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ABSTRACT. Let t ≥ 26 and letF be ak-uniform hypergraph onn vertices.
Suppose that|F1∩F2∩F3| ≥ t holds for allF1,F2,F3 ∈F . We prove that the
size ofF is at most

(n−t
k−t

)
if p = k

n satisfies

p≤ 2√
4t +9−1

andn is sufficiently large. The above inequality forp is best possible.

1. INTRODUCTION

A family F ⊂ ([n]
k

)
is calledr-wise t-intersecting if|F1∩ ·· · ∩Fr | ≥ t holds

for all F1, . . . ,Fr ∈F . Let us definer-wiset-intersecting familiesFi(n,k, r, t) as
follows:

Fi(n,k, r, t) = {F ∈
(

[n]
k

)
: |F ∩ [t + ri ]| ≥ t +(r−1)i}.

Let m(n,k, r, t) be the maximal size ofk-uniform r-wise t-intersecting families
onn vertices.

Conjecture 1. m(n,k, r, t) = maxi |Fi(n,k, r, t)|.
It is known that the conjecture is true for the caser = 2, see [1, 2, 4, 6].

Fix r, t ∈N andp∈Q with 0 < p < 1. Suppose thatp = k
n and let us consider

the situationn→∞ (and hencek = pn→∞). Writing Fi(n,k, r, t) asFi we have

|F0| =
(

n− t
k− t

)
, (1)

|F1| = (t + r)
(

n− (t + r)
k− (t + r−1)

)
+

(
n− (t + r)
k− (t + r)

)
, (2)
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and

lim
n→∞

|F0|/
(

n
k

)
= pt ,

lim
n→∞

|F1|/
(

n
k

)
= (t + r)pt+r−1(1− p)+ pt+r

= (t + r)pt+r−1− (t + r−1)pt+r .

Thus|F0| ≥ |F1| (for n large andp fixed) holds iff pt ≥ (t + r)pt+r−1− (t + r−
1)pt+r , that is,

(t + r)pr−1− (t + r−1)pr −1≤ 0. (3)

If r = 2 then (3) givesp≤ 1
t+1. In fact |F0(n,k,2, t)| ≥ |F1(n,k,2, t)| holds iff

k−t+1
n ≤ 1

t+1. If r = 3 then (3) givesp≤ pt where

pt =
2√

4t +9−1
.

The following conjecture is a weaker version (and a special case) of Conjecture 1.

Conjecture 2. Let t ∈ N and p∈ Q be given. Suppose thatt ≥ 2 and0 < p≤
pt . Then there existsn0(p, t) such thatm(n,k,3, t) =

(n−t
k−t

)
holds forp = k

n and
n > n0(p, t).

If the conjecture is true then the condition onp is sharp. In this paper, we
prove the following.

Theorem 1. Conjecture 2 is true fort ≥ 26. Moreover, the maximum size
(n−t

k−t

)
is attained only byF0(n,k,3, t) (up to isomorphism).

Comparing (1) and (2) directly, we have|F0(n,k,3, t)| ≥ |F1(n,k,3, t)| iff

n≥ 1
2

(√
(4t +9)k2−2(4t2 +11t +3)k+4t3 +13t2 +6t +1−k+3(t +1)

)
,

(4)
namely,k/n is at mostk/R, whereR is the RHS of (4). Some computation shows
thatk/R> pt for t ≥ 2 andk> k0(t), butk/R→ pt ask→∞. Thus fork

n = pt we
have|F0(n,k,3, t)|> |F1(n,k,3, t)| while |F0(n,k,3, t)|/|F1(n,k,3, t)| → 1 as
k→ ∞ (and hencen→ ∞). Therefore the following result is slightly better than
Theorem 1.

Theorem 2. Let n,k, t ∈ N be such thatt ≥ 26, n > n0(t) and (4). Then we have
m(n,k,3, t) =

(n−t
k−t

)
and equality is attained only byF0(n,k,3, t) or F1(n,k,3, t)

(up to isomorphism).

Note thatR can be an integer, andF1 is one of the extremal configurations
only if n = R∈ N.
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2. TOOLS

For integers1≤ i < j ≤ n and a familyF ⊂ ([n]
k

)
, define the(i, j)-shift Si j as

follows.

