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ABSTRACT. Let F be ann-uniform hypergraph on2n ver-
tices. Suppose that|F1∩F2∩F3∩F4| ≥ 2 and|F1∪F2∪F3∪
F4| ≤ n−2 holds for allF1,F2,F3,F4∈F . We prove that the
size ofF is at most

(2n−4
n−2

)
for n sufficiently large.

1. INTRODUCTION

A family F ⊂ 2X is calledr-wiset-intersecting if|F1∩·· ·∩Fr | ≥ t holds
for all F1, . . . ,Fr ∈F . A family F ⊂ 2X is calledr-wiset-union if |F1∪·· ·∪
Fr | ≤ |X|− t holds for allF1, . . . ,Fr ∈F . The Erd̋os–Ko–Rado theorem[2]
states that ifn≥ 2k andF ⊂ ([n]

k

)
is 2-wise 1-intersecting then|F | ≤ (n−1

k−1

)
.

By considering the complement, the theorem can be restated as follows: if
n≤ 2k andF ⊂ (n

k

)
is 2-wise 1-union then|F | ≤ (n−1

k

)
. Now what is the

maximum size of a familyF ⊂ ([n]
k

)
that isr-wise 1-intersecting and at the

same timeq-wise 1-union? The caser = q = 2 is quite easy. In fact, it
follows from the Erd̋os–Ko–Rado theorem that

|F | ≤





(n−1
k

)
if n < 2k(n−1

k

)
=

(n−1
k−1

)
if n = 2k(n−1

k−1

)
if n > 2k.

But the caser ≥ 3 or q≥ 3 is not so easy and we do not know the complete
answer yet. The first result in this direction was obtained by Gronau[7] who
solved the caser ≥ 6 andq≥ 6 completely. Then Engel and Gronau[1]
settled the caser ≥ 4 andq≥ 4 as follows.

Theorem 1. Let r ≥ 4, q≥ 4 andF ⊂ ([n]
k

)
. Suppose thatF is r-wise

1-intersecting andq-wise1-union, and

n−1
q

+1≤ k≤ r−1
r

(n−1).

Then we have|F | ≤ (n−2
k−1

)
.

1
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The caser = 3 or q = 3 is more difficult and still open. As a special case
the following was proved in [6].

Theorem 2. Let F ⊂ ([2n]
n

)
be a3-wise1-intersecting and3-wise1-union

family. Then we have|F | ≤ (2n−2
n−1

)
. Equality holds iffF ∼= {F ∈ ([2n−1]

n

)
:

1∈ F}.
In this note we consider the4-wise 2-intersecting and4-wise 2-union

case, and our main result is the following.

Theorem 3. Let F ⊂ ([2n]
n

)
be a4-wise2-intersecting and4-wise2-union

family with n sufficiently large. Then we have|F | ≤ (2n−4
n−2

)
. Equality holds

iff F ∼= {F ∈ ([2n−2]
n

)
: [2]⊂ F}.

It is most likely that the same conclusion holds for the 3-wise 2-intersecting
and 3-wise 2-union case, but it seems to be much harder to prove.

We use the random walk method originated from [4] by Frankl. For
A∈ ([n]

k

)
we define the corresponding walk onZ2, denoted bywalk(A), in

the following way. The walk is from(0,0) to (n−k,k) with n steps, and if
i ∈ A (resp.i 6∈ A) then we move one unit up (resp. one unit to the right) at
the i-th step. Among

(n
k

)
walks corresponding to

([n]
k

)
, how many of them

touch a given line? The next result gives an upper bound of this number,
which is one of the main tools to prove Theorem 3.

Theorem 4. Let p∈Q, r, t ∈ N be fixed constants withr ≥ 2 andp < r−1
r+1,

and letn andk be positive integers withp= k
n. Let α ∈ (p,1) be the unique

root of the equation(1− p)xr − x+ p = 0 and let f (n) be the number of
walks from (0,0) to (n− k,k) which touch the lineL : y = (r − 1)x+ t.
Then we have

f (n)≤ α t
(

n
k

)

for n sufficiently large.

