THE MAXIMUM SIZE OF 4-WISE 2-INTERSECTING AND
4-WISE 2-UNION FAMILIES

NORIHIDE TOKUSHIGE

ABsTRACT. Let .# be ann-uniform hypergraph or2n ver-
tices. Suppose th#fF; NFNFNF| > 2and|FURURU
F4| <n—2holds for allF, F,, F3,F4 € .%. We prove that the

size of.Z is at most(¥'.}) for n sufficiently large.

1. INTRODUCTION

A family .7 c 2% is calledr-wiset-intersecting if Fy N - --NF | >t holds
forallF,...,F € .Z. Afamily % C 2% is calledr-wiset-union if |[F{U- - -U
Fr| <|X|—t holds for allF,...,F € .%#. The Erdds—Ko—Rado theorem[2]
states that ifi > 2k and.# C ([E]) is 2-wise 1-intersecting thei# | < (7 7).
By considering the complement, the theorem can be restated as follows: if
n<2kand.Z C () is 2-wise 1-union thenZ| < (”;1). Now what is the
maximum size of a family? c ([E]) that isr-wise 1-intersecting and at the
same timeg-wise 1-union? The case= q = 2 is quite easy. In fact, it
follows from the Erds—Ko—Rado theorem that

) if n<2k
(Zl<q (W)= i n=2k
(*1) if n>2k

But the case > 3 or q> 3is not so easy and we do not know the complete
answer yet. The first result in this direction was obtained by Gronau[7] who
solved the case > 6 andqg > 6 completely. Then Engel and Gronau[1]
settled the case> 4 andqg > 4 as follows.

Theorem 1. Letr > 4, q> 4 and.# C ([E}). Suppose thatz is r-wise
1-intersecting and-wisel-union, and

n—1 r—1

Ty tisks -,

Then we haveZ | < (7_2).
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The case = 3 or g = 3is more difficult and still open. As a special case
the following was proved in [6].

Theorem 2. Let.# C ([2”}) be a3-wisel-intersecting an@-wise 1-union

family. Then we haveZ | < (*2). Equality holds iff# = {F ¢ (2n Uy
l1eF}.

In this note we consider thé-wise 2-intersecting andl-wise 2-union
case, and our main result is the following.

Theorem 3. Let.¥% C ([2”}) be a4-wise2-intersecting and-wise2-union
family with n sufficiently large. Then we haye? | < (2” 4) Equality holds

iff 7 ={F e (*,%):[2 cF}.

Itis most likely that the same conclusion holds for the 3-wise 2-intersecting
and 3-wise 2-union case, but it seems to be much harder to prove.

We use the random walk method originated from [4] by Frankl. For
Ac ([’k‘}) we define the corresponding walk @3, denoted bywalk(A), in
the following way. The walk is front0, 0) to (n— k, k) with n steps, and if
i € A(resp.i ¢ A) then we move one unit up (resp. one unit to the right) at
thei-th step. Among(};) walks corresponding ta@[ﬂ}), how many of them
touch a given line? The next result gives an upper bound of this number,
which is one of the main tools to prove Theorem 3.

Theorem 4. Letp € Q, r,t € N be fixed constants with> 2 andp < r+1,

and letn andk be positive integers with = ﬁ Leta € (p,1) be the unique
root of the equatioril — p)xX' —x+ p = 0 and letf(n) be the number of
walks from (0,0) to (n—k,k) which touch the lineL :y = (r — 1)x+t.

Then we have
n
< t
f(n)<a (k)

If p= & > = then all walks touch the line, i.ef(n) = (}). The author
conjectures that the conclusion of Theorem 4 still holdspfer == L

for n sufficiently large.

2. TooLs

In this section we summarize some tools for the proof of Theorem 3. For
integersl <i < j <nand a family.Z c 2, define the(i, j)-shift §; as
follows.

Si(7)=1{Sj(F):F e 7},
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where

(7= { E-UDUI H12P P E- (U7,

F otherwise.

A family .# c 21" is called shifted ifSj(.#) = .Z forall 1<i < j <n.
For a given family.%, one can always obtain a shifted fami§’ from .7
by applying shifting to# repeatedly. Then we haye#’| = |.#| because
shifting keeps the size of the family. It is easy to check that ifs r-wiset-
intersecting (respg-wises-union) thenS; (.#) is alsor-wiset-intersecting
(resp. g-wise s-union). Therefore if# is anr-wiset-intersecting andj-
wise s-union family then we can find a shifted familf’ which isr-wise
t-intersecting andr-wise s-union and.#'| = |.7|.

