EKR TYPE INEQUALITIES FOR 4-WISE INTERSECTING FAMILIES
NORIHIDE TOKUSHIGE

ABSTRACT. Let 1 <t <7 be an integer and le# be ak-uniform hypergraph om
vertices. Suppose thahNBNCNDJ| >t holds for allA/B,C,D € .%. Then we have

|Z| < (F}) if | ¥ — 3| < & holds for some > 0and alln > ng(€). We apply this result to

get EKR type inequalities for “intersecting and union families” and “intersecting Sperner
families.”

1. INTRODUCTION
A family .# c 2" is calledr-wise t-intersecting if|[FyN---NF| >t holds for all
Fi,...,F € %. Let us define-wiset-intersecting families%;(n,k,r,t) as follows:

Finkrt)={F e CE) CFEQE+ri]| >t+ (r=1)i}.

Let m(n,k,r,t) be the maximal size df-uniform r-wiset-intersecting families om ver-
tices. Can we extend the Kis-Ko—Rado Theorem in the following way?

Conjecture 1. m(n,k,r,t) = max |.Zi(n,k,r,t)|.

Ahlswede and Khachatrian[1] proved the case2, which extended the earlier results by
Erddés—Ko—Rado[3], Frankl[6] and Wilson[25]. Frankl proved the dase€l as follows.

Theorem 1([4]). m(n,k,r,1) = (i_7) for (r —1)n > rk.

The cases > 3 andt > 2 seem to be much more difficult and only a few results are
known.

Theorem 2([9, 10]). m(n,k,3,2) = (_2) for X < 0.501andn > no.
- K
Theorem 3([23]). m(n,k,3,t) = () fort > 26, & < W+9_1 andn > ng(t).
Theorem 4([22]). m(n,k,r,t) = (1}) if p=  satisfiesp < "2,
(1-pprilY —pr14p<0

andn > np(r,t, p).
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Our main result in this paper is the following.

Theorem 5. Lett be an integer with <t < 7. Then there exists > 0 andng = np(¢)
such tham(n,k,4,t) = (1_1) holds for|X — 1| < & andn > ny. MoreoverZo(n,k,4,t) is
the only optimal configuration (up to isomorphism).

There is a possibility to improve the range foin the above theorem frorh < 7
tot < 10, but the theorem fails for > 11. In fact, by simple computation, one finds
| Z1(n,k,4,1)] > [Fo(n,k,4,t)[ if > 1 andt=11 ork >l andt>12

Afamily .# c 2 is calledr-wiset-union if [FyU- --UF| < n—t holds for allFy, ... ,F €
Z. This is equivalent to the property th&&® = {[n]| — F : F € .%} isr-wiset-intersecting.
What is the maximal size af-wiset-intersecting andj-wise t-union k-uniform family?
The case > 4, q > 4 andt = 1 was settled as follows.

Theorem 6 ([16, 2]). Letr >4, >4 and.Z C ([E}). Suppose thatZ is r-wise 1-
intersecting and-wisel-union, and

n—1+1<k< —1(n 1).
q r

Then we haveZ | < (7_2).

The case = q = 3 andt = 1 is more difficult and still open. As a special case the
following is known.

Theorem 7 ([11]). Let.# C ([2“]) be a3-wisel-intersecting an@-wise 1-union family.
Then we haveZ| < (>"-3). Equality holds iff# = {F ¢ (" 1) : 1c F}.

In [21] the case = q = 4 andt = 2 was considered. Using Theorem 5 we extend the
result as follows.

Theorem 8. Lett be an integer with <t <4, and let¥ C ([Zn”]) be a4-wiset-intersecting
and4-wiset-union family. Then we haveZ| < (*"-2) for n > no. Equality holds iff

F2{Fe (™t cF}.

A family .# c 2I" is called a Sperner family iF ¢ G holds for all distinctF,G

7. What is the maximum size ofwise t-intersecting families? The case= 2 was
determined by Milner in [19], and the maximum is given by the simple forr(lH@[:)/z]) :
For the cases > 3, the situation becomes more complicated. Frankl[4] and Gronau[12,
13, 14, 15] considered the case- 3 andt = 1, and it is known that fon > 53 the only
optimal families are

F={Fu{n}:Fe (™ 02 N}u{ln—1} neven,

F={Fuin}:Fe ()} nodd.
The case = 3 andt = 2 was solved in [9, 10] as follows.
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Theorem 9. Let.# c 2" be a3-wise2-intersecting Sperner family. Then,

7| < ((nnz)z/z) if n even
R 1)/2)+2 if n odd

holds fom > ng. The extremal configurations are

={{1,2}UF:F ¢ ((n[S,Zr;]/2>} n even,

={{L2}UF:F g n[31”]/2)}u {[n] —{1}}u{[n]—{2}} nodd.
In this paper we consider the case 4 and1 <t < 7 and we prove the following.

Theorem 10. Let1 <t < 7 and let# c 2I" be a4-wiset- intersecting Sperner family.
Then we haveZ | < ( 1) forn> ng. Equality holds iff# = {F € ( ) [t} C F} where

k=t+[%1] ork:tﬂ” .

We present the proofs of Theorem 5, Theorem 8 and Theorem 10 in Section 3, Section 4
and Section 5, respectively. In the next section we review some basic tools for those proofs.

2. TooLs
For integersl <i < j < nand a family.Z c ([E}), define the(i, j)-shift §; as follows.
Sj(#)={Sj(F):F e 7},

where

S;(F) = {(F {ipudfiy ifigF, jeF, (F-{jHufi}¢ &

F otherwise.

A family .Z c ([E]) is called shifted ifSj (%) = .% for all 1 <i < j <n. For a given
family .#, one can always obtain a shifted fami#§’ from .# by applying shifting to#
repeatedly. Then we hay&?’| = |.%| because shifting preserves the size of the family. It
is easy to check that i is r-wiset-intersecting thei; (.#) is alsor-wiset-intersecting.
Therefore if.% is anr-wiset-intersecting family then we can find a shifted famif’
which is alsor-wiset-intersecting with.#’| = |.%#|. See [7] for more details.