If p = k
n > r−1

r then all walks touch the line, i.e.,f (n) =
(n

k

)
. The author

conjectures that the conclusion of Theorem 4 still holds forp < r−1
r .

2. TOOLS

In this section we summarize some tools for the proof of Theorem 3. For
integers1≤ i < j ≤ n and a familyF ⊂ 2[n], define the(i, j)-shift Si j as
follows.

Si j (F ) := {Si j (F) : F ∈F},
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where

Si j (F) :=
{

(F−{ j})∪{i} if i 6∈ F , j ∈ F , (F−{ j})∪{i} 6∈F ,
F otherwise.

A family F ⊂ 2[n] is called shifted ifSi j (F ) = F for all 1≤ i < j ≤ n.
For a given familyF , one can always obtain a shifted familyF ′ from F
by applying shifting toF repeatedly. Then we have|F ′| = |F | because
shifting keeps the size of the family. It is easy to check that ifF is r-wiset-
intersecting (resp.q-wises-union) thenSi j (F ) is alsor-wiset-intersecting
(resp. q-wise s-union). Therefore ifF is an r-wise t-intersecting andq-
wise s-union family then we can find a shifted familyF ′ which is r-wise
t-intersecting andq-wises-union and|F ′|= |F |.

Next we explain how to connect Theorem 4 to bound the size ofr-wise
t-intersecting families. Let us begin with a toy example. Suppose thatF ⊂([14]

7

)
is a shifted 4-wise 2-intersecting family. We are going to show that

F0 := {1,3,4,5,7,8,9} 6∈F . Suppose on the contrary thatF0 ∈F . Then
by shiftingF0, we obtainF1,F2,F3 ∈F :

F0 := {1,∗,3,4,5,∗,7,8,9},
F1 := {1,2,∗,4,5,6,∗,8,9},
F2 := {1,2,3,∗,5,6,7,∗,9},
F3 := {1,2,3,4,∗,6,7,8,∗},

where “* ” means visible blank space. But this is impossible becauseF0∩
F1∩F2∩ F3 = {1}, which contradicts the 4-wise 2-intersecting property.
This proves thatF0 6∈F . The following picture shows walk(F0).

walk(F0)

y = 3x+2

Note that walk(F0) is the “maximal” walk which does not touch the line
L : y = 3x+2. In other words, if walk(G), G∈ ([14]

7

)
, does not touchL then

we can obtainF0 from G by shifting (a sequence of shiftings). SinceF is
shifted we haveG 6∈F . Equivalently, ifF ∈F then walk(F) must touchL.
For the general case, i.e., a shiftedr-wise t-intersecting familyF ⊂ ([n]

k

)
,

we consider the liney = (r−1)x+ t andF0,F1, . . . ,Fr , whereFi consists of
the firstk elements of[n]−{t + i, t + r + i, t +2r + i, . . .}. Then we have the
following.
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Fact 5 ([4]). Let F ⊂ ([n]
k

)
be a shiftedr-wise t-intersecting family. Then

for all F ∈F , walk(F) must touch the lineL1 : y = (r−1)x+ t.

Fact 5 and Theorem 4 gives|F | ≤ α t
(n

k

)
if k

n < r−1
r+1 andn is sufficiently

large.
If F ⊂ ([n]

k

)
is a shiftedq-wises-union family then the complement fam-

ily F c = {[n]−F : F ∈F} ⊂ ( [n]
n−k

)
is a shifted (in the reverse direction)

q-wises-intersecting family. Changing the coordinate system byx′ = k−y
andy′ = (n− k)− x, one obtains from Fact 5 that walks corresponding to
F c touch the liney′ = (q−1)x′+s. Namely we have the following.

Fact 6. Let F ⊂ ([n]
k

)
be a shiftedq-wise s-union family. Then for all

F ∈F , walk(F) must touch the lineL2 : y = 1
q−1(x−n+k+s)+k.

If F ⊂ ([2n]
n

)
is a shiftedr-wiset-intersecting andq-wises-union family

then the corresponding walks of the family touch the both lines ofL1 and
L2. In this situation, we can use the following result which is deduced from
Theorem 4 by settingp = 1

2.