Si j (F ) = {Si j (F) : F ∈F},
where

Si j (F) =
{

(F−{ j})∪{i} if i 6∈ F , j ∈ F , (F−{ j})∪{i} 6∈F ,
F otherwise.

A family F ⊂ ([n]
k

)
is called shifted ifSi j (F ) = F for all 1≤ i < j ≤ n. For a

given familyF , one can always obtain a shifted familyF ′ from F by applying
shifting toF repeatedly. Then we have|F ′| = |F | because shifting preserves
the size of the family. It is easy to check that ifF is r-wise t-intersecting then
Si j (F ) is alsor-wise t-intersecting. Therefore ifF is anr-wise t-intersecting
family then we can find a shifted familyF ′ which is alsor-wise t-intersecting
with |F ′|= |F |.

We use the random walk method originated from [3, 4] by Frankl. Let us intro-
duce a partial order in

([n]
k

)
by using shifting. ForF,G∈ ([n]

k

)
, defineF ÂG if G

is obtained by repeating a shifting toF . The following fact follows immediately
from definition.

Fact 1. Let F ⊂ ([n]
k

)
be a shifted family. IfF ∈F andF ÂG, thenG∈F .

ForF ∈ ([n]
k

)
we define the corresponding walk onZ2, denoted bywalk(F), in

the following way. The walk is from(0,0) to (n−k,k) with n steps, and ifi ∈ F
(resp.i 6∈ F) then thei-th step is one unit up (resp. one unit to the right).

Fact 2 ([3]). Let F ⊂ ([n]
k

)
be a shiftedr-wiset-intersecting family. Then for all

F ∈F , walk(F) must touch the lineL : y = (r−1)x+ t.

Proof. We only prove the caser = 3 (but one can prove the general case in ex-
actly the same way). Leti0 = bk−t

2 c, i1 = bk−t−1
2 c and set

G0 = [t−1]∪{t +3i +1 : 0≤ i ≤ i0}∪{t +3i +2 : 0≤ i ≤ i1},
G1 = [t−1]∪{t +3i : 0≤ i ≤ i0}∪{t +3i +2 : 0≤ i ≤ i1},
G2 = [t−1]∪{t +3i : 0≤ i ≤ i0}∪{t +3i +1 : 0≤ i ≤ i1}.

G0

G1

G2

t
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Assume thatG0 ∈F . SinceG0ÂG1ÂG2 we also haveG1,G2 ∈F by Fact 1.
But this is impossible becauseG0∩G1∩G2 = [t−1], which contradicts the 3-
wiset-intersecting property ofF . Thus we must haveG0 6∈F . Note thatG0 is
the “minimal” set (in the shifting order poset) whose corresponding walk does
not touch the lineL : y = 2x+ t.

L

walk(G0)(0, t)

(n−k,k)

Thus if F ∈F andwalk(F) does not touch the line, then we haveF Â G0, and
by Fact 1 we haveG0 ∈F , which is a contradiction. ¤

The next result (Corollary 8 and Theorem 4 in [5]) enables us to upper bound
the number of walks which touch a given line.

Proposition 1. Let p∈ Q, r, t,u,v∈ N be fixed constants and letn,k ∈ N with
p = k

n, p < r−1
r+1 and r ≥ 2. Let α ∈ (p,1) be the unique root of the equation

(1− p)xr−x+ p= 0 and letg(n) be the number of walks from(u,v) to (n−k,k)
which touch the liney = (r−1)(x−u)+v+s. Then for anyε > 0 there exists
n0 such that

g(n)(n−u−v
k−v

) ≤ (1+ ε)αs

holds for alln > n0. Moreover ifu = 0 then we can chooseε = 0.

3. PROOF OFTHEOREM 1

We first prove the theorem fort ≥ 75 in subsection 3.1, where all the basic
ideas are included. Then in subsection 3.2 we improve the lower bound fort
using more detailed casewise analysis.