We use the random walk method originated from [5, 6] by Frankl. Let us introduce a
partial order in([E]) by using shifting. FoIF,G ¢ ([E]), defineF ~ G if G is obtained by
repeating a shifting t&. The following fact follows immediately from the definition.

Fact 1. Let.Z C () be a shifted family. IF € # andF - G, thenG € .7

For F € (IV) we define the corresponding walk @, denoted bywalk(F), in the
following way. The walk is from(0,0) to (n—k, k) with n steps, and if € F (resp.i € F)
then thei-th step is one unit up (resp. one unit to the right). The following fact is useful
(see[5, 7, 21)).
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Fact 2. Let & C ([E]) be a shifted -wise t-intersecting family. Then for alF € %,
walk(F) must touch the lin& :y = (r — 1)x+t.

The next result (Corollary 8 in [21]) enables us to upper bound the number of walks
which touch a given line.

Proposition 11. Letp € Q, r,s,u,v € N be fixed constants with> 2 andp < [;—% and let
n andk be positive integers witp = r—'§ Leta € (p,1) be the unique root of the equation
(1- p)xX' —x-+ p= 0 and letg(n) be the number of walks frortu,v) to (n— k,k) which

touch the liney = (r — 1)(x—u) +Vv+s. Then for anye > 0 there exist$ such that
g(n)
(")

holds for alln > ng. Moreover ifu = 0 then we can choose= 0.

<(1+¢)a®

To prove Theorem 8 we use a dual version of Fact 2.

Fact 3. Let.Z% C ([E}) be a shiftedy-wise s-union family. Then for alF € .7, walk(F)
must touch the ling; 1y = 21 (x—n+k+8) +k

Then we can extend Proposition 11 as follows (Corollary 9 in [21]).

Proposition 12. Letq,r,s,t,u,ve N be fixed constants witly> 4,r > 4 anat+ (r —1)u—
v> 0. Letaj € (3,1) be the unique root of the equatigr’ —x+ 3 = 0. Leth(n) be the
number of walks fronfu,v) to (n,n) which touch both of the linek; : y = (r — 1)x+t
andL, :y = -1 (x—n+s) +n. Then for anye > 0 there exists\y such that

q-1
h(n)

G

<(1+e)ar N Vas

holds for alln > ng.

To prove Theorem 10, we need a basic fact about shadow. For a fanity2" and a
positive intege¥ < n, let us define thé-th shadow of#, denoted by\,(.%), as follows.

14
We use the following version of the Kruskal-Katona Theorem [18, 17, 8].

D(F) = {Ge ([”]> .G C IF € F).

Proposition 13. Suppose that? C ([E]) and|.Z| < (}). Then we have

i =121(7) /()

Equality holds only ifZ = (}), Y| =m.
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3. MULTIPLY INTERSECTING FAMILIES

In this section we prove Theorem 5. Note thafio(n,k,r,t)| = (1) ~ p'(}), and
71k )] = @ +1) () + (D) & () pt Tt — (t+r = 1)pHT) (7), where
we denotea~ biff limy_.a/b=1. Let pr; € (0,1) be the root of the equatich= (t +
NX 1 — (t+r—1)x". Then|.Zo(n,k,r,t)| > |Z1(n,k,r,t)| holds if p < prt. Throughout
this section, we assume thak p < prt and letq = 1— p. We start with the following
somewhat cumbersome statement, which will imply Theorem 5 as a special case after
some refinement (see Proposition 15).

Proposition 14. Letr,t € N andp € Q be given. Suppose that> 3 andp € (0,0.55).
Leta € (p,1) be the root of the equatiagpd —x+ p = 0. Suppose thatt, p satisfy all of
the following inequalities:

€1 (a/p)t-tl-a"HptP+a" g+ p-2<0,

a1
€2  (a/p}-1- "zl (p/a)) <O

g2r=1)  t4r-2

) faarig J_; (i+D(a/p I -1<0.

Thenm(n,k,r,t) = (}—1) holds forp =X andn > no(r,t, p). MoreoverZo(n,k,r,t) is the
only optimal configuration (up to isomorphism).

We prove Proposition 14 in section 3.1 and we will show that we can repiteby
weaker conditions in section 3.2 (see Proposition 15). Then Theorem 5 will follow from
Proposition 15 easily.

3.1. Proof of Proposition 14. Let pc Q with 0 < p < 0.55be given. Letr = ap € (p,1)
be the root of the equatiagX —x+ p=0.

Let 7 C ([E]) be a shifted -wiset-intersecting family and suppose that= . Then
by Fact 2walk(H) hits the lineL : y= (r — 1)x+t for all H € #. Thus by Proposition 11
(settingu = v =0, s=t) we have|#| < a'(})). Our goal is to prove that#| < (j}) ~
p' () unlesss? = Fo(n,k,1,t).

For0 <i < | K| letus define

4% ={Ge ([E]) SGN[t+rf)| >t+(r—1)¢firstholds a¥ = i}.
In other wordsG € % iff walk(G) reaches the link at (i, (r — 1)i +t) for the first time.
Setsfi = N%,.

