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Abstract

We consider the maximal size of families of k-element subsets of an n element set [n]
that satisfy the properties that every r subsets of the family have non-empty intersection,
and no ℓ subsets contain [n] in their union. We show that for large enough n, the largest
such family is the trivial one of all

(
n−2
k−1

)
subsets that contain a given element and do

not contain another given element. Moreover we show that unless such a family is such
that all subsets contain a given element, or all subsets miss a given element, then it has
size at most .9

(
n−2
k−1

)
.

We also obtain versions of these statements for weighted non-uniform families.

Keywords: Erdős–Ko–Rado Theorem, Brace-Daykin, intersecting union family,
random walk, p-weight

1. Introduction

Since Erdős, Ko, and Rado showed in [6] that a pairwise intersecting family of k
element subsets of an n element set has size at most

(
n−1
k−1

)
(for n ≥ 2k), there have been

a string of variations and generalisations finding the maximum size of families satisfying
various intersection conditions. We continue in this line. In these results, the maximum
families, which we call extremal configurations, often have very simple constructions. It
is often the case that such extremal configurations are unique, and moreover, are stable
in the following sense: the size of a family satisfying the given intersection conditions is
much smaller than optimal unless the family is a subfamily of the extremal configuration.
(See [4, 13, 16, 19, 20, 21] for some related stability type results.) In this article, we
will show such phenomenon concerning families of subsets with intersecting and union
properties.

Let [n] = {1, 2, . . . , n}. A family F ⊂ 2[n] is called r-wise t-intersecting if |F1 ∩
· · · ∩ Fr| ≥ t holds for all F1, . . . , Fr ∈ F . Briefly, we say such a family F is I(rt). A
family F ⊂ 2[n] is called r-wise t-union, or F is U(rt), if |F1 ∪ · · · ∪ Fr| ≤ n − t holds
for all F1, . . . , Fr ∈ F . Notice that F is U(rt) if and only if the complement family
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Fc := {[n] \ F : F ∈ F} is I(rt). We say F is IU(rt, ℓs) if F is I(rt) and U(ℓs). It is
known that

if F ⊂ 2[n] is IU(21, 21), then |F| ≤ 2n−2 (1)

by Marica and Schonheim [18], Daykin and Lovász [3], Seymour [23], Anderson [1],
Kleitman [17], etc. The following example gives several different extremal configurations.

Example 1. Let n = n1 + n2. Choose an I(21) family F1 ⊂ 2[n1] and a U(21) family
F2 ⊂ 2[n1+1, n1+n2]. Then, F1×F2 = {F1∪F2 : F1 ∈ F1, F2 ∈ F2} ⊂ 2[n] is an IU(21, 21)
family with size |F1||F2|. We notice that there are many choices of Fi with |Fi| = 2ni−1.

An IU(r1, ℓ1) family is a fortiori IU(21, 21), so bound (1) holds also for IU(r1, ℓ1)
families. Further, some of the families suggested in Example 1 that reach this bound are
IU(r1, ℓ1) families. The main results of this paper are variations on the bound (1) for
IU(r1, ℓ1) families. Our first main result extends it to a weighted version, and our second
main result is a variation for k-uniform families.

1.1. The p-weight version

To extend (1), we consider a weighting of families as follows. Throughout this paper
let p, q ∈ (0, 1) with p+ q = 1. Define the p-weight of F ⊂ 2[n] by

wp(F : [n]) = wp(F) =
∑
F∈F

p|F |qn−|F |.

For p = 1/2 we have w1/2(F) = |F|/2n. So, (1) can be restated as follows: if F ⊂ 2[n] is
IU(21, 21), then w1/2(F) ≤ 1/4. Observe that the family F = {F ⊂ [n] : 1 ∈ F, n ̸∈ F}
is IU(r1, ℓ1) for any r, ℓ ≥ 2 with wp(F) = pq. Our first result is the following.

Theorem 1. Let r, ℓ ≥ 3, and let F ⊂ 2[n] be IU(r1, ℓ1). If 1/ℓ ≤ p ≤ (r − 1)/r, then
wp(F) ≤ pq.