3.1. Proof for t ≥ 75. Let p ∈ Q with 0 < p≤ pt(= 2√
4t+9−1

) be given. Set

q = 1− p andα = αp = 1
2(

√
1+3p
1−p −1). Note thatα ∈ (p,1) is the root of the

equation(1− p)x3−x+ p = 0.
Let p= k

n and letH ⊂ ([n]
k

)
be a shifted 3-wiset-intersecting family. Then by

Fact 2walk(H) hits the lineL : y = 2x+ t for all H ∈H . Thus by Proposition 1
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(settingu= v= 0, s= t) we have|H | ≤ α t
(n

k

)
. Our goal is to prove that|H |<(n−t

k−t

)
unlessH ∼= F0(n,k,3, t).

For 0≤ i ≤ bk−t
2 c let us define

Gi = {G∈
(

[n]
k

)
: |G∩ [t +3`]| ≥ t +2` first holds at̀ = i}.

In other words,G∈Gi iff walk(G) reaches the lineL at(i, t +2i) for the first time.
SetHi = H ∩Gi . For an infinite setA = {a1,a2, . . .} ⊂ N with a1 < a2 < · · · ,
let us defineFirstk(A) = {a1,a2, . . . ,ak}. Set

T(i) = {i, i +3, i +6, . . .}= {i +3 j : j ≥ 0},
A∗i = [t]∪{t + i +1}∪T(t + i +3)∪T(t + i +4),
B∗i = [t−1]∪{t +1, t +2, t +3}∪T(t + i +4)∪T(t + i +6),

andAi = Firstk(A∗i ), Bi = Firstk(B∗i ). We will use only smalli so thatAi ,Bi ∈([n]
k

)
, and then we haveAi ∈ G0 andBi ∈ G1.

We consider three cases according to the structure ofH . If H is (somewhat)
similar toF0(n,k,3, t) then we compareH with F0(n,k,3, t) and this is Case
2. In Case 3 we compareH with F1(n,k,3, t). If H is neither similar toF0
norF1 then it is less likely thatH has large size, but in this case we do not have
an appropriate comparison object, which makes it difficult to bound the size of
H . We deal with this situation in Case 1, and we will refine the estimation for
this case in the next subsection again.

Case 1.A1 6∈H andB1 6∈H .
Suppose thatH ∈H0. Then after passing the point(0, t), walk(H) goes to(0, t +
1) or (1, t). So we can divideH0 = H

(0,t+1)
0 ∪H

(1,t)
0 according to the next point

to (0, t) in the walk. ForH (0,t+1)
0 we use a trivial bound

|H (0,t+1)
0 | ≤

(
n− (t +1)
k− (t +1)

)
≈ pt+1

(
n
k

)
, (5)

where we denotea≈ b iff limn→∞ a/b = 1. If H ∈H
(1,t)

0 thenwalk(H) must
touch the lineL after passing(1, t). Otherwise we getH Â A1, which means
H 6∈H , a contradiction. Here we used the fact thatA1 is the minimal set (in the
shifting order poset) whose walk does not touch the lineL after passing(1, t).
Thus by Proposition 1 (settingu = 1, v = t, s= 2) we have

|H (1,t)
0 | ≤ (1+ ε)α2

(
n− (t +1)

k− t

)
≈ α2ptq

(
n
k

)
. (6)
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L

walk(A1)

L
walk(B1)

(1, t)

(2, t +2)

Next suppose thatH ∈ H1. Then after passing(1, t + 2), walk(H) goes to

(1, t +3) or (2, t +2). So we can divideH1 = H
(1,t+3)

1 ∪H
(2,t+2)

1 . Noting that
there aret ways of walking from(0,0) to (1, t + 3) which avoid passing(0, t),
we have

|H (1,t+3)
1 | ≤ t

(
n− (t +4)
k− (t +3)

)
≈ t pt+3q

(
n
k

)
. (7)

If H ∈H
(2,t+2)

1 , thenwalk(H) must touchL after passing(2, t +2). Otherwise
we getH Â B1, which meansH 6∈H , a contradiction. Thus by Proposition 1
(settingu = 2, v = t +2, s= 2) we have

|H (2,t+2)
1 | ≤ (1+ ε)tα2

(
n− (t +4)
k− (t +2)