Next we explain how to connect Theorem 4 to bound the sizevaike
t-intersecting families. Let us begin with a toy example. Supposefhat
(*4) is a shifted 4-wise 2-intersecting family. We are going to show that
Fo:={1,3,4,5,7,8,9} ¢ .%. Suppose on the contrary thiaf € .%. Then
by shifting Ry, we obtainF, H, R € .7

Fo:={1,%,3,4,5,%,7,8,9},

Fi.= {1,2,*,4,5,6,*,8,9},

F2 = {172737*7576777*>9}1

F3 = {17273747*7677787*}1
where *” means visible blank space. But this is impossible bec&gse
F1 NN Fs = {1}, which contradicts the 4-wise 2-intersecting property.
This proves thaky ¢ .%. The following picture shows walk).

y=3X42 /

/ walk(F

Note that walkp) is the “maximal” walk which does not touch the line
L :y=3x+2. In other words, if walk@), G (%), does not touch then
we can obtairFy from G by shifting (a sequence of shiftings). Singéis
shifted we havé ¢ .%. Equivalently, ifF € .# then walk{) must touchL.
For the general case, i.e., a shiftediset-intersecting family.# c ([E]),
we consider the ling = (r — 1)x+t andFy, Fy, ..., R, whereF consists of
the firstk elements ofn] — {t +i,t +r+i,t +2r +i,...}. Then we have the
following.



4 NORIHIDE TOKUSHIGE

Fact 5([4]) Let.F C (l l) be a shifted -wiset-intersecting family. Then
for all F € ., walk({F ) must touch the link; :y = (r — 1)x+t.

Fact 5 and Theorem 4 gives| < a'(}) if ¥ < L=} andnis sufficiently
large.

If # C ([”]) Is a shiftedg-wise s-union family then the complement fam-
ily #¢={ln-F:Fc.Z}C (n@k) is a shifted (in the reverse direction)
g-wise s-intersecting family. Changing the coordinate systemx’by k —y

andy = (n—Kk) — x, one obtains from Fact 5 that walks corresponding to
ZCtouch the liney = (q— 1)X +s. Namely we have the following.

Fact 6. Let F C ([”]) be a shiftedy-wise s—union family. Then for all
F € #, walk(F) must touch the liné, .y = (x n+k+s)+k.

If # c () is a shiftedr-wiset-intersecting andi-wise s-union family
then the corresponding walks of the family touch the both linels;adind
L». In this situation, we can use the following result which is deduced from
Theorem 4 by setting = 3.

Corollary 7. Letq,r,s,t € N be fixed constants with > 4 andr > 4. Let
aj € (3,1) be the unique root of the equatigm) —x+ 2 = 0. Leth(n)
be the number of walks frortD,0) to (n,n) which touch both of the lines
Li:y=(r—21)x+tandLy:y= il(x n+s)+n. Then for anye > 0
there exists\ such that

< (1+¢)arag

holds for alln > ng.

One can not removefrom the above inequality. (Numerical experiments
suggest thah(n)/(3") > a;ag always holds.) In our application, we also
need a slight modification of Theorem 4 and Corollary 7 stated below.

Corollary 8. Letpe Q,r,t,u,ve N be fixed constants with> 2 andp <
- +1, and letn andk be positive integers with = ". Leta € (p,1) be the
unique root of the equatiol — p)xX' —x+p=0 and leg(n) be the number

of walks from(0,0) to (n—k— u,k—Vv) which touch the ling = (r — 1)x+t.
Then for anye > 0 there exist$y such that
g(n)
n—u—v
( k—v )

holds for alln > ng. Moreover ifu = 0 then we can choose= 0.

<(1+¢)dt
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Corollary 9. Letq,r,s,t,u,ve N be fixed constants with> 4, r > 4 and
t+(r—1u—v>0. Letaje (3,1) be the unique root of the equation
3x) —x+ 3 = 0. Letm(n) be the number of walks froffu, v) to (n,n) which
touch both of the lineky :y = (r — )x+t andLy 1y = gty (X—Nn+8) +n.
Then for anye > 0 there exist$\ such that

m(n)

G

S (1+£)a;+(r—1)u—va3

holds for alln > ng.

Finally we list the following Eréds—Ko—Rado type results for multiply
intersecting families which we will use to prove Theorem 3.
Theorem 10.[3] If . C (“k‘}) is r-wise 1-intersecting andr — 1)n > rk
then|.Z| < (1-2). If r > 3 then equality holds ift7 = {F € () : 1 F}.