Corollary 7. Let q, r,s, t ∈ N be fixed constants withq≥ 4 andr ≥ 4. Let
α j ∈ (1

2,1) be the unique root of the equation12x j − x+ 1
2 = 0. Let h(n)

be the number of walks from(0,0) to (n,n) which touch both of the lines
L1 : y = (r −1)x+ t andL2 : y = 1

q−1(x−n+ s)+ n. Then for anyε > 0
there existsn0 such that

h(n)(2n
n

) ≤ (1+ ε)α t
r αs

q

holds for alln > n0.

One can not removeε from the above inequality. (Numerical experiments
suggest thath(n)/

(2n
n

) ≥ α t
r αs

q always holds.) In our application, we also
need a slight modification of Theorem 4 and Corollary 7 stated below.

Corollary 8. Let p∈Q, r, t,u,v∈ N be fixed constants withr ≥ 2 andp <
r−1
r+1, and letn andk be positive integers withp = k

n. Let α ∈ (p,1) be the
unique root of the equation(1− p)xr−x+ p= 0 and letg(n) be the number
of walks from(0,0) to (n−k−u,k−v) which touch the liney= (r−1)x+t.
Then for anyε > 0 there existsn0 such that

g(n)(n−u−v
k−v

) ≤ (1+ ε)α t

holds for alln > n0. Moreover ifu = 0 then we can chooseε = 0.
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Corollary 9. Let q, r,s, t,u,v∈ N be fixed constants withq≥ 4, r ≥ 4 and
t + (r − 1)u− v > 0. Let α j ∈ (1

2,1) be the unique root of the equation
1
2x j−x+ 1

2 = 0. Letm(n) be the number of walks from(u,v) to (n,n) which
touch both of the linesL1 : y = (r−1)x+ t andL2 : y = 1

q−1(x−n+s)+n.
Then for anyε > 0 there existsn0 such that

m(n)(2n−u−v
n−v

) ≤ (1+ ε)α t+(r−1)u−v
r αs

q

holds for alln > n0.

Finally we list the following Erd̋os–Ko–Rado type results for multiply
intersecting families which we will use to prove Theorem 3.

Theorem 10. [3] If F ⊂ ([n]
k

)
is r-wise 1-intersecting and(r − 1)n≥ rk

then|F | ≤ (n−1
k−1

)
. If r ≥ 3 then equality holds iffF ∼= {F ∈ ([n]

k

)
: 1∈ F}.

The equivalent complement version is the following: IfF ⊂ ([n]
k

)
is r-

wise1-union andrk ≥ n then|F | ≤ (n−1
k

)
.

Theorem 11. [5] Let F ⊂ ([n]
k

)
be a 3-wise 2-intersecting family with

k/n≤ 0.501, n sufficiently large. Then we have|F | ≤ (n−2
k−2

)
, and equality

holds iff F ∼= {F ∈ ([2n]
n

)
: [2]⊂ F}.

3. PROOF OFTHEOREM 4

Let I := {0,1, . . . ,b k−t
r−1c} and for i ∈ I let ai be the number of walks of

length ri + t from (0,0) to (i,(r − 1)i + t) which touch the lineL only at
(i,(r−1)i + t). Then we have

f (n) = ∑
i∈I

ai

(
n− ri − t

k− (r−1)i− t

)
. (1)

We also use the following fact (cf. (7) and Fact 3 in [8]):

∑
i∈I

ai p
(r−1)i+t(1− p)i ≤

∞

∑
i=0

ai p
(r−1)i+t(1− p)i = α t . (2)

Comparing (1) and (2) it suffices to show that(
n− ri − t

k− (r−1)i− t

)
/

(
n
k

)
≤ p(r−1)i+t(1− p)i (3)

holds for alli ∈ I .