)
≈ (1+ ε)tα2pt+2q2

(
n
k

)
. (8)

Finally we count the number ofH in
⋃

i≥2Hi ⊂
⋃

i≥2Gi . Then we have

|
⋃

i≥2

Hi | ≤ |
⋃

i≥0

Gi |− |G0|− |G1|

≤ α t
(

n
k

)
−

(
n− t
k− t

)
− t

(
n− (t +3)
k− (t +2)

)

≈ (α t − pt − t pt+2q)
(

n
k

)
. (9)

Therefore by (5), (6), (7), (8) and (9) we have

|H |(n
k

) ≤ (1+o(1))(pt+1+α2ptq+t pt+3q+tα2pt+2q2+α t− pt−t pt+2q) (10)

asn→ ∞. On the other hand we have
(n−t

k−t

)≈ pt
(n

k

)
. Consequently it suffices to

show that

pt+1 +α2ptq+ t pt+3q+ tα2pt+2q2 +α t − pt − t pt+2q < pt , (11)
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or equivalently,

(α/p)t − t(1−α2)p2q2 +α2q+ p−2 < 0. (12)

Since the LHS is an increasing function oft, it suffices to show the inequality for
p = pt and this is true fort ≥ 75. In fact we can findγ > 0 such that the LHS of
(12) is less than−γ, or equivalently, the LHS of (11) is less than(1− γ)pt . See
Appendix for more details. Thus by (10) we have

|H | ≤ (1+o(1))(1− γ)pt
(

n
k

)
<

(
n− t
k− t

)

for n > n0(p, t) andt ≥ 75.

Case 2.A1 ∈H .
If [t]⊂H holds for allH ∈H then it follows that|H | ≤ (n−t

k−t

)
and equality holds

iff H ∼= F0(n,k,3, t). Thus we may assume that[t] 6⊂H holds for someH ∈H
and in particular sinceH is shifted we may assume thatD′ = [k+1]−{t} ∈H .

Let i0 = dk+1−t
4 e and set

Ã = [t]∪ (
i0−1⋃

j=0

{t + i0 +3 j +1, t + i0 +3 j +3})∪{t +4i0 + j : j ≥ 1},

C̃ = [t + i0]∪{t + i0 +3 j +2 : 0≤ j ≤ i0−1}∪{t +4i0 + j : j ≥ 1},

and letA′ = Firstk(Ã), C′ = Firstk(C̃).

A′
C′
D′

t i0 3i0

Suppose thatA′ ∈H . ThenA′ ÂC′ implies thatC′ ∈H . Since4i0 + t ≥ k+1
we haveA′ ∩C′ ∩D′ = [t − 1] but this is impossible becauseH is 3-wiset-
intersecting. Thus we haveA′ 6∈H , and sinceAi Â A′ for i ≥ i0 we also have
Ai 6∈H if i ≥ i0.

Now let1≤ i < i0 be such thatAi ∈H butAi+1 6∈H . Let

C∗ = [t + i]∪{t + i +3 j +2 : 0≤ j < i}
∪(

⋃

j≥0

{t +4i +3 j +1, t +4i +3 j +2}),

D∗ = [t−1]∪ [t +1, t +4i]∪ (
⋃

j≥0

{t +4i +3 j +2, t +4i +3 j +3}),

and letC = Firstk(C∗), D = Firstk(D∗).
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Ai

C
D

t i 3i

Then we haveC ∈ H becauseAi ∈ H and Ai Â C. SinceH is 3-wise t-
intersecting andAi ∩C∩D = [t−1] we can conclude thatD 6∈H .

Let H ∈H . First suppose thatwalk(H) does not pass(0, t), i.e.,H ∩ [t] 6= [t].
Thenwalk(H) must go through (at least) one of the points in

P = {(1,0),(1,1), . . . ,(1, t−1)}.
Let (1, j) (0 ≤ j ≤ t − 1) be the first point inP that walk(H) hits. In other
words, we haveH ∩ [ j +1] = [ j]. From the point(1, j), walk(H) must touch the
line L : y = 2(x−1)+ t + 4i, otherwise we getH Â D andD ∈H , which is a
contradiction.