The equivalent complement version is the following:4f C ([E]) iS -
wise 1-union andrk > nthen|.Z| < (", 1).

Theorem 11.[5] Let .F C ([E}) be a3-wise 2-intersecting family with

k/n < 0.501, n sufficiently large. Then we have?| < (}-5), and equality
holds iff 7 = {F € (") : [2] c F}.

3. PROOF OFTHEOREM4

Let| := {0, 1,...,LHJ} and fori € | let g be the number of walks of
lengthri +t from (0,0) to (i, (r — 1)i +t) which touch the line. only at
(i,(r —1)i+t). Then we have

n—ri—t

f(m‘ga‘(k—(r—l)i—t)‘ @)

We also use the following fact (cf. (7) and Fact 3 in [8]):

A(r=Li+tq i oo Ar=Di+tq i At
aip (1-p'<) ap (1-p'=a. )
2 2,
Comparing (1) and (2) it suffices to show that

n—ri—t n , :

< pr=Ditt(1 _ )i
(k—(r—l)i—t>/(k> <p (1-p) 3)

holds for alli 1.

Claim 12. Let S(t) := (k_rz?iiﬁf_t) /pt. ThenS(t) is a decreasing function
oft.
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Proof. SinceS(t+1) = (, 1"t ) /P = S SIS it suffices to

ShOW n ri t
K—(r—21)i—-t nk—(r—121)i—t)

1> p(n—ri—t)  k(n—ri—t) ~’
or equivalently,
(r—=21i+t Kk
—_— > —,
r+t n

This is certainly true because
r=2)i+t r—1_ r—-1_Kk
>

. > >-—. O
r+t r r<1 n

Due to the claim, it suffices to show (3) foe= 1, that is,

<k_n(r_ii1_)i1_ 1)/(2) <p Va1 p) for iel.

The LHS of the above inequality is rewritten aﬂij:%T(j) where
j—€+1

L. h—k—j
T0) = —I‘j—lﬂ n—rj—~¢

Thus we have to show

i—1 )
]_LT(i) < (P H1-p). ()
=

Claim 13. We haveT (j) > T(j+1) for0<j<i—2.
Proof. Comparing
—(+1 n—k—j Zk—(r—1)j—¢+1

Th)= n—rlj_—-lﬂ —rj— —rj—rJ:L n—rj—0(+1

and

: B +1)—(+1
T+ =0 +1 1J_L P A
it suffices to show the following inequalities:
n—k—j n—k—(j+1)
. > .
n—rj—r n—r(j+1) -1

(5)

and, for2</¢<r,
K= (r=D)j—l+1_ K=(r=1)(j+1)—¢+1

n—rj—¢+1 n—r(j+1)—¢ ©




THE MAXIMUM SIZE OF 4-WISE 2-INTERSECTING AND 4-WISE 2-UNION FAMILIES 7

The inequality (5) is equivalent tp < 7= — 1, which follows from our

assumptiorj <i—2< L%J — 2. Sincek = pn, inequality (6) is equivalent
to
(r—l p(r+1))n+(r—1)j+2(¢(—1)>0.

Sincep < & = 11 the coefficient oh in the LHS is positive and so the above
inequality cIearIy holds. O

By the claim we haveﬂij;%T(j) < T(0)'. Thus to prove (4) it suffices to
showT (0) < p'~1(1— p) or equivalently,

P i2-p)(n=1)---(n—r)—(pn—1)---(pn—r+1)(n—pn) >0

The LHS can be rewritten as

%rpr_z(l— p)(r —1— (r+ )pn L4+ O(n2).

Sincep < the coefficient off ~1 is positive and we are done.

r+1’
4. PROOF OFCOROLLARY 7
Let € > 0 be given. We choosé,, &, > 0 so that

&1 < (¢/2)arag, (7
(1+&)? < 1+ (g/2). (8)
LetKn:={keN: k- D| < ¢y/n} where we choose > 0 so that
. (®)? o
lim ex 4x2)dx>1— —.
n—>ook€ZK (2n \/_ q 2

(The first equality foIIows from the de Moivre—Laplace limit Theorem. In
fact one hag) ) /(3 = f exp(—4x?+0o(1)) by settingx= (k—3)/y/n.)
Then we can choosg € N so that
2
()

; o < 01 9)
k Kn (n)
holds for alln > n;.