Next we will defineA; € % andB; € 4. As in the following picture, starting from
the origin,walk(A;) passeg0,t) and(i,t), and then from(i,t) walk(A;) is the maximal
walk (in the shifting poset) that does not touch the liney = (r —1)(x—i)+ (t+r—1),
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while walk(B;) passeg0,t —1), (1,t —1), (1,t+r —1), and(i+1,t +r — 1), then from
(i+21,t+r—1)walk(B;) is the maximal walk that does not touch the line

Li:y=(r—-1)(X—i+1)+t
Li walk(B)

alk(A
alkiA) (i+1t+r—1)

(1,t—1)

(0,0)

(0,0)

Formal definitions are as follows. For an infinite set {a;,ap,...} C Nwitha; < ap <
.-+, let us defindrirsi(A) = {a1, a2, ...,ak}. Set

TG) = {i,i+ni+2r,. Y ={i+rj:j>0l
A = U H{T@+i+9:1<s<rs#r—1})
= ([t]u[t+i+1,oo])—G{t+i+r—1+rj},
j=0

B = [t—Lut+Lt+r]u(( {Tt+i+s+r):1<s<rs#r—1})

= ([t—l]u[t+1,t+r]U[t+i+r+1,oo))—0{t+i+r—1+rj}
j=1

and defined; = First(A?), B = First(B;). We will use only small so thatA, B € (),
and then we havg; € % andB; € ¢;. Note thatA;, 1 = A; andBj.1 > B;.
We consider three cases according to the structus&off 7 is similar to.Zp(n,k,r,t)
then we compare?’ with Zp(n,k,r,t) and this is Case 2. In Case 3 we compa#ewith
Z1(n,k,r,t). If 2 is neither similar to% nor %1 then it is less likely thatZ’ has large
size, but in this case we do not have an appropriate comparison object, which makes it
difficult to bound the size of#’. We deal with this situation in Case 1, and we will refine
the estimation for this case in the next subsection again.

Case 1.A; & 57 andB, & 7.
Suppose thall € 4. Then after passing the poif®,t), walk(H) goes to(0,t + 1) or

(1,t). So we can dividesp = ji%(o’tH) U%(l’t) according to the next point t®,t) in
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the walk. Fon%%(o’tﬂ) we use a trivial bound

(0t+1) n—(t+1)\ _ n
A () =0 () @

If H e ji”o(l’t) thenwalk(H) must touch the lind : y = (r — 1)x+t after passind1,t).
Otherwise we gell = A;, which means$d ¢ 7 by Fact 1, a contradiction. Here we used
the fact thatd; is the minimal set (in the shifting order poset) whose walk does not touch
the lineL after passing1,t). Thus by Proposition 11 (setting=1,v=t,s=r — 1) we

have
. /n—(t4+1
|<756(1’t)|<_ (1+5)ar 1( k(—t )) a 1ptq(k) 2)

Next suppose that € 7#1. Then after passinfll,t +r — 1), walk(H) goes to(1,t +r)

or (2,t+r —1). So we can dividerq = .7 U > Y. Noting that there are
ways of walking from(0,0) to (1,t 4 r) which avoid passing0,t), we have

(1t+1) n—(@t+r+1)\ . (N
74 ’St(k—a+m ~eragy ) 3

If H e %(z,wr—l)’ thenwalk(H) must touchL after passing2,t +r —1). Otherwise we
getH > By, which mean$d ¢ .77, a contradiction. Thus by Proposition 11 (setting 2,
v=t+r—1,s=r—1)we have

(2t+r—1) e (N=(+r+1)\ . 1 i1 2(N
AP < @rena (T ) st i) @

Finally we count the number dfl in Ji~,74 C Uj>>%. By Proposition 11 (setting
u=v=0,s=r)we haveUi>o%| < a'(}) and so

JA < 1U%l-1%l -4l

i>2 i>0
n n—t n—(t+r)
()~ (k) )
~(d—d—wH*®@) (5)
Therefore by (1), (2), (3), (4) and (5) we have

7]
)

asn — oo, ConsequentlyZ| < (1) ~ pt(}) follows from

< (1+0(L) (P14 o Lplg+tpHTg+ta Lot LR 4 at — pt —tpttT1g)

pt+l+ar lptq+tpt+rq+tar 1pt—|—l’ lq2+a pt

which is equivalent t¢C1).

t+r—1

tp q<p,



8 NORIHIDE TOKUSHIGE

Case 2.A1 € 7.
If [t} C H holds for allH € J# then it follows that|.#’| < (i_{) and equality holds iff
A = Fo(nk,r,t). Thus we may assume thit ¢ H holds for someH € 7 and in
particular we may assume tHat = [k+ 1] — {t} € .»# because” is shifted.
We shall show tha#\ ¢ 27 holds for somei. Our plan is to choose a “witness”
{A,C],...,C/_,} for beingA ¢ ¢ so that
A-A-C=C=-=Cly, (6)
and
ANCinCn---nC_,NnD' =[t—-1]. (7)
Suppose that we have chosen the witnes4;. df 77 then (6) and Fact 1 impl',Cy,....C/_, €
2, and thus (7) contradicts thaft” is r-wiset-intersecting. The following picture shows

an example of a witness for the case 5,t = 3,i = 2 andk = 23. Lines connecting the
discs show tha#’ - C; >~ C, - Cs.

T

.. ..................... D’

t t+| z(1,i a(i
Before giving a formal description of the witness, iet 33 explain how toﬁ‘gsde (13))
by considering a bit more rough situation. Here we consider infinite sets for simplicity.
Let

A'=[tJU[t+i+21,00)—{t+i+rj+r—21:j>0}.
We try to findCy,...,C/ 2so that
~Cl =G = Cly, (8)
A”mC”mC’z’m NG, =1t]. 9)
To do so, we maintain
AT O+ + - +IG 2N {j} =1 -2 (10)
forall j >t+i by using a cyclic pattern. More formally, sgu,i) =t-+i+u(r —2)r, and
for1</<r—2setC/ =[1,00)—Zi), where
Z(i) = | J ({z(u,i) +1,z(u,i) +r}u{z(u,i) + (r —1)v:2<v<r —2}),
u>0

andZy(i) = {t+i+ £} U(r +Z,-4(i)) for 2< £ <r —2. Here we denote the s¢t + z:
zeZ}byr+Z. Injt+i+1,), the set\’,CY,...,C/ , are periodic of period(r — 2).
Due to (10), we have (9). But (8) is not satisfied So we will find an integrch that