Intuitively, the range of p in the theorem corresponds to those values for which a
family of subsets of size pn do not satisfy one or other of the intersection conditions
by simple set size considerations. The following shows that this range of p cannot be
extended.

Example 2. If p < 1/ℓ, then Fn = {F ∪{n} : F ⊂ [n− 1], |F | < (n− 1)/ℓ} is IU(r1, ℓ1)
with wp(Fn) → p as n → ∞. If p > (r−1)/r, then Fn = {F ⊂ [n−1] : |F | > r−1

r (n−1)}
is IU(r1, ℓ1) with wp(Fn) → q as n → ∞.

We believe that the extremal configurations for Theorem 1 are unique, that is,
wp(F) = pq iff F ∼= {F ⊂ [n] : 1 ∈ F, n ̸∈ F}. Where

∩
F =

∩
F∈F F and

∪
F =∪

F∈F F , the salient properties of this family F are that (i) |
∪

F| ≤ n − 1, so F is
trivially U(ℓ1), and (ii) |

∩
F| ≥ 1, so that F is trivially I(r1). We cannot prove the

statement that “wp(F) < pq unless F satisfies (i) and (ii)” however, we can prove the
following stability result.

Theorem 2. Let r, ℓ ≥ 3. If F ⊂ 2[n] is IU(r1, ℓ1) and 1/ℓ < p < (r − 1)/r, then
wp(F) ≤ 0.9pq unless (i) |

∪
F| ≤ n− 1, or (ii) |

∩
F| ≥ 1.
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The following example shows that this stability result cannot be extended, as is, to
families satisfying just one of (i) or (ii).

Example 3. Let Fn = {[2, n − 1]} ∪ {F ⊂ [n − 1] : 1 ∈ F, |F | > r−2
r−1 (n − 1)}. Then

Fn is an IU(r1, ℓ1) family with |
∪
F| ≤ n − 1 and |

∩
Fn| = 0. A computation shows

that wp(Fn) → pq if (r − 2)/(r − 1) < p ≤ (r − 1)/r. By considering the complement
family, one can construct an IU(r1, ℓ1) family Gn with |

∪
Gn| = n and |

∩
Gn| ≥ 1, and

with wp(Gn) → pq for 1/ℓ ≤ p < 1/(ℓ− 1).

These examples occur at the outer ends of the range of p from Theorem 2. We expect
that this is necessary and ask the following.

Problem 1. Let r, ℓ ≥ 3, and let F ⊂ 2[n] be IU(r1, ℓ1) with |
∩
F| = 0 or |

∪
F| = n.

Then, does there exist ϵ > 0 such that wp(F) ≤ (1 − ϵ)pq holds for all 1/(ℓ − 1) ≤ p ≤
(r − 2)/(r − 1)?

The answer is affirmative if p is close to 1/2 and r, ℓ ≥ 4, see [26, 28]. Further, it
is affirmative in the case r = ℓ = 3 by a result of Brace and Daykin [2] which implies
that the maximum (1/2)-weight of an IU(r1, ℓ1) family with |

∩
F| = 0 or |

∪
F| = n is

max{(r + 2)/2r+2, (ℓ+ 2)/2ℓ+2} for r, ℓ ≥ 3.
To give an easy proof for Theorem 1, we use a weighted version of an inequality of

Kleitman. Recall that a family F ⊂ 2[n] is called a complex if F ∈ F and G ⊂ F imply
G ∈ F , and that a family G ⊂ 2[n] is called a co-complex if the complement family
Gc := {[n] \G : G ∈ G} is a complex. Kleitman proved that if F is a complex and G is a
co-complex, then |F ∩ G| ≤ |F||G|/2n. This result can be extended as follows.

Theorem 3. Let F ⊂ 2[n] be a complex and G ⊂ 2[n] be a co-complex. Then,

wp(F ∩ G) ≤ wp(F)wp(G).