Claim 12. Let S(t) :=
( n−ri−t

k−(r−1)i−t

)
/pt . ThenS(t) is a decreasing function

of t.
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Proof. SinceS(t +1) =
( n−ri−t−1

k−(r−1)i−t−1

)
/pt+1 = S(t)k−(r−1)i−t

p(n−ri−t) , it suffices to
show

1 >
k− (r−1)i− t
p(n− ri − t)

=
n(k− (r−1)i− t)

k(n− ri − t)
,

or equivalently,
(r−1)i + t

ri + t
>

k
n
.

This is certainly true because

(r−1)i + t
ri + t

>
r−1

r
>

r−1
r +1

>
k
n
. ¤

Due to the claim, it suffices to show (3) fort = 1, that is,(
n− ri −1

k− (r−1)i−1

)
/

(
n
k

)
≤ p(r−1)i+1(1− p)i for i ∈ I .

The LHS of the above inequality is rewritten asp∏i−1
j=0T( j) where

T( j) :=
n−k− j
n− r j −1

r

∏̀
=2

k− (r−1) j− `+1
n− r j − `

.

Thus we have to show
i−1

∏
j=0

T( j)≤ (pr−1(1− p))i . (4)

Claim 13. We haveT( j) > T( j +1) for 0≤ j ≤ i−2.

Proof. Comparing

T( j)=
n−k− j
n− r j −1

r

∏̀
=2

k− (r−1) j− `+1
n− r j − `

=
n−k− j
n− r j − r

r

∏̀
=2

k− (r−1) j− `+1
n− r j − `+1

and

T( j +1) =
n−k− ( j +1)
n− r( j +1)−1

r

∏̀
=2

k− (r−1)( j +1)− `+1
n− r( j +1)− `

,

it suffices to show the following inequalities:

n−k− j
n− r j − r

>
n−k− ( j +1)
n− r( j +1)−1

(5)

and, for2≤ `≤ r,

k− (r−1) j− `+1
n− r j − `+1

>
k− (r−1)( j +1)− `+1

n− r( j +1)− `
. (6)
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The inequality (5) is equivalent toj < k−1
r−1 − 1, which follows from our

assumptionj ≤ i−2≤ bk−1
r−1c−2. Sincek = pn, inequality (6) is equivalent

to
(r−1− p(r +1))n+(r−1) j +2(`−1) > 0.

Sincep < r−1
r+1, the coefficient ofn in the LHS is positive and so the above

inequality clearly holds. ¤
By the claim we have∏i−1

j=0T( j)≤ T(0)i . Thus to prove (4) it suffices to

showT(0)≤ pr−1(1− p) or equivalently,

pr−1(1− p)(n−1) · · ·(n− r)− (pn−1) · · ·(pn− r +1)(n− pn)≥ 0.

The LHS can be rewritten as
1
2

rpr−2(1− p)(r−1− (r +1)p)nr−1 +O(nr−2).

Sincep < r−1
r+1, the coefficient ofnr−1 is positive and we are done.

4. PROOF OFCOROLLARY 7

Let ε > 0 be given. We chooseδ1,δ2 > 0 so that

δ1 < (ε/2)α t
r αs

q, (7)

(1+δ2)2 < 1+(ε/2). (8)

Let Kn := {k∈ N : |k− n
2| ≤ c

√
n} where we choosec > 0 so that

lim
n→∞ ∑

k∈Kn

(n
k

)2

(2n
n

) =
2√
π

∫ c

−c
exp(−4x2)dx> 1− δ1

2
.

(The first equality follows from the de Moivre–Laplace limit Theorem. In
fact one has

(n
k

)2
/
(2n

n

)
= 2√

πn
exp(−4x2+o(1)) by settingx= (k− n

2)/
√

n.)
Then we can choosen1 ∈ N so that

∑
k6∈Kn

(n
k

)2

(2n
n

) < δ1 (9)

holds for alln > n1.
For 0 < p < 1 let α j(p) ∈ (p,1) be the unique root of the equation(1−

p)x j −x+ p = 0. Thenα j(p) is a continuous function ofp at p = 1/2, and
α j(1/2) = α j . Therefore we can chooseδ3 > 0 so that