Firsty(A”) = Firsty(CY) = Firsty(C5) = --- = Firsta(C/’ 5), (11)
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It is necessary that

A" N [a]] = |C/ N [all (12)
holds for all1 < ¢ <r —2. We need to adjust the excg€&' N[t +i]| — |A"N[t+i]| =1.
We note that

A'Nt+i+1t+i4+r(r—=2)]=(r—1)(r—2),
C/Nit+i+Lt+i+r(r-2)]=(r—-1)(r—-2)-1,

and
A'Nt+i+1,t+i+(2r—3)]
C/Nnt+i+1Lt+i+(2r—3)]

Thus we find that
a=t+i+({i-r(r—-2)+2r-3)=t+(r—1)((r—-2)i—r+3)

satisfies (12). We leave the reader to check &defined above satisfy (11), actually this
is the maximum integer satisfying (11). We requare k+ 1, which gives > ig where

. [k+1-t+(r—1)(r-3)
o= [ T
Now we are ready to define the witne&sCy,...,C/_,. Set
A = [tJU(ft+io+Lalio)] —{t+ig+rj+r—21:j>0})U[a(ip)+1,)
= (Apnfalio)]) Ufafio) +1,)
wherea(i) =t — (r —1)(r — 3) + (r — 1)% and define\' = First(A). Set
Cr = ([alio)] — Z(io)) U [alio) +1,)

and defineC;, = Firstk((fg) for 1 </ <r —2. Then the witness satisfies (6) and (7). Thus
we haveA ¢ 57, and sinced - A’ fori > ig we also have & 77 if i > ig.

Now let1 <i <ig be such tha®j € 7 butAi 1 ¢ 7. (ThenAj € o7 iff | <i.) For
1<t<r—2setR(i)= (A +¢)—[a(i)] and

Ci = ([a(i)] = Z(1)) UR(i)

(13)

and let

D* = ([a(i)] — {t}) UR—a(i).
Finally setC, = Firsk(C;), D = Firs(D*). The following picture shows an example of
the case =4,t =3,i =2andk =21

Eii:f/"/ﬁ’xf-’.}:’.}i:’}i:’}iﬂ

t t+i a(i)
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Then we haveC, € 77 becauseéh € 7 andA - C, = Cy = --- = C,_o. Since”
is r-wiset-intersecting andy NC; NCy;N---NC_>ND = [t — 1] we can conclude that
D¢ .. Sincea(i)— (r—2)=t+i—1 (modr) we haveA # a(i) — (r — 2), and thus
R_1(i)Ufa(i)] = A+ (r—1) #Za(i) + 1. This means that after passif@t — 1) and(1,t —
1), walk(D) is the maximal walk that does not touch the liney = (r —1)(x— 1) 4-a(i).

Let H € Z. First suppose thavalk(H) does not pas§0,t), i.e.,H N |t] # [t]. Then
walk(H) must go through at least one of the points in

P={(1,0),(3,1),...,(L,t—1)}.

Let(1,j) (0< j<t—1) be the first point irP thatwalk(H) hits. In other words, we have
HN[j+1] =[j]. From the poin{(1, j), walk(H) must touch the lind, otherwise we get
H - D andD € 7, which is a contradiction.

(L,a(i))

| walk(D)

1),

FO (L)

We estimate the number of walks froft, j) to (n— k,k) which touch the lind.. By
Proposition 11 (setting= 1, v= j, s=a(i) — j) the number is at most

(14 &)@ (n _qujr 1>> .

Therefore the number ¢ € .7 such thaH N [t] # [t] is at most

' oM+
(14¢) S aqdi)-i ( . ) (14)
J; k=]
Next suppose thatalk(H ) passe$0,t), i.e.,HN[t] = [t]. The number of corresponding
walks is at mos(ﬂj), but we need to refine this estimation. Supposewrzdik(H ) passes
(i+1,t). Then from this pointvalk(H) must touch the line" : y = (r —1)(x— (i+1)) +
t+r—1, otherwise we getl - A1 andA;, 1 € 5, which is a contradiction.
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L/

(i+1t+r—1)

walk(Ai11)

The trivial upper bound for the number of walks frdi-1,t) to (n—k, k) is ("),

but those walks i touch the linel” and so by Proposition 11 we will get an improved
upper bound. To apply the proposition, it is convenient to neglect tha first- 1 steps
of the walks, in other words, we shift the origin o+ 1,t), and replacen and k by
N=n-—(t+i+1) andk = k—t. ThenL’ becomesy = (r — 1)x+r — 1 in the new
coordinates, and by setting= v =0 ands=r — 1, Proposition 11 gives an improved
upper bounoh;,‘l(ﬂi) wherep = %ﬁ ~ X anday € (P, 1) be the root of the equation
(1—p' )X —x—+ p' = 0. Therefore the number ¢f € 27 such thaH N [t] = [t] is at most

(E::) ~(1-ayY (E:) (15)

We shall show.#| < (; 7). By (14) and (15) it suffices to prove that

(1+£)j§)aa(i)i (n _k(ier 1)> —(1— agfl) (E:) <0,

or equivalently,
r—1

e n—=(j+1 l1-a n .
(1"’8) Zoat (r=1)(r-3) J( k(—J )> <G(T52|(k/) =. f(l) (16)

J_
Claim 1. f(i) is an increasing function af

(t+IEi_—t1)+1) — n’lil' Then we need to show

1—0371 n+1 1—01{371 n
a(r—l)z(i—1)< K )< (17 (k’)’

which is equivalent to

1_ap// < 1 n/ / n/+1 - 1 .n/+1—k/
1_0{{),*1 a(r=12 \ K k’ - qr-1)? n+1 -

Proof. To showf (i —1) < f(i), letp’ = —
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Using (13) we havel1zk = D=kl > nlc ,'8 ~(l-p-— ﬁ)/(l— ﬁ) > (p+

n—
n—
p)(-1? > q=1* for p < 0.55andr > 3. Thus we can choos® > 0 so small that
1 n+1-K
ar-12  n+1
holds forn > no(8). On the other hand, singg = = +  we havep” ~ p’ and hence

| \/

1+0<

. b <1406
_ap/

for n>ny(9). O

Thus it suffices to show the inequality (16) fior= 1. Noting thatp’ ~ p, (" “Tl)) =

plg(y) and (" (”2)) ~ p'g?(y), we find that the target inequality follows frof€2) by

choosinge = £(r,t, p) sufficiently small.

