j <t—1) be the first point inP that walk(H) hits. In other
words, we havéd N [j + 1] = [j]. From the poin{(1, j), walk(H) must touch the
lineL:y=2(x—1)+t+4i, otherwise we get > D andD € J#, which is a
contradiction.

(1,t+4i)

| walk(D)

0.1),

Fow

We estimate the number of walks frgi, j) to (n—k, k) which touch the lind..
By Proposition 1 (setting =1, v= |, s=t+4i — j) the number is at most

(1+6)at+4-] (n— (] le)).

k— ]
Therefore the number ¢ € .7 such thaH N [t] # [t] is at most
'S g (M—(+1
(1+¢)§ at™4-) ( _ ) (13)
2 k=]

Next suppose thawalk(H) passeg0,t), i.e., HN[t] = [t]. The number of
corresponding walks is at mo@ﬁ), but we need to refine this estimation. Sup-
pose thawalk(H) passegi+ 1,t). Then from this pointvalk(H) must touch
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the linel’ : y = 2x+t — 2i, otherwise we getl = A1 andA;,; € 57, which is
a contradiction.

L/

(i+1t+2)
walk(Aj 1)

The trivial upper bound for the number of walks fraiin+ 1,t) to (n—k,K) is
("), but those walks in” touch the linel’ and so by Proposition 1
we will get an improved upper bound for the number of walks of this type. To
apply the proposition, it is convenient to neglect the firstt + 1 steps of the
walks, in other words, we shift the origin {0+ 1,t), and replacen andk by
N=n—(t+i+1) andk =k—t. ThenL’ becomesy = 2x+ 2 in the new
coordinates, and by setting=v=20 ands 2, Proposition 1 gives an improved

upper boundr? () wherep/ = ¥ ~ K anday = 1(y/ 558 —1). Therefore

the number of—| € ¢ such thaH N [t] [t] is at most

() e )

We shall show.#| < (;_1). By (13) and (14) it suffices to prove that

t—1 /
(j+1) n

(1+&)y a alt4- J( ) 1—a? ( ><O,
pa J ( p’) K

or equivalently,

t—1 _ T 1_ 2 ) |
JZoort—J <n k(ier 1)) < (1+—:){g{4i<;) — 1) 1)

Claim 1. f(i) is an increasing function of

Proof. To showf (i — 1) < f(i), let p” = n_t_"(i‘_tl)_l = -£+. Then we need to
show

1-af, n+1 _ 1-a5 (v
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which is equivalent to

1—03,,< 1 /n / n+1\ 1 n+1-k
1—a2 " a*\K kK ) a* n+1 "

We have”rﬁlk =k > ?1 8 ~ (1-2p)/(1—¥) and some computation
showsa? < (1 %p)/(l ) for p < 0.55. Thus we can choos®> 0 so small
that
1 n+1-k
1+0< — ————
L A

holds forn > no(3) andp < 0.55. On the other hand, sinep = 5 + ¢ we have
p”’ ~ p’ and hence

1—a§
1 P <1+6

forn>ny(9d).
Thus it suffices to show (15) fér= 1. Noting thatp’ ~ p, (" (ﬁl)) ~ plq(})

and (" (”2)) ~ p'g?(}), we find that the target inequality is

2

(a/p)t— q(1—(p/a)).

The LHS is an increasing function of and forp = p; one can verify that the
inequality is true fot > 8.

Case 3.B; € 77.

LetD = [k+2]—{t+2,t+3}. If D' ¢ 2 then the shiftedness o¥ implies
that.7Z C .#1(n,k,3,t) and we are done. (Recall that we havg (n,k,3,t)| <
| Fo(n,k,3,t)| = (1) for 0< p < pr.) Thus we may assume that € 7. Let

io = [¥=1] and set

I()l
B = (t+3—{tHhu(|J{(t+3+io)+3j+1,(t+3+ig)+3j+3})
j=0

U{t+3+4ip+j:j>1},
C = (t+3+ig)—{t+1}H)U{(t+3+ig)+3j+2:0<j<ip—1}
U{t+3+4ip+j:j>1},

and letB’ = First(B), C’' = First(C).
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B 0@ @000 e 00 00 o000
cC 000 000000 O @ @ 0090
DD ©00@® 0000000000

t 3 io 3ig

Suppose thaB' € 7. ThenB' = C' implies thatC’' € 7#. Sincet + 3+ 4ig >
k+2 we haveB'NnC'ND’ = [t — 1], which contradicts the 3-wideintersecting
property of 7. Thus we havd®' ¢ > and alsdB; ¢ .77 for i > .