αr(p)t < (1+δ2)α t
r , αq(p)s < (1+δ2)αs

q (10)

holds for allp with |p− 1
2| < δ3. Choosen2 ∈ N so that c√

n2
< δ3, and let

n0 := max{n1,n2}. Finally we choosen sufficiently large, i.e.,n > n0.
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Now we consider a walk from(0,0) to (n,n). After n/2 steps this walk
arrives at the linex+ y = n. Roughly speaking, a typical walk arrives at a
point near the center(n

2, n
2). More precisely we are interested in the walks

which go through the center zone{(n− k,k) : k ∈ Kn} and touch the lines
L1 andL2 both. We will estimate the number of those walks by using The-
orem 4. The number of walks outside the center zone is so small that we do
not need a serious estimation for this type of walks.

Let k ∈ Kn and p = k/n. Then we have|p− 1
2| < δ3, which guarantees

(10). Also, sincer ≥4andδ3 is small we may assume thatp< 1
2 +δ3 < r−1

r+1.
Thus by Theorem 4 and (10) the number of walks from(0,0) to (n− k,k)
which touch the lineL1 is at mostαr(p)t

(n
k

)
< (1+δ2)α t

r

(n
k

)
.

Next we consider the walks from(n−k,k) to (n,n) which touch the line
L2. Changing the coordinate system byx′ = n− y andy′ = n− x, we find
that the number of these walks is equal to the number of walks from(0,0)
to (k,n− k) which touch the liney′ = (q−1)x′+ s, and this number is at
most(1+δ2)αs

q

(n
k

)
if k∈ Kn.

Therefore we have

h(n)≤ ∑
k∈Kn

(1+δ2)α t
r

(
n
k

)
(1+δ2)αs

q

(
n
k

)
+ ∑

k6∈Kn

(
n
k

)2

. (11)

Dividing the both sides by
(2n

n

)
, and using∑n

k=0

(n
k

)2 =
(2n

n

)
and (9), we

have

h(n)/
(

2n
n

)
< (1+δ2)2α t

r αs
q +δ1.

By (7) and (8) the RHS is less than(1+ ε)α t
r αs

q.

5. PROOF OFCOROLLARY 8

Let ε > 0 be given. Letα(w) ∈ (w,1) be the unique root of the equation
(1−w)xr −x+w = 0. Choosen andk with p = k

n and setn′ := n−u−v,

k′ := k−v andp′ := k′
n′ . Then by Theorem 4 we have

f (n′)/
(

n′

k′

)
≤ α(p′)t .

We also havep′ → p as n→ ∞. Sinceα(w) is a continuous function it
follows thatα(p′)→ α(p) = α asn→∞. Thus we can choosen0 such that
α(p′)t < (1+ ε)α t holds for alln > n0. Then we have

g(n)(n−u−v
k−v

) =
f (n′)(n′

k′
) ≤ α(p′)t < (1+ ε)α t .
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Moreover if u = 0 then we havep′ = k−v
n−v < k

n = p. Sinceα(w) is an in-
creasing function, we haveα(p′) < α(p) andα(p′)t < α t .

6. PROOF OFCOROLLARY 9

The proof is almost identical to the proof of Corollary 7. The only dif-
ference is that we consider walks(u,v) → (n− k,k) → (n,n) in this case
instead of(0,0)→ (n− k,k)→ (n,n). For the part(u,v)→ (n− k,k) we
apply Corollary 8. To do so, we translate the walks by(−u,−v), in other
words, we consider walks from(0,0) to (n−k−u,k−v) with (translated)
new liney = (r−1)(x+u)+ t−v = (r−1)x+ t +(r−1)u−v. (We need
t + (r − 1)u− v > 0 here.) The number of walks which touch this line is
at most(1+ ε ′)αr(p)t+(r−1)u−v

(n−u−v
k−v

)
. So we have to change the first in-

equality in (10) by(1+ ε ′)αr(p)t+(r−1)u−v < (1+ δ2)α
t+(r−1)u−v
r . Then

inequality (11) is replaced by the following:

m(n)≤ ∑
k∈Kn

(1+δ2)2α t+(r−1)u−v
r αs

q

(
n−u−v

k−v

)(
n
k

)
+ ∑

k6∈Kn

(
n−u−v

k−v

)(
n
k

)
.