Case 3.By € 7.

LetD' = [k+2]—{t+r—1t+r}. If D' & S then the shiftedness of implies that
A C F1(nk,r,t) and we are done. (Recall that we hawd (n,k,r,t)| < |Fo(n,k,r,t)| =

(h—1) for 0 < p < prt.) Thus we may assume that € 7. Letig = [%1 and set

B = (t+r]—{tHhu(t+r+io+1,b(io)] —{t+r+io+jr—1:j>1})U[b(ig)+1,0)
= (BigN[b(io)]) U[b(io) +1,0)

whereb(i) =t+r+i+(i—1)r(r—2)+(2r—3) =t —r?+5r — 3+ (r — 1)i. Setz(u,i) =
t+r+i+u(r—2)randforl </¢<r—1defineZ,(i) by

Zy(i) = U ({z(u, i)+ 1,z(u,i) +r}u{z(ui)+(r—1v:2<v<r-—-2}),

u>0
andz(i) = {t+r+i+L}U(r+2Z,4(i)) for 2< ¢ <r —2. Finally letB' = Firsi(B) and
forl</<r-—2letC,= FII’Stk(Cg) where
C; = ([b(io)] — Zs(io)) U [b(io) + 1, ).

Note thatB’ - C; - C, >~ --- = C/_, andB'NnC;NC,N---NC/_,ND' = [t —1]. Thus we
haveB' ¢ .77, and sinceB; - B’ for i > ip we also haveB; ¢ 77 if i > io The following
picture shows an example of the case 5,t = 3,ip = 2 andk = 23 (b(ig) = 32).

HE A T

t—l—l’
t t+r+lo




EKR TYPE INEQUALITIES FOR4-WISE INTERSECTING FAMILIES 13

Now let1 <i < ig be such thaB; € 7 butBj;1 ¢ 7. For1l < /¢ <r —2setRy(i) =

(Bi+¢) — [b(i)] and
C/ = ([b(i)] = Ze(i)) UR(i),
and let
D* = ([b(i)] = {t4+r —Lt+r})UR_1(i).

Finally setC, = First(C;), D = First(D*).

Then we hav€, € 77 becausd; € .77 andB; = C; = Co = --- = C,_». SincesZ isr-
wiset-intersecting an®; NC;NCyN---NC;_2ND = [t — 1] we can conclude th& ¢ 7.
The following picture shows an example of the case4,t = 3,i = 1 andk = 21.

$31.°030. 1 00 At AR AN

..... ...... 00 000 000 o D

t+r b(i
Let tH € . First suppose thg";u)valk(H) passes at least one of the pointsRn=
{(2,0),(2,1),...,(2t+r—=2)},i.e, |HNt+r]| <t+r—2 Let(2,j) 0O< j<t+r—2)
be the first point inP thatwalk(H) hits. From this pointwalk(H) must touch the line
L:y=(r—1)(x—2)+b(i) — 1, otherwise we geil - D andD € .7, a contradiction.

(0,t+r—2)

©2j)

Thus the number of corresponding walks is at most
1+ a+ea0-1i (MU,
wherej + 1 is the number of walks fron0,0) to (2, j) which do not touch{(2,¢) : 0 <
¢ < j}. Hence the number df € 7 such thafH N[t +r]| <t+r—2is at most
tr—2

- b(i)-1-j (N— (1 +2)
(1+¢) JZO(]Jrl)a J( K| ) (17)
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Next suppose that N[t +r]| >t+r—1. Thenwalk(H) passe$0,t+r) or (1,t+r—1).
The number of walks which pa$6,t +r) is at most

(k) 49

The number of walks which pagd,t +r — 1) is clearly at mosit + r)(kf(_t(ﬁi)l)) and

we will improve this estimation. Suppose thealk(H) passe$l,t —1), (1,t+r—1) and
(i+2,t+r—1). Then from(i 4+ 2,t +r — 1), this walk must touch the line" : y = (r —
D(x—i)+t=(r—1)(x—(i+2))+t+2r—2, otherwise we gat - B;; 1 andB;,1 € 77,
a contradiction. Thus the number of walksiff which pasg1,t+r —1) is at most

n—@t+r) \ . (0
(t+r)(k—(t+r—1)) t(1-ay )(k, : (19)
wheren' =n— (t+r+i+1),K =k—(t+r—-1)andp = & ~ K.

L/
(i+2,t+2r—2)

(Lt+r-1) walk(Bj_1)

(i+2t+r—1)

(1,t—1)

We shall show that the sum of (17), (18) and (19) is less than(n,k,r,t)| = (t +

r)(kfa(f:i)l)) 4 (E:gj:;) which meang.’#| < |.%1|. Our target inequality is

t+r—2 n— (i t(1—a )
. t—(r—1)(r—4)—j (N (1+2) p n
(1+e) JZO (i+1)a < k—j )= aqrE \k)

One can show similarly to Claim 1 that the RHS is an increasing functian dhus it
suffices to show the inequality foe= 1, which follows from(C3). O

3.2. Further improvement. In the previous subsection, we proved Proposition 14. Here
we will refine the proof for Case 1 to show that we can repl@e®) by the following



EKR TYPE INEQUALITIES FOR4-WISE INTERSECTING FAMILIES 15
weaker condition$Cla) A (C1b) A (Clc):

p r-1 a’ r-1
qg(—+a +—a/p -1 —1<O,
(q a—p(( / ) ))

(Clb)  (a/p)'—tp g (1+p—a"H+a" g+ p*-2<0,

(Cla) p+a'q+tp™

r-1 . o
(Clc) p?+a"tq+tp'gq+t(pa) tg?+ > uja""lp-igtl—1<o.
=

whereu; will be defined later in Case 1c.
Assume that\; ¢ 27 andB; ¢ 2. We continue to use notation defined in Case 1, and
let

j%(o,tﬂ) _ (H—[t+1:He %%(O,tJrl)} c (Ejtzini)v
AT — HA+r+2n:HegMyc ([t+r+2, n]).