In Section 2 we prove Theorem 3 and then Theorem 1, and then observe several other
consequences of Theorem 3. We also compare the asymptotic behavior of the maximum p-
weight of IU(r1, ℓ1) families in the cases that p = 1/2 and otherwise. Theorem 2 depends
on our main result about k-uniform families, so is proved at the end of Section 4.

1.2. The k-uniform variation

Our second main result deals with k-uniform families– we consider the maximum size
of k-uniform IU(r1, ℓ1) families F ⊂

(
[n]
k

)
. The 2-wise case, r = ℓ = 2, follows from the

Erdős-Ko-Rado theorem [6] (cf. Lemma 9 for a generalized version). That is, if F ⊂
(
[n]
k

)
is IU(21, 21), then

|F| ≤

{(
n−1
k

)
if n ≤ 2k,(

n−1
k−1

)
if n ≥ 2k.

(2)

The extremal configurations are unique (up to isomorphism) unless n = 2k. They are(
[n−1]

k

)
for n < 2k, and its complement family for n > 2k. Theorem 5 in Section 2 can

be seen as a p-weight version of (2).

Engel and Gronau showed the following in [5]. Let r ≥ 4, ℓ ≥ 4 and F ⊂
(
[n]
k

)
. If F

is IU(r1, ℓ1) and
n−1
ℓ + 1 ≤ k ≤ r−1

r (n− 1), (3)
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then |F| ≤
(
n−2
k−1

)
with equality holding iff F ∼= F0(n, k, 1), where F0(n, k, t) = {F ∈(

[n−t]
k

)
: [t] ⊂ F}. By constructions similar to those in Example 2, one can show that

the condition (3) is necessary. The 3-wise case is more difficult, and the following is

proved in [12]. If F ⊂
(
[2n]
n

)
is IU(31, 31), then |F| ≤

(
2n−2
n−1

)
with equality holding iff

F ∼= F0(2n, n, 1).
Our main result is an extension of these results for large n.

Theorem 4. Let r, ℓ ≥ 3. There exists some n0 such that for all n > n0 the following
holds. If F ⊂

(
[n]
k

)
is IU(r1, ℓ1) with k satisfying (3) then |F| ≤

(
n−2
k−1

)
. Equality holds

iff F ∼= F0(n, k, 1). Moreover, we have |F| < 0.9
(
n−2
k−1

)
unless (i) |

∪
F| ≤ n − 1, or (ii)

|
∩

F| ≥ 1.

Again, the following example shows that the stability part of the theorem cannot
be extended to families satisfying (i) or (ii). See Example 2 in [28] for more general
constructions. For integers a < b, the notation [a, b] denotes the set {a, a+ 1, . . . , b}.

Example 4. Construct an IU(r1, ℓ1) family Fn ⊂
(
[n]
k

)
satisfying |

∪
Fn| ≤ n − 1 and

|
∩

Fn| = 0 by

Fn = {[2, k + 1]} ∪ {F ⊂ [n− 1] : 1 ∈ F, |F ∩ [2, k + 1]| > r−2
r−1k}.

Standard bounds on deviations of the hypergeometric distribution (see [15]), give for fixed
p = k/n that |Fn|/

(
n−2
k−1

)
→ 1 as n → ∞ if (r − 2)/(r − 1) < p ≤ (r − 1)/r. Similarly

one can also construct an IU(r1, ℓ1) family Gn with |
∪

Gn| = n and |
∩
Gn| ≥ 1, and with

|Gn|/
(
n−2
k−1

)
→ 1 for 1/ℓ ≤ p < 1/(ℓ− 1).

For the 4-wise case, the following is also known [26]. Let 1 ≤ t ≤ 4. If F ⊂
(
[2n]
n

)
is

IU(4t, 4t), then |F| ≤
(
2n−2t
n−t

)
for n > n0 with equality holding iff F ∼= F0(2n, n, t).

In Section 3 we prepare some tools to prove Theorem 4. We prove Theorem 4 in
Section 4, and then use it to prove Theorem 2.