We omit the remaining details which can be checked by routine calculation.

7. PROOF OFTHEOREM 3

Let F ⊂ ([2n]
n

)
be a 4-wise 2-intersecting and 4-wise 2-union family.

Suppose thatF is not 3-wise 3-union. Then there existA,B,C ∈F such
that |A∪B∪C| = 2n−2, say,A∪B∪C = [2n−2]. SinceF is 4-wise 2-
union, we haveF ⊂ ([2n−2]

n

)
. On the other hand,F is 4-wise 2-intersecting

(and so 3-wise 2-intersecting). Then by Theorem 11 we have|F | ≤ (2n−4
n−2

)

and equality holds iffF ∼= {F ∈ ([2n−2]
n

)
: [2] ⊂ F}. This means that the

theorem is true ifF is not 3-wise 3-union. Considering the complement,
the theorem is also true ifF is not 3-wise 3-intersecting. Therefore from
now on we assume that

F is 3-wise 3-intersecting and 3-wise 3-union.

We also assume thatF is shifted. Now suppose that

|F | ≥
(

2n−4
n−2

)
(12)

and we shall prove that there is no suchF .
Recall that forA∈ ([2n]

n

)
we definewalk(A) onZ2 in the following way.

The walk is from(0,0) to (n,n) with 2n steps, and ifi ∈ A (resp.i 6∈ A) then
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we move one unit up (resp. one unit to the right) at thei-th step. Let us
define

Ai := {A∈ ([2n]
n

)
: |A∩ [2+4`]| ≥ 2+3` first holds at̀ = i},

A j̄ := {A∈ ([2n]
n

)
: |A∩ [2n−4`−1,2n]| ≤ ` first holds at̀ = j}.

(Here we say a propertyP(`) first holds at̀ = i if P(`) does not hold for0≤
` < i butP(i) holds.) IfA∈Ai then, after starting from the origin,walk(A)
touches the lineL1 : y= 3x+2 at(i,3i +2) for the first time. IfA∈A j̄ then
walk(A) touches the lineL2 : y= 1

3(x−(n−2))+n at(n−3 j−2,n− j) and
after passing this point this walk never touches the line again. By Fact 5 and
Fact 6 every walk corresponding to a member ofF touches bothL1 andL2.
Thus we haveF ⊂⋃

i, j(Ai ∩A j̄). SetAi j̄ := Ai ∩A j̄ ,

Fi := Ai ∩F , F j̄ := A j̄ ∩F , Fi j̄ := Ai j̄ ∩F ,

and
Gi j̄ := {F ∩ [4i +3,2n−4 j−2] : F ∈Fi j̄}.

SinceF00̄ is 3-wise 3-intersecting,G00̄⊂
([3,2n−2]

n−2

)
is 3-wise 1-intersecting,

and it follows from Theorem 10 that

|F00̄|= |G00̄| ≤
(

2n−5
n−3

)
. (13)

Claim 14. G10̄⊂
([7,2n−2]

n−5

)
is 3-wise1-intersecting.

Proof. Suppose on the contrary that there existA,B,C ∈ G10̄ such thatA∩
B∩C = /0. If F ∈F10̄ thenF ∩ [6] = {1,3,4,5,6} or {2,3,4,5,6}. By the
shiftedness we may assume that the following three subsetsA′,B′,C′ belong
to F :

A′ := {1,3,4,5,6}∪A, B′ := {1,2,4,5,6}∪B, C′ := {1,2,3,5,6}∪C.

If there existsF ∈ F such that|F ∩ [6]| ≤ 4 then using the shiftedness
we may assume thatF ∩ [6] ⊂ [4]. But this is impossible becauseA′∩B′∩
C′∩F = {1}, contradicting the 4-wise 2-intersecting property. So we may
assume that|F ∩ [6]| ≥ 5 holds for allF ∈F .