L

walk(D)

(1, j)

(1, t +4i)

(0, t)

We estimate the number of walks from(1, j) to (n−k,k) which touch the lineL.
By Proposition 1 (settingu = 1, v = j, s= t +4i− j) the number is at most

(1+ ε)α t+4i− j
(

n− ( j +1)
k− j

)
.

Therefore the number ofH ∈H such thatH ∩ [t] 6= [t] is at most

(1+ ε)
t−1

∑
j=0

α t+4i− j
(

n− ( j +1)
k− j

)
. (13)

Next suppose thatwalk(H) passes(0, t), i.e., H ∩ [t] = [t]. The number of
corresponding walks is at most

(n−t
k−t

)
, but we need to refine this estimation. Sup-

pose thatwalk(H) passes(i + 1, t). Then from this pointwalk(H) must touch
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the lineL′ : y = 2x+ t−2i, otherwise we getH Â Ai+1 andAi+1 ∈H , which is
a contradiction.

L′

walk(Ai+1)

(i +1, t)

(i +1, t +2)

The trivial upper bound for the number of walks from(i + 1, t) to (n− k,k) is(n−(t+i+1)
k−t

)
, but those walks inH touch the lineL′ and so by Proposition 1

we will get an improved upper bound for the number of walks of this type. To
apply the proposition, it is convenient to neglect the firsti + t + 1 steps of the
walks, in other words, we shift the origin to(i + 1, t), and replacen andk by
n′ = n− (t + i + 1) and k′ = k− t. Then L′ becomesy = 2x+ 2 in the new
coordinates, and by settingu= v= 0 ands= 2, Proposition 1 gives an improved

upper boundα2
p′
(n′

k′
)

wherep′ = k′
n′ ≈ k

n−i andαp′ = 1
2(

√
1+3p′
1−p′ −1). Therefore

the number ofH ∈H such thatH ∩ [t] = [t] is at most
(

n− t
k− t

)
− (1−α2

p′)
(

n′

k′

)
. (14)

We shall show|H |< (n−t
k−t

)
. By (13) and (14) it suffices to prove that

(1+ ε)
t−1

∑
j=0

α t+4i− j
(

n− ( j +1)
k− j

)
− (1−α2

p′)
(

n′

k′

)
< 0,

or equivalently,

t−1

∑
j=0

α t− j
(

n− ( j +1)
k− j

)
<

1−α2
p′

(1+ ε)α4i

(
n′

k′

)
:= f (i). (15)

Claim 1. f (i) is an increasing function ofi.

Proof. To show f (i−1) < f (i), let p′′ = k−t
n−t−(i−1)−1 = k′

n′+1. Then we need to
show

1−α2
p′′

(1+ ε)α4(i−1)

(
n′+1

k′

)
<

1−α2
p′

(1+ ε)α4i

(
n′

k′

)
,
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which is equivalent to

1−α2
p′′

1−α2
p′

<
1

α4

(
n′

k′

)
/

(
n′+1

k′

)
=

1
α4 ·

n′+1−k
n′+1

.

We haven′+1−k
n′+1 = n−k−i

n−t−i ≥ n−k−i0
n−t−i0

≈ (1− 5
4 p)/(1− p

4) and some computation

showsα4 < (1− 5
4 p)/(1− p

4) for p < 0.55. Thus we can chooseδ > 0 so small
that

1+δ <
1

α4 ·
n′+1−k

n′+1

holds forn> n0(δ ) andp< 0.55. On the other hand, since1p′′ =
1
p′ +

1
k′ we have

p′′ ≈ p′ and hence

1−α2
p′′

1−α2
p′

< 1+δ

for n > n1(δ ). ¤
Thus it suffices to show (15) fori = 1. Noting thatp′ ≈ p,

(n−( j+1)
k− j

)≈ p jq
(n

k

)

and
(n−(t+2)

k−t

)≈ ptq2
(n

k

)
, we find that the target inequality is

(α/p)t −1 <
1−α2

α4 q
(
1− (p/α)

)
.

The LHS is an increasing function oft, and for p = pt one can verify that the
inequality is true fort ≥ 8.