Now letl <i < ig be such thaB; € 77 butB;,1 ¢ /7. Let

C" = (t+3+i]—{t+1Hu{(t+3+i)+3j+2:0<j<i}
U(UJ{(t+3+41)+3j+1,(t+3+4i)+3j+2}),
j=0
D* = ([t+3+4i]—{t+2,t+3})

U(J{(t+3+4i)+3j+2,(t+3+4i)+3j+3}).
j>0

and letC = First(C*), D = First(D*).

B 0@ 00@ @ 00 o0 @ 00
C 000 0000 © ® 006 o0 ©o
D 0000 0000000 00

t 3 i 3i

Then we haveC € 77 becauseB; € .77 andB; = C. Since .77 is 3-wiset-
intersecting an®; "CND = [t — 1] we can conclude thd ¢ J7.

LetH € 7. First suppose thatalk(H) passes (at least) one of the points in
P=1{(20),(21),...,2t+1)},ie,HN[t+3| <t+1 Let(2,j) (0<j<
t + 1) be the first point irP thatwalk(H) hits. From this pointwalk(H) must
touch the lineL : y = 2(x— 2) 4+t + 4i + 2, otherwise we geitl > D andD € .77,
a contradiction. Thus the number of corresponding walks is at most

(e eate (M)

where j + 1 is the number of walks fronf0,0) to (2, j) which do not touch
{(2,0):0< ¢ < j}.
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(2,t+4i+2)

(0,t+1)

Hence the number dfl € 77 such thatH N[t 4+ 3]| <t+1is at most

(1+¢) ti(j +1)gtH4+2- (n _k(ier 2)> : (16)
i=

Next suppose thaH N[t + 3]| > t+ 2. Thenwalk(H) passeg0,t+ 3) or
(1,t +2). The number of walks which pa$8,t + 3) is at most

2

The number of walks which pag4,t + 2) is clearly at mostt + 3)([::8123)

and we will improve this estimation. Suppose thatlk(H) passeg1,t — 1),
(1,t+2) and (i +2,t +2). Then from(i +2,t + 2), this walk must touch the
linel’':y=2(x—(i+2))+t+4, otherwise we geil - B;,.; andBj 1 € 7, a
contradiction. Thus the number of walks.## which pasg1,t + 2) is at most

(t+3) (E:gig) —t(1-ap) (E:) (18)

K k
n i

wheren =n—t—i—4,K =k—t—2andp =
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L/
(i+2,t+4)

(1t+2) walk(Bi 1)

(i+2t+2)

We shall show that the sum of (16), (17) and (18) is less tHarin, k, 3,t)| =

(t+3) (E:gj:g) + (E:gigg) which means$.#| < |.%1|. Our target inequality is

t+1

e (e (T 0TP) < G- ()

The RHS is an increasing function of (One can show this fact similarly to
the proof of Claim 1.) Thus we show the inequality for 1. Consequently it
suffices to show

gt L

(- a?q & +1)(a/p) P <1

Noting thata /p is an increasing function gb we find that the LHS is an in-
creasing function op. Then with some routine computation one can check that
for p= p the inequality is true it > 7.

3.2. Further improvement. In the previous subsection, we proved the theorem
fort > 75(t > 75in Case 1t > 8in Case 2 and > 7 in Case 3). Here we will
refine the proof for Case 1, and will prove the theoremnt for26.

Assume thaf\; ¢ 7 andB; ¢ 7. Let

2O = (H—[t+1):[t+1 CHe.}),
A a5 H e )
Case 1a.74®V is not 2-wise 1-intersecting.

In this case we have,G’' € 7 such thalGNG' = [t + 1]. LetH € J#. Since
A is 3-wiset-intersecting we haveH N[t + 1]| > t. Thuswalk(H) hits (0,t +
1) or (1,t), andwalk(H) never hits a point iR (2,0),(2,1),...,(2,t—1)}. In
particular, ifH € ;- 74 thenwalk(H) reaches the ling = 2 for the first time
only at (2,t) or (2,t +1). In both casesvalk(H) passeg1,t) and there are
ways of walking from(0, 0) to (1,t) which avoid(0,t).
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L

b (2,t+1)
D (2,1)

o m

Then after passin@,t) or (2,t + 1), walk(H) must touch the lin& : y = 2x+t.
Therefore we have

Yot < ave (oM7) e (G 1))

i>2
n
~ tad(a+ p)p‘qz(k) (19)

By (5), (6), (7), (8) and (19) it suffices to show that

pt+1+a2ptq+tpt+3q+t02pt+2q2+t03(a+p)ptqZ< pt7

and this is true fot > 8 and0 < p < p.