ForO<p<1lletaj(p) € (p,1) be the unique root of the equati¢h—
p)x! —x+ p=0. Thena;(p) is a continuous function g at p=1/2, and
aj(1/2) = aj. Therefore we can choo$g > 0 so that

o (p)' < (1+&)ay, ag(p)®< (1+&)ag (10)
holds for all p with |p— §| < &3. Choosen, € N so thatﬁ < &3, and let

no := max{ny,ny}. Finally we choosea sufficiently large, i.e.n > ng.
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Now we consider a walk fronf0,0) to (n,n). After n/2 steps this walk
arrives at the linex<+y = n. Roughly speaking, a typical walk arrives at a
point near the center;, 5). More precisely we are interested in the walks
which go through the center zodén —k k) : k € Ky} and touch the lines
L1 andL, both. We will estimate the number of those walks by using The-
orem 4. The number of walks outside the center zone is so small that we do
not need a serious estimation for this type of walks.

Letk € Kn andp = k/n. Then we havep — %| < &3, which guarantees

(10). Also, since >4 andd; is small we may assume tha 5+ 83 < .
Thus by Theorem 4 and (10) the number of walks fr@0) to (n—k,k)
which touch the lind.1 is at mosto; (p)* () < (1+ &) af (i) -

Next we consider the walks froifm — k, k) to (n,n) which touch the line
L,. Changing the coordinate system Xy=n—y andy = n—x, we find
that the number of these walks is equal to the number of walks {0)
to (k,n— k) which touch the lineg/ = (q— 1)X' + s, and this number is at
most(1+ &)ag(y) if k€ K.

Therefore we have

n

< 3 @+ aal () @ a(y) "3 (E)Z (1)

keKn

Dividing the both sides by?"), and usings}_, (1) = (*") and (9), we
have

h(n)/ (Znn) < (1+ &)°ajag+ &1

By (7) and (8) the RHS is less thah+ €)afag.

5. PROOF OFCOROLLARY 8

Let € > O be given. Leta(w) € (w,1) be the unique root of the equation
(1-w)X —x+w= 0. Choosen andk with p= X and set’ :=n—u-v,
K:=k—vandp := % Then by Theorem 4 we have

n/

th)/(fp) < oo

We also havey — p asn — . Sincea(w) is a continuous function it
follows thata (p') — a(p) = a asn — . Thus we can choos®g such that
a(p)t < (1+¢)at holds for alln > ng. Then we have

g(n) . f(n/) < a(p/)t < (1_|_£)at.

(Gram I (I
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Moreover ifu = 0 then we havgy = k¥ <

n-v
creasing function, we hawe(p’) < a(p) an

p. Sincea(w) is an in-
Pt <at.

6. PROOF OFCOROLLARY 9

The proof is almost identical to the proof of Corollary 7. The only dif-
ference is that we consider walks,v) — (n—k k) — (n,n) in this case
instead of(0,0) — (n—k,k) — (n,n). For the partu,v) — (n—k,k) we
apply Corollary 8. To do so, we translate the walks(by, —v), in other
words, we consider walks frotf0, 0) to (n— k — u,k — v) with (translated)
new liney = (r —1)(x+u)+t—v=(r —1)x+t+(r —1)u—v. (We need
t+ (r—1)u—v> 0 here.) The number of walks which touch this line is
at most(1+¢')ay (p)t+r-Hu=v(" U V). So we have to change the first in-
equality in (10) by(1+ &)ar ()= < (1+ &)t TV, Then
inequality (11) is replaced by the following:

mi< 3 (1 el VGS(nE:V> (E)n; (n:;V> (D

We omit the remaining details which can be checked by routine calculation.

7. PROOF OFTHEOREM 3

Let .7 C ([Zn”]) be a 4-wise 2-intersecting and 4-wise 2-union family.
Suppose that# is not 3-wise 3-union. Then there exisiB,C € .# such
that AUBUC| = 2n—2, say,AUBUC = [2n—2]. Since.Z is 4-wise 2-
union, we haveZ c ([2”;2]). On the other hand? is 4-wise 2-intersecting

(and so 3-wise 2-intersecting). Then by Theorem 11 we h#&je< (")

and equality holds iff# = {F ¢ (- 2]) [2] € F}. This means that the
theorem is true if# is not 3-wise 3-union. Considering the complement,
the theorem is also true i# is not 3-wise 3-intersecting. Therefore from
now on we assume that

Z is 3-wise 3-intersecting and 3-wise 3-union.
We also assume thaf is shifted. Now suppose that