Case 3.B1 ∈H .
Let D′ = [k+ 2]−{t + 2, t + 3}. If D′ 6∈H then the shiftedness ofH implies
thatH ⊂F1(n,k,3, t) and we are done. (Recall that we have|F1(n,k,3, t)| <
|F0(n,k,3, t)|= (n−t

k−t

)
for 0 < p≤ pt .) Thus we may assume thatD′ ∈H . Let

i0 = dk−t−1
4 e and set

B̃ = ([t +3]−{t})∪ (
i0−1⋃

j=0

{(t +3+ i0)+3 j +1,(t +3+ i0)+3 j +3})

∪{t +3+4i0 + j : j ≥ 1},
C̃ = ([t +3+ i0]−{t +1})∪{(t +3+ i0)+3 j +2 : 0≤ j ≤ i0−1}

∪{t +3+4i0 + j : j ≥ 1},

and letB′ = Firstk(B̃), C′ = Firstk(C̃).
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B′
C′
D′

t i0 3i03

Suppose thatB′ ∈H . ThenB′ ÂC′ implies thatC′ ∈H . Sincet + 3+ 4i0 ≥
k+2 we haveB′∩C′∩D′ = [t−1], which contradicts the 3-wiset-intersecting
property ofH . Thus we haveB′ 6∈H and alsoBi 6∈H for i ≥ i0.

Now let1≤ i < i0 be such thatBi ∈H butBi+1 6∈H . Let

C∗ = ([t +3+ i]−{t +1})∪{(t +3+ i)+3 j +2 : 0≤ j < i}
∪(

⋃

j≥0

{(t +3+4i)+3 j +1,(t +3+4i)+3 j +2}),

D∗ = ([t +3+4i]−{t +2, t +3})
∪(

⋃

j≥0

{(t +3+4i)+3 j +2,(t +3+4i)+3 j +3}).

and letC = Firstk(C∗), D = Firstk(D∗).

Bi

C
D

t i 3i3

Then we haveC ∈ H becauseBi ∈ H and Bi Â C. SinceH is 3-wise t-
intersecting andBi ∩C∩D = [t−1] we can conclude thatD 6∈H .

Let H ∈H . First suppose thatwalk(H) passes (at least) one of the points in
P = {(2,0),(2,1), . . . ,(2, t + 1)}, i.e., |H ∩ [t + 3]| ≤ t + 1. Let (2, j) (0≤ j ≤
t + 1) be the first point inP that walk(H) hits. From this point,walk(H) must
touch the lineL : y = 2(x−2)+ t +4i +2, otherwise we getH ÂD andD ∈H ,
a contradiction. Thus the number of corresponding walks is at most

( j +1)(1+ ε)α t+4i+2− j
(

n− ( j +2)
k− j

)
,

where j + 1 is the number of walks from(0,0) to (2, j) which do not touch
{(2, `) : 0≤ ` < j}.
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L

walk(D)

(2, j)

(2, t +4i +2)

(0, t +1)

Hence the number ofH ∈H such that|H ∩ [t +3]| ≤ t +1 is at most

(1+ ε)
t+1

∑
j=0

( j +1)α t+4i+2− j
(

n− ( j +2)
k− j

)
. (16)

Next suppose that|H ∩ [t + 3]| ≥ t + 2. Thenwalk(H) passes(0, t + 3) or
(1, t +2). The number of walks which pass(0, t +3) is at most

(
n− (t +3)
k− (t +3)

)
. (17)

The number of walks which pass(1, t + 2) is clearly at most(t + 3)
(n−(t+3)

k−(t+2)

)

and we will improve this estimation. Suppose thatwalk(H) passes(1, t − 1),
(1, t + 2) and (i + 2, t + 2). Then from(i + 2, t + 2), this walk must touch the
line L′ : y = 2(x− (i +2))+ t +4, otherwise we getH Â Bi+1 andBi+1 ∈H , a
contradiction. Thus the number of walks inH which pass(1, t +2) is at most

(t +3)
(

n− (t +3)
k− (t +2)