Case 1b.Both j%(o’t“) and%zl(l’Hs) are 2-wise 1-intersecting.
In this case we use the (simplest) BsdKo—Rado Theorem to bound the sizes

of %Y and. 4" Then we have

~ n—(t+1) -1 n
2 = Y < (k—Et +1§_1) ~ p”z(k), (20)
A3, _ s (N =1\ g (N
|7 | t|.o7] |_t(k—(t+3)—1 tpq L (21)

Therefore by (20), (6), (21), (8) and (9) it suffices to show that

02 1 a?plg+tpttig+tapt2R+ at — pt—tptt2g <

and this is true fot > 18and0 < p < p.

Case 1cj?6(0’t+1) is 2-wise l-intersecting anﬁizl(l’H?’) is not 2-wise 1-intersecting.

We use (20) to bounc%%(o’t“) again. Now we will bound the size ¢f;-, /4.
SincesZ; """ ¥ is not 2-wise 1-intersecting an# is shifted, we have, G’ € #
suchthaGNG = [t +4] — {t}. If F = [k+4] — {t,t +2,t + 3,t + 4} € 2 then
we also have’ = [k+4] — {t + 1,t + 2,t + 3,t + 4} € 2 by shifting. But this
is impossible becaus8NG' NF’ = [t — 1]. Thus we must havé ¢ J7. Let
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H € Ui>2 4. Thenwalk(H) never hits a point if (4,0),(4,1),...,(4,t)}, oth-
erwise we geH >~ F € /7, a contradiction. In other wordsyalk(H) passes
(2,t+2)or(3,t+1).

L (2t+2)
T (3t+1)

anY
A\

anY
A\

(0,t)d8 walk(F)

There areu; = (‘51) +2(}) ways (respup = ("5%) +2("51) +3(}) ways) of

walking from (0,0) to (2,t + 2) (resp. from(0,0) to (3,t 4+ 1)) which do not
touch the linel : y = 2x+t. Then after passing,t +2) or (3,t +1), walk(H)
must touch the lin&. Therefore we have

U = e (wa ({5 ) v (01T

i>2
n
~ (up+wadg)a?ptie? (k) . (22)

Consequently by (20), (6), (7), (8) and (22) it suffices to show that

t-+2

p _|_aZptq+tpt+3q+t02pt+2q2+(ulp+u2a3q>02pt+lq2 < pt7

and this is true fot > 26 and0 < p < p.

4. PROOF OFTHEOREM 2

The proof of Theorem 2 is almost identical to the proof of Theorem 1. The
only difference is that we assume (4) instead of assurliRgp < p; where
p=Kk/n.

In Case 1, we can chooge> 0 sufficiently small so that (12) holds f@r <
p<p+9. If n>ng(t) then we may assume thifn < p; + &. Thus the
remaining part goes through without changes. (We only need to chem{tle
bit smaller.)

Similarly in Case 2 we can check that” C .%p(n,k,3,t) or | 7| < (Ej)
Also in Case 3 we can show that” C .#1(n,k,3,t) or |.77| < |Z1(n,k,3,1)|.
Case 1a, Case 1b and Case 1c are similar to Case 1, and we omit the detalils.
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5. APPENDIX
Here we give an outline of proof of (12), namely
f(p,t) = (a/p)' —t(1 - a®)p’e’ + a’q+p-2<0

forO<p<p,a= %(\/11;35’— 1) andt > 75. First we check thaf (p,t) is an
increasing function of. It suffices to shovg—tf(p,t) > 0, or equivalently,
(1-a®)p°?

log(a/p)
In fact, one can show (with some computation) that the RHS is at most 1, while
the LHS is clearly more than 1 because> p.

Now we assume thgi = p;. Settingt = ;12 the Taylor expansion off(p,t) at
x = 0 gives

(a/p)' >

f(p,t) = —3+e+2x+ (6 g)xz— (175+e)x3— (17— A'Z—T)x4+ RX,

wheree = exp(1) and0 < R< 26for 0 < x < 0.116 Thus we havd (p,t) <0
if 0<x<0.1156 i.e.,t = X—lz > 74.83, moreover we havé(p,t) < —yfor y=
0.0004andt > 75.

The inequalities in the other cases can be proved similarly, and we omit the
technical details.
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