2. Extending the Kleitman inequality

Proof of Theorem 3. The proof is by induction on n. Define F(n),F(n̄) ⊂ 2[n−1] by

F(n) = {F \ {n} : n ∈ F ∈ F}, F(n̄) = {F : n ̸∈ F ∈ F}.

Define G(n) and G(n̄) similarly. Let d0 = wp(F(n) : [n − 1]), d1 = wp(F(n̄) : [n − 1]),
u0 = wp(G(n) : [n− 1]), u1 = wp(G(n̄) : [n− 1]). Then,

wp(F ∩ G : [n]) = pwp(F(n) ∩ G(n) : [n− 1]) + qwp(F(n̄) ∩ G(n̄) : [n− 1]).

By the induction hypothesis, the RHS is ≤ pd0u0 + qd1u1.
Since F(n) ⊂ F(n̄), we have d0 ≤ d1. Similarly, we have u0 ≥ u1, and so (d0 −

d1)(u0 − u1) ≤ 0. Thus,

wp(F)wp(G) = (pd0 + qd1)(pu0 + qu1)

≥ (pd0 + qd1)(pu0 + qu1) + pq(d0 − d1)(u0 − u1)

= pd0u0 + qd1u1 ≥ wp(F ∩ G),

as desired.
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It is useful to introduce notation for the maximum size of a IU(rt, ℓs) family. Let

g(n, rt, ℓs) = max{|F| : F ⊂ 2[n] is IU(rt, ℓs)}.

Thus, for example, (1) and Example 1 give g(n, 21, 21) = 2n−2. Frankl proved g(n, 21, 2t) =
|K(n− 1, t)| in [7], where

K(n, t) =

{
{K ⊂ [n] : |K| ≥ (n+ t)/2} if n+ t is even,

{K ⊂ [n] : |K ∩ [2, n]| ≥ ((n− 1) + t)/2} if n+ t is odd.

For the case n = 4s, he conjectured g(n, 22, 22) = |F2|, where

F2 = {F ⊂ [4s] : |F ∩ [2s]| ≥ s+ 1, and |F ∩ [2s+ 1, 4s]| ≤ s− 1}.

The family F2 is 2-intersecting on [1, 2s] and 2-union on [2s+1, 4s]. Notice that |F2|/2n →
1/4. For the general case, Frankl conjectures that g(n, 2t, 2s) = maxi |K(i, t)||K(n−i, s)|.
If this is true, then g(n, 2t, 2s)/2n → 1/4 as n → ∞ for fixed t, s.

For the p-weight version, we analogously let

fp(n, r
t, ℓs) = max{wp(F) : F ⊂ 2[n] is IU(rt, ℓs)}.

Notice that fp(n, r
t, ℓs) ∈ [0, 1] and wp(F) = wq(Fc). For p = 1/2 we have f1/2(n, r

t, ℓs) =
g(n, rt, ℓs)/2n. Thus, for example, g(n, 21, 21) = 2n−2 gives f1/2(n, 2

1, 21) = 1/4.

Proof of Theorem 1. Suppose that F ⊂ 2[n] is a maximal IU(rt, ℓs) family. Then F∗ =
{G ⊂ [n] : G ⊂ F, F ∈ F} is an U(ℓs) complex, and F∗ = {G ⊂ [n] : G ⊃ F, F ∈ F} is
an I(rt) co-complex. Since F is maximal, F = F∗ ∩ F∗, so it follows from Theorem 3
that

fp(n, r
t, ℓs) ≤ fp(n, r

t, ∗)fp(n, ∗, ℓs) = fp(n, r
t, ∗)fq(n, ℓs, ∗), (4)

where ‘∗’ indicates the empty restriction. Combining (4) with f1/2(n, 2
1, ∗) = 1/2, we

get f1/2(n, 2
1, 21) ≤ 1/4. In fact, this was the idea for proving (1) in [17]. Similarly,

Theorem 1 immediately follows from (4) and a p-weight version of the Erdős–Ko–Rado
theorem from [10] which states that fp(n, r

1, ∗) = p for r ≥ 3 and p ≤ (r − 1)/r.