K—t—r

Case 1a.74 "V is not(r — 1)-wise 1-intersecting.

In this case we hav&;,...,G;_1 € " such thalGiN---NG,_1 = [t+1]. LetH € JZ.
Since 7 is r-wiset-intersecting we havéH N[t 4+ 1]| > t. Thuswalk(H) hits (0,t + 1)
or (1,t), andwalk(H) never hits a point in{(2,0),(2,1),...,(2,t —1)}. In particular,
if H € Ui=»2% thenwalk(H) reaches the linex = 2 for the first time only at one of
(2,1),...,(2,t+r—2). In this casaevalk(H) passeg1,t) and there aréways of walking
from (0,0) to (1,t) which avoid(0,t). Then after passin@®, j) (t < j <t-+r—2)walk(H)
must touch the link :y = (r — 1)x+t.

/L

/
/ o (2,t+r—2)
04| 2,1)
Therefore we have
| U H| < (1—|—e)t+rz_2tat+2r21 (n _k(ij-— 2))
i>2 J=t

r-2 . _ r-1
o tarpt+r—2q2 (E) i;(‘j/p)l :tarpt+r—2q211_(czélj)p) (E) . (20)
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By (1), (2), (3), (4) and (20) it suffices to show that

r—1 . t+r—1.2 rotr—2 21 (a/p)r_l

R o W T
pg+tp T q+ta “p g +tap q
—(a/p)

p <p,

which is equivalent tgCla).

Case 1b.Both /2 %Y andZ """ are(r — 1)-wise 1-intersecting.

In this case we use Theorem 1 to bound the sizeﬁﬂ(ggf’t“) and%”f“*”. Then we have
Ot+1) _ 408+ o (N (t+1)—-1 ~ ptr2( " 21
A = 1A < (WD D) (), @)
(Lt+1), _ Pt (N (t+r+1)-1 ~tpttrig( "
A0 = A (T T (). )
Therefore by (21), (2), (22), (4) and (5) it suffices to show that
pt+2 r 1ptq+tpt+r+lq+tar 1pt+r 1q2 pt pt+r 1q< p,
which is equivalent tgC1b).
Case 1c. %(Ot”) s (r — 1)-wise 1-intersecting anc%”l(“”) is not (r — 1)-wise 1-

intersecting.
We use (21) to bounc%%(o’t”) again. Now we will bound the size ¢f};.,.74. Since

%,;i(l’t“) is not (r — 1)-wise 1-intersecting ang?’ is shifted, we hav&,, ...,G,_1 € 7
suchthaGiN---NG_1=[t+r+1]—{t}. If F = ([k+r+1]—[t,t+r+1)u{t+1} € 7
then we also have’ = [k+r + 1] — [t+ 1,t +r + 1] € s by shifting. But this is impossi-
ble becaus&; N---NG,_1NF’ = [t —1]. Thus we must have ¢ 7. LetH € |-, 74.
Thenwalk(H) never hits any point if{(r +1,0), (r +1,1),...,(r +1,t)}, otherwise we
getH - F € s, a contradiction. In other wordsyalk(H) passes one of the points in
J={(j+Lt4+r—j):1<j<r—-1}.

L
Lt+r—1
( ) s / walk(F)
AN SR
(0,1) <
& ) (r+10)

Forl < j <r—1letu; be the number of walks frorfD,0) to (j +1,t +r — j) which

do not touch the ling 1y = (r — 1)x+t. We haveu; = (111%) — ({1}) — 5 whered; =t
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anddj = 0for j > 2. Then after passingj + 1,t +r — j), walk(H) must touch the lind.
Therefore we have

o /n—(t+r+1)
)74 < (L+¢) u-a”‘l( . )
iL>_J2 | jZl : k—(t+r—j)
r-1 . . . n
~ Z ujal’jflpFH'*JqJ‘Fl (k> ) (23)
=1
Consequently by (21), (2), (3), (4) and (23) it suffices to show that
pt+2+arflptq—l—tpt“q+tar*1pt+r*1q2+ Z ujarjflthrrquJJrl < pt,

=1
which is equivalent t¢Clc). O

Noting that the LHSs ofC1a), (C1b), (Clc), (C2) and(C3) are continuous functions
of p, we have proved the following.

Proposition 15. Letr,t € N andp € Q be given. Suppose that> 3 andp € (0,0.55).
Leta € (0,1) be the root of the equatiail — p)x" —x+ p = 0. Suppose thatt,p sat-
isfy (Cla), (C1b), (Clc), (C2) and(C3). Then there exists = £(r,t,p) > 0 such that
m(n,k,r,t) = (Ej) holds for|r—'§ —p| < € andn > ng(r,t, p,€). MoreoverZp(n,k,r,t) is
the only optimal configuration (up to isomorphism).

Proof of Theorem 5Settingr =4, p=1/2andt =1,...,7, we can verify(Cla), (Clb),
(Clc), (C2) and(C3). Then the result follows from the above proposition. O

Remark 1. In the proof of Proposition 15 and Theorem 5, we uped0.55 only to show

p p (r—1)2
1-p— ——)/(1—- ——
forr = 3 (see Claim 1). If > 4 then we can replace the conditipr< 0.55 by the above
inequality.