)
− t

(
1−α2

p′
)(n′

k′

)
, (18)

wheren′ = n− t− i−4, k′ = k− t−2 andp′ = k′
n′ ≈ k

n−i .
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L′

walk(Bi+1)

(i +2, t +2)

(i +2, t +4)

(1, t +2)

We shall show that the sum of (16), (17) and (18) is less than|F1(n,k,3, t)|=
(t +3)

(n−(t+3)
k−(t+2)

)
+

(n−(t+3)
k−(t+3)

)
, which means|H |< |F1|. Our target inequality is

(1+ ε)
t+1

∑
j=0

( j +1)α t+2− j
(

n− ( j +2)
k− j

)
<

t
α4i

(
1−α2

p′
)(n′

k′

)
.

The RHS is an increasing function ofi. (One can show this fact similarly to
the proof of Claim 1.) Thus we show the inequality fori = 1. Consequently it
suffices to show

α4

t(1−α2)q

t+1

∑
j=0

( j +1)(α/p)t+2− j < 1.

Noting thatα/p is an increasing function ofp we find that the LHS is an in-
creasing function ofp. Then with some routine computation one can check that
for p = pt the inequality is true ift ≥ 7.

3.2. Further improvement. In the previous subsection, we proved the theorem
for t ≥ 75 (t ≥ 75 in Case 1,t ≥ 8 in Case 2 andt ≥ 7 in Case 3). Here we will
refine the proof for Case 1, and will prove the theorem fort ≥ 26.

Assume thatA1 6∈H andB1 6∈H . Let

H̃
(0,t+1)

0 = {H− [t +1] : [t +1]⊂ H ∈H },
H̃

(1,t+3)
1 = {H ∩ [t +5,n] : H ∈H

(1,t+3)
1 }.

Case 1a.H̃ (0,t+1)
0 is not 2-wise 1-intersecting.

In this case we haveG,G′ ∈H such thatG∩G′ = [t + 1]. Let H ∈H . Since
H is 3-wiset-intersecting we have|H ∩ [t +1]| ≥ t. Thuswalk(H) hits (0, t +
1) or (1, t), andwalk(H) never hits a point in{(2,0),(2,1), . . . ,(2, t − 1)}. In
particular, ifH ∈ ⋃

i≥2Hi thenwalk(H) reaches the linex = 2 for the first time
only at (2, t) or (2, t + 1). In both caseswalk(H) passes(1, t) and there aret
ways of walking from(0,0) to (1, t) which avoid(0, t).
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(2, t)
(2, t +1)

(0, t)

L

Then after passing(2, t) or (2, t +1), walk(H) must touch the lineL : y = 2x+ t.
Therefore we have

|
⋃

i≥2

Hi | ≤ (1+ ε)
(

tα4
(

n− (t +2)
k− t

)
+ tα3

(
n− (t +3)
k− (t +1)

))

≈ tα3(α + p)ptq2
(

n
k

)
. (19)

By (5), (6), (7), (8) and (19) it suffices to show that

pt+1 +α2ptq+ t pt+3q+ tα2pt+2q2 + tα3(α + p)ptq2 < pt ,

and this is true fort ≥ 8 and0 < p≤ pt .

Case 1b.BothH̃
(0,t+1)

0 andH̃
(1,t+3)

1 are 2-wise 1-intersecting.
In this case we use the (simplest) Erdős–Ko–Rado Theorem to bound the sizes
of H

(0,t+1)
0 andH

(1,t+3)
1 . Then we have

|H (0,t+1)
0 | = |H̃ (0,t+1)

0 | ≤
(

n− (t +1)−1
k− (t +1)−1

)
≈ pt+2

(
n
k

)
, (20)

|H (1,t+3)
1 | = t|H̃ (1,t+3)

1 | ≤ t

(
n− (t +4)−1
k− (t +3)−1

)
≈ t pt+4q

(
n
k

)
. (21)

Therefore by (20), (6), (21), (8) and (9) it suffices to show that

pt+2 +α2ptq+ t pt+4q+ tα2pt+2q2 +α t − pt − t pt+2q < pt ,

and this is true fort ≥ 18and0 < p≤ pt .