712 (37]) (12

and we shall prove that there is no su¢h

Recall that forA € (") we definewalk(A) on Z2 in the following way.
The walk is from(0, 0) to (n,n) with 2n steps, and if € A (resp.i € A) then
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we move one unit up (resp. one unit to the right) at itle step. Let us
define

o ={A¢c ([Zn”]) : |AN[2+4¢)| > 2+ 3¢ first holds at? =i},

A={Ae (V) : AN [2n—4¢ - 1,2n]| < ¢first holds at! = j}.
(Here we say a properfy(¢) first holds at’ =i if P(¢) does not hold fod <
¢ <ibutP(i) holds.) IfA € 4 then, after starting from the origimalk(A)
touches the lingy : y = 3x+2at(i, 3i +2) for the first time. IfA € </ then
walk(A) touches the lineé,:y = %(x— (n—2))+nat(n—3j—2,n—j) and
after passing this point this walk never touches the line again. By Fact 5 and

Fact 6 every walk corresponding to a membegofouches botlv; andL,.
Thus we have? C U, j(#4 N }). Setd = o N,
Fi=dANF, Fr=dnNF, Fi=HinZ,
and
G={FN[4i+32n-4j-2|:F € Fj}.

SinceZ 4y is 3-wise 3-intersecting/oy C (#2752

and it follows from Theorem 10 that

2n—5
1o =1ol < (5 ) (13)

) is 3-wise 1-intersecting,

Claim 14. %5 c (I"2"-2) js 3-wisel-intersecting.

Proof. Suppose on the contrary that there edsB,C € ¥,5 such thatAn
BNC =0. If F ¢ #y5thenF N[6] = {1,3,4,5,6} or {2,3,4,5,6}. By the
shiftedness we may assume that the following three sub&d&sC’ belong
to %

A :={1,3,4,5,6} UA B :={1,2,4,56} UB,C’ := {1,2,3,5,6} UC.

If there existsF € 7 such thatF N [6]| < 4 then using the shiftedness
we may assume th& N [6] C [4]. But this is impossible becaugén B’ N
C'NF = {1}, contradicting the 4-wise 2-intersecting property. So we may
assume thaf N [6]| > 5 holds for allF € .#.

ForSc [6] let.#(S) :={F € .# : FN[6] = S}. We consider the casg§ =
5,6 and the corresponding walks clearly touch the linen the beginning.

If |§ =5 then the corresponding walks frofd,5) to (n,n) must touch
Lo, or equivalently we have to count the number of walks fr@0) to
(n—5,n—1) which touchL;. (Here we change the coordinate system by
X =n—yandy =n-x.) Then by Corollary 8(=4,t =2,u=5,v=1)

we have

>(2n—6
Se%g]) .7 (S)| <6(1+¢€)a (n—l)’
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wherea =~ 0.543689is the root of the equatiox —2x+1 = 0. If S= [6]

then the corresponding walk frof®,6) to (n,n) must touchL,, and we
count the number of walks frorf0, 0) to (n— 6,n) which touchL;. Again
by Corollary 8 ( =4,t =2,u=6,v=0) we have

2 (6)] < <1+s>a2(2”n‘ 6).

Consequently, for sufficiently large we have
|-7 | 1+¢

2, 2
(2n74) < (6a“+a )T < 0.52,
n—2
which contradicts (12). O
By Claim 14 and Theorem 10 we have
2n—-9
7l <2l <2( ). (14)
By considering the complement we also have
2n—9
Forl <2 . 15
[ Fo1l < <n—6) (15)

Let S, denote the summation over alj > 0 excepfi, j) = (0,0),(1,0),(0,1).
Then we have

[ Z1= 3 |Zijl = Fool + | Fol + | Fotl + Y [Ffl,
i,]>0 *

and
SIZA<T A< S 1o — {| gl + 5] + | il
* * i,]>0

2

Since|ag| = (2-5) and|.o5| = | 1] = 2(32), Corollary 7 implies that

n

2n 2n—4 2n—8
o T 4 p—
Z|ﬂ;ﬂ<(1+£)a (n) {(n—2)+4(n—5)}' (16)
Finally using (13), (14), (15) and (16), we have
[ Z| < | Fool +|F 0l + [ Forl + ) |94j

(Zn”_‘s?) +4(2n”_‘:) e 8)a4<2nn)
(7))

2n—4
0.78
(n2):
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for n sufficiently large, which contradicts (12). This completes the proof of
Theorem 3.
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