ForS⊂ [6] letF (S) := {F ∈F : F∩ [6] = S}. We consider the case|S|=
5,6 and the corresponding walks clearly touch the lineL1 in the beginning.
If |S| = 5 then the corresponding walks from(1,5) to (n,n) must touch
L2, or equivalently we have to count the number of walks from(0,0) to
(n−5,n−1) which touchL1. (Here we change the coordinate system by
x′ = n− y andy′ = n− x.) Then by Corollary 8 (r = 4, t = 2,u = 5,v = 1)
we have

∑
S∈([6]

5 )
|F (S)|< 6(1+ ε)α2

(
2n−6
n−1

)
,
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whereα ≈ 0.543689is the root of the equationx4−2x+1 = 0. If S= [6]
then the corresponding walk from(0,6) to (n,n) must touchL2, and we
count the number of walks from(0,0) to (n−6,n) which touchL1. Again
by Corollary 8 (r = 4, t = 2,u = 6,v = 0) we have

|F ([6])|< (1+ ε)α2
(

2n−6
n

)
.

Consequently, for sufficiently largen, we have

|F |(2n−4
n−2

) < (6α2 +α2)
1+ ε ′

4
< 0.52,

which contradicts (12). ¤
By Claim 14 and Theorem 10 we have

|F10̄| ≤ 2|G10̄| ≤ 2

(
2n−9
n−6

)
. (14)

By considering the complement we also have

|F01̄| ≤ 2

(
2n−9
n−6

)
. (15)

Let ∑∗ denote the summation over alli, j ≥0except(i, j)= (0,0),(1,0),(0,1).
Then we have

|F |= ∑
i, j≥0

|Fi j̄ |= |F00̄|+ |F10̄|+ |F01̄|+∑
∗
|Fi j̄ |,

and

∑
∗
|Fi j̄ | ≤∑

∗
|Ai j̄ | ≤ ∑

i, j≥0
|Ai j̄ |−{|A00̄|+ |A10̄|+ |A01̄|}.

Since|A00̄|=
(2n−4

n−2

)
and|A10̄|= |A01̄|= 2

(2n−8
n−5

)
, Corollary 7 implies that

∑
∗
|Ai j̄ |< (1+ ε)α4

(
2n
n

)
−

{(
2n−4
n−2

)
+4

(
2n−8
n−5

)}
. (16)

Finally using (13), (14), (15) and (16), we have

|F | ≤ |F00̄|+ |F10̄|+ |F01̄|+∑
∗
|Ai j̄ |

<

(
2n−5
n−3

)
+4

(
2n−9
n−6

)
+(1+ ε)α4

(
2n
n

)

−
{(

2n−4
n−2

)
+4

(
2n−8
n−5

)}

< 0.78

(
2n−4
n−2

)
,
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for n sufficiently large, which contradicts (12). This completes the proof of
Theorem 3.

Acknowledgment.The author would like to thank Professor Konrad Engel
for telling him the problem and related references. He also would like to
thank the referee for valuable comments.

REFERENCES

[1] K. Engel, H.-D.O.F. Gronau. An Erd̋os–Ko–Rado type theorem II.Acta Cybernet.,
4:405–411, 1986.

[2] P. Erd̋os, C. Ko, R. Rado. Intersection theorems for systems of finite sets.Quart. J.
Math. Oxford (2), 12:313–320, 1961.

[3] P. Frankl. On Sperner families satisfying an additional condition.J. Combin. Theory
(A), 20:1–11, 1976.

[4] P. Frankl. Families of finite sets satisfying an intersection condition.Bull. Austral.
Math. Soc., 15:73–79 1976.

[5] P. Frankl, N. Tokushige. Random walks and multiply intersecting families.J. Combin.
Theory (A), 109:121–134, 2005.

[6] P. Frankl, N. Tokushige. The maximum size of 3-wise intersecting and 3-wise union
families,preprint.

[7] H.-D.O.F. Gronau. An Erd̋os–Ko–Rado type theorem. Finite and infinite sets, Vol. I,II
(Eger, 1981)Colloq. Math. Soc. J. Bolyai, 37:333–342, 1984.

[8] N. Tokushige. A frog’s random jump and the Pólya identity.Ryukyu Math. Journal,
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