Case 1c.H̃ (0,t+1)
0 is 2-wise 1-intersecting andH̃ (1,t+3)

1 is not 2-wise 1-intersecting.

We use (20) to boundH (0,t+1)
0 again. Now we will bound the size of

⋃
i≥2Hi .

SinceH̃ (1,t+3)
1 is not 2-wise 1-intersecting andH is shifted, we haveG,G′ ∈H

such thatG∩G′ = [t +4]−{t}. If F = [k+4]−{t, t +2, t +3, t +4} ∈H then
we also haveF ′ = [k+4]−{t +1, t +2, t +3, t +4} ∈H by shifting. But this
is impossible becauseG∩G′ ∩F ′ = [t − 1]. Thus we must haveF 6∈ H . Let
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H ∈ ⋃
i≥2Hi . Thenwalk(H) never hits a point in{(4,0),(4,1), . . . ,(4, t)}, oth-

erwise we getH Â F ∈ H , a contradiction. In other words,walk(H) passes
(2, t +2) or (3, t +1).

(3, t +1)

(2, t +2)

(0, t)

L

walk(F)

There areu1 =
(t+1

2

)
+ 2

(t
1

)
ways (resp.u2 =

(t+2
3

)
+ 2

(t+1
2

)
+ 3

(t
1

)
ways) of

walking from (0,0) to (2, t + 2) (resp. from(0,0) to (3, t + 1)) which do not
touch the lineL : y = 2x+ t. Then after passing(2, t +2) or (3, t +1), walk(H)
must touch the lineL. Therefore we have

|
⋃

i≥2

Hi | ≤ (1+ ε)
(

u1α2
(

n− (t +4)
k− (t +2)

)
+u2α5

(
n− (t +4)
k− (t +1)

))

≈ (u1p+u2α3q)α2pt+1q2
(

n
k

)
. (22)

Consequently by (20), (6), (7), (8) and (22) it suffices to show that

pt+2 +α2ptq+ t pt+3q+ tα2pt+2q2 +(u1p+u2α3q)α2pt+1q2 < pt ,

and this is true fort ≥ 26and0 < p≤ pt .

4. PROOF OFTHEOREM 2

The proof of Theorem 2 is almost identical to the proof of Theorem 1. The
only difference is that we assume (4) instead of assuming0 < p ≤ pt where
p = k/n.

In Case 1, we can chooseδ > 0 sufficiently small so that (12) holds for0 <
p < pt + δ . If n > n0(t) then we may assume thatk/n < pt + δ . Thus the
remaining part goes through without changes. (We only need to changeγ a little
bit smaller.)

Similarly in Case 2 we can check thatH ⊂ F0(n,k,3, t) or |H | < (n−t
k−t

)
.

Also in Case 3 we can show thatH ⊂ F1(n,k,3, t) or |H | < |F1(n,k,3, t)|.
Case 1a, Case 1b and Case 1c are similar to Case 1, and we omit the details.
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5. APPENDIX

Here we give an outline of proof of (12), namely

f (p, t) = (α/p)t − t(1−α2)p2q2 +α2q+ p−2 < 0

for 0 < p≤ pt , α = 1
2(

√
1+3p
1−p −1) andt ≥ 75. First we check thatf (p, t) is an

increasing function oft. It suffices to show∂ f
∂ t (p, t) > 0, or equivalently,

(α/p)t >
(1−α2)p2q2

log(α/p)
.

In fact, one can show (with some computation) that the RHS is at most 1, while
the LHS is clearly more than 1 becauseα > p.

Now we assume thatp = pt . Settingt = 1
x2 , the Taylor expansion off (p, t) at

x = 0 gives

f (p, t) =−3+e+2x+
(
6− e

2

)
x2− (15

4
+e

)
x3− (

17− 47e
24

)
x4 +Rx5,

wheree= exp(1) and0≤ R≤ 26 for 0 < x < 0.116. Thus we havef (p, t) < 0
if 0 < x < 0.1156, i.e., t = 1

x2 ≥ 74.83, moreover we havef (p, t) < −γ for γ =
0.0004andt ≥ 75.

The inequalities in the other cases can be proved similarly, and we omit the
technical details.
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