Let EKR(r) be the maximal such tham(n,k,r,t) = (}_{) holds forn = 2k andn > nq.
ThenEKR(4) > 7 follows from Theorem 5. Let, be the maximat such that all(Ci)’s
hold for p=1/2in the sense of Proposition 15, eig.= 7. Clearly we haviEKR(r) > t;.
On the other hand, comparing the sizeZf(n,k,r,t) and.Z1(n,k,r,t), we haveEKR(r) <
T, = 2" —r — 1. If Conjecture 1 is true then it follows th&KR(r) = T;. We can compute
tr andT, for 4 <r < 10as follows.

r|4 5 6 7 8 9 10
tr| 7 18 41 89 184 377 762
T [11 26 57 120 247 502 1013




18 NORIHIDE TOKUSHIGE

For exampletyg = 762implies that there exists > 0 such tham(n,k, 10,t) < (;71) holds
fort <762 |———| < gandn > ny(¢).

Let us note that our proof of Proposition 15 also includes the proof of the following
slightly stronger result.

Proposmon 16. Let.7 C ([ ]) be arr -wiset-intersecting family. Suppose thét is non-

F| <t. Then under the same assumptions as in Proposition 15, there
existy: y(r,t, p) > 0 ande = £(y) > 0 such that.#| < (1—y)(;_;) holds for|X —p| < &

andn > ng(g).

Let us summarize our result for the cgse- 1/2 and4 <r < 10as follows.

Theorem 17. Let4 <r < 10and Ietl <t <t. Then there exists > 0 andng = np(€)
such that(n,k,r,t) = (;_;) holds forlX — 1| < € andn > ng. Moreover if# is non-trivial
then there exisg > 0 ande = £(y) > 0 such that.7| < (1—y) (1) holds for| X — 3| < &
andn > ny(g).

4. INTERSECTING AND UNION FAMILIES

Proof of Theorem 8Let . C ([Zn”]) be a 4-wisd-intersecting and 4-wiseunion family.
Suppose tha# is not 3-wise(t 4+ 1)-union. Then there exisk, B,C € .# such thajAU

BUC| = 2n—t, say,AUBUC = [2n—t]. SinceZ is 4-wiset-union, we haveZ c (27-1).
On the other hand% is 4-wiset-intersecting. Then by Theorem 5 we hagyve| < (2“ Zt)
and equality holds iff7 = {F ¢ (?>Y) : [t]  F}. This means that the theorem is true if

Z is not 3-wise(t + 1)-union. Considering the complement, the theorem is also trge if
is not 3-wise(t + 1)-intersecting. Therefore from now on we assume that

Z is 3-wise(t + 1)-intersecting and 3-wis@ -+ 1)-union. (24)
We also assume tha# is shifted. Now suppose that
2n—2t
712 (77 25)
n—t

and we shall prove that there is no su¢h

Recall that forA € ([2”]) we definewalk(A) on Z? in the following way. The walk is
from (0,0) to (n,n) with 2n steps, and if € A (resp.i € A) then thei-th step is one unit up
(resp. one unit to the right). Let us define

o ={Ae (P) : |AN[t+44]| >t + 3¢ first holds at/ = i},

o= {Ae (P) :|An[2n—4¢ —t+1,2n]| < ¢first holds at’ = j}.

(Here we say that a proper(¢) first holds at’ =i iff P(¢) does not hold fof < ¢ <i and
P(i) holds.) IfA € 4 then, starting from the originyalk(A) touches the liné : y = 3x+t
at(i,3i +t) for the first time. IfA € o/ thenwalk(A) touches the lind, 1y = %(x —(n—
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t))+nat(n—3j—t,n—j) and after passing this point this walk never touches the line
again.
Let ¢; be the number of walks fror(0,0) to (i, 3i +t) which touch the lind_; only at

(i,3i +1). Then it follows that; = ﬁ(”’ii“) (see e.g. Fact 3 in [24]). Sef;= o/ N/

From now onj and j denote some fixed constants, and we consider the situatioro.
Then we have
o (2n=2t—-4(+])\ _ cc [2n—-2
Wﬂ_m]( n—t—3i—j )N24(i+1) n-t ) (26)

By Fact 2 and Fact 3 every walk corresponding to a membef edbuches both.; and
Lo. Thus we haveZ C | ; #j: SetFj= «jn.# and
Gi={FNn[di+t+1,2n—-4j—-t]:F € 7}
Clearly we have.7; 1 < cicj|%]. So we can bounfZ;; by bounding|%;1.

Claim 2. %y C ([le’]z_r}__tj_ 41 js 3-wise1-intersecting.

Proof. Suppose on the contrary that there eAid, C € ¢%;;such thahnBNC = 0. By the
shiftedness we may assume tAat T,BUT,CUT € .# whereT = tju{2n—t—4i+1:
0 <i < j}. Then using shiftedness again we may also assume that the following three
subset®\',B’,C’ belong to.7:

A = [tJUAU{2n—t—4i+1:0<i< j},

B = [tjuBU{2n—t—4i:0<i<j},

C' = [fjJuCu{2n—t—4i—-1:0<i<j}.

Then we havé\' "B'NC’ = [t], which contradicts (24). O
By Claim 2 and Theorem 1 we can bouj¥;{, and we have
n—2t—4j—1\ 1
11 < oot < ooy (2T Skt @)

By considering the complement we also have
1+0(1)
2

Claim 3. %7 C ([t+n5_’%rfjt_*34”) is 3-wise 1-intersecting.

|Fiol <

| g (28)

Proof. Suppose on the contrary that there edisB,C € ¢, such thahnBNC = 0. By
the shiftedness we may assume that the following three sulis&sC’ belong to.%:

A = (t+4-{tHh)UAU{2n—-t—4i+1:0<i< |},

B = (t+4]-{t+1}H)uBU{2n—-t—4i:0<i<j},

C' = (t+4—-{t+2))uCcu{2n—t—4i—1:0<i<j}.
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If there existsF € .# such thatF N[t +4]| <t+ 2 then using the shiftedness we may
assume thaE N[t +4] = [t + 2. But this is impossible becaugenB' NC'NF = [t — 1],
contradicting the 4-wiseintersecting property. So we may assume tRat[t+4|| >t+3
holds for allF € .#. In other wordswalk(F ) passeg0,t +4) or (1,t + 3). Sincewalk(F)
touches the liné,, Proposition 11 implies

|ﬁ|Sat(zn_:_A')+(1+£)(t+4)at(2nn_tl_4) ~ (t+5)at2~ 4(2” tZt)

wherea = 0.54is the root of the equatioX* — 2X 41 = 0. The RHS is less thaff"_¥)
fort < 5and this contradicts (25).

By Claim 3 and Theorem 1 we have

1+o( ) 1+0(1)

[Faji < ——lenjl and |Fig] < |1l (29)
Let| be the set of 18 pairs of indices:
| ={(i,j)eN?:i>0,j>0,i+j<5min{i,j} <1}.
By (27), (28) and (29) we have
y 17 < 2 sy (30)
(i,el (i,Del

By Proposition 12 (setting=r = 4, s=t andu = v = 0) we have
2n
> |yt < (1+0(1))02t(n). (31)
Xy

Finally, by (30), (31) and (26), we have
Zl = Y IFH+ Y PGS Y T+ Y |yl

(i,])el (xy)¢l (i,))el (xy)¢l

1+o
< s .ﬂ+< = Y wm)

(i,])el Xy (i,))el
1
< (1+0(1 ( § Z \ﬂ,ﬁ)
(i,))el

N x 1 CiCj 2n—2t
< (@23 5 >)<n_t )

Noting thatc; = gzt (*") one can verify that the RHS is less tha®98(*0—) for 1 <

t < 4, which contradicts (25). This completes the proof of Theorem 8. O
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5. INTERSECTINGSPERNER FAMILIES

Recall that am-wiset-intersecting familyZ ¢ 2" is called non-trivial if| e | < t.
Let m*(n,k,r,t) be the maximal size df-uniform non-trivialt-intersecting families om
vertices.

Theorem 18. Letr > 4 andt be fixed positive integers. Suppose that there exists
y(r,t) > 0 ande = &(y) > 0 such thatr*(n,k,r,t) < (1—y) (i) holds for| & — 1| < & and
n>no(g). Let.Z7 c 2" be arr-wiset-intersecting Sperner family. Then we havg| <

([ﬂ%ﬁ) for n > ng(&). Equality holds ift# = {F ¢ ([E]) L [t] C F} wherek=t+["'] or
k=t+ %],

Proof of Theorem 180ur proof is based on the idea from [4]. For a famiyc 2", set
F=FN ([E]). Lety > 0 ande > 0 be as in the theorem and $et= {ke N: (3 —¢)n<
k< (% + €)n}. First we prove the following inequality.

Claim 4. Let.Z c 2" be a non-trivialr-wise t-intersecting Sperner family with >
ni(€,y). Then we haveg oy | Z|/ (1) < 1.

Proof. First suppose that),.x -Z is trivial and|t] C F holds for allF € Jyck -Zk. Since
Z is non-trivial, we can find=’ € .# such that|[t| "F’| <t. Thus, for eachk € K,
F={F —[t| : F € #} is (r — 1)-wise l-intersecting, and we have

n—-t—1 K/n—t 1 n—t
7| = |7} < - 2

which gives the desired inequality. Thus we may suppose jpat -Z is non-trivial. We
provey ek |- Zkl/ (ki ;) < 1— yfor n > by induction on the number of nonze&|’s.

If this number is one then the inequality follows from the assumption of Theorem 18.
If it is not the case then latbe the smallest angl the second-smallest index K for
which|.Zy| # 0. Set.#° = {[n|—F : F € %} C (n@,) Since.%; is r-wiset-intersecting,
it follows from our assumption om*(n,k,r,t) that| 7| = |.Z¢| < (") = (I_}). Then by
Proposition 13, we have

B0 (70 ) _ () @)
T ) ()
Set9; = {G ¢ () : G5 3F € #}. Due to (32) and the fac¥j = (A (F°))°, we
have|#;|/(12) > |#il/ (7). Since.# is Sperner,ZN%; = 0and.? = (F — %) U%,
is anr-wise t-intersecting Sperner family. Moreover, the number of nonzef’s is
one less than that df%y|'s. Therefore, by the induction hypothesis and the fact that

FNAH = Fi U9}, we have
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which completes the proof of the claim. O

We continue to prove Theorem 18. L& c 2" be anr-wiset-intersecting Sperner
family. First suppose tha# fixest-element set, sajf]. Then¥ = {F\[t]:F € #} C
2lt+1nl is a Sperner family. Thus by the Sperner Theorem [20] we have

#1-91= ()

. e —t —t
Equality holds iff =~ ([(n[rlt)}ﬂ) or (L(n[rlt)}/ZJ)'
Next suppose tha¥ is non-trivial. By Claim 4, we have

|- Z| B
1-y> — 2 —-
20 & (o

On the other hand, by the Yamamoto (or LYM) inequality [26], we have
o o
(gK
Therefore, we have

O =& o)
712090 gy * ((%f o) < (oroy21)

for sufficiently largen. O

Now sett, for 4 <r < 10as follows.

r|4 5 6 7 8 9 10
t |7 18 41 89 184 377 762

By Theorem 18 and Theorem 17 we have the following result, which includes Theorem 10.

Theorem 19. Let4<r <10, 1<t <t and let.# c 2" be anr-wiset-intersecting
Sperner family wittn > ng. Then we havéZ | < ((”*ﬁ). Equality holds iff# = {F ¢

nt
([E]) :t] C F} wherek =t + (nT—q ork—=t+ LnT_tJ-
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