One can also consider the behaviour of fp(n, r
t, ℓs) as n goes to infinity. If F ⊂ 2[n] is

IU(rt, ℓs), then so is F ∪{F ∪{n+1} : F ∈ F}. This gives fp(n, rt, ℓs) ≤ fp(n+1, rt, ℓs).
So, we can define fp(r

t, ℓs) = limn→∞ fp(n, r
t, ℓs). Frankl’s conjecture being true would

then imply that f1/2(2
t, 2s) = 1/4.

Theorem 5. fp(2
1, 21) = min{p, q} for p ̸= 1/2.

Proof. First, let p < 1/2. Choose 0 < ϵ < p so that p+ ϵ < 1/2. Let I = ((p− ϵ)n, (p+
ϵ)n) ∩ N. As the binomial distribution B(n, p) is concentrated around pn, we have

lim
n→∞

∑
k∈I

(
n−1
k−1

)
pkqn−k = p, and lim

n→∞

∑
k ̸∈I

(
n
k

)
pkqn−k = 0.

Let F ⊂ 2[n] be IU(21, 21), and let Fk be the subfamily of all k element sets. Then by
(2) we have |Fk| ≤

(
n−1
k−1

)
for k ∈ I. As n → ∞, we have

wp(F) ≤
∑
k∈I

|Fk|pkqn−k +
∑
k ̸∈I

(
n
k

)
pkqn−k ≤

∑
k∈I

(
n−1
k−1

)
pkqn−k + o(1) = p+ o(1).
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On the other hand, F = {F ⊂ [n] : 1 ∈ F, |F | < n/2} is IU(21, 21) with wp(F) > p−o(1).
Thus we have fp(2

1, 21) = p for p < 1/2. The proof for the case p > 1/2 is similar.

We omit the details, but a similar proof would show that

fp(r
1, ℓ1) =

{
p if p < 1/ℓ,

q if p > (r − 1)/r.

for r, ℓ ≥ 2. Thus fp(r
1, ℓ1) is not a continuous function of p at p ∈ {1/ℓ, (r − 1)/r}.

Problem 2. Find conditions on n, r, ℓ, t, s, p so that

fp(n, r
t, ℓs) = ptqs. (5)

For t = s = 1, (5) is true if 1/ℓ ≤ p ≤ (r − 1)/r by Theorem 1 and false otherwise,
by Example 2. Using Theorem 3 and results concerning the maximum p-weight of I(rt)
families, (5) can be shown to hold for several other special cases. Some such cases are:
[9] r = ℓ = 3, t = s = 2, and |p − 1/2| < 0.0018; [25] r = ℓ = 3, t, s ≥ 26, and
1− 2√

4s+9−1
≤ p ≤ 2√

4t+9−1
; [26] r = ℓ = 4, s, t ∈ [1, 7] and |p− 1/2| < ϵ for some ϵ > 0;

[26, 27] r, ℓ ≥ 5, 1 ≤ t ≤ 2r − r − 1, 1 ≤ s ≤ 2ℓ − ℓ − 1, and |p − 1/2| < ϵ for some
ϵ = ϵ(r, ℓ, t, s); [30] for all p ∈ (0, 1), r > r(p), ℓ > ℓ(p), 1 ≤ t ≤ (p1−r − p)/q − r, and
1 ≤ s ≤ (q1−ℓ − q)/p − ℓ. It would also be interesting to get corresponding results for
k-uniform families.

3. Tools

In this section we present some tools that will be used in the proof of Theorem 4.
The (i, j)-shift Si,j(F) of a family F ⊂ 2[n] is the family {Si,j(F ) : F ∈ F} where

Si,j(F ) =

{
(F \ {j}) ∪ {i} if F ∩ {i, j} = {j} and (F \ {j}) ∪ {i} ̸∈ F ,

F otherwise.

One can easily verify that |Si,j(F)| = |F| and that if F is IU(rt, ℓs) then Si,j(F) is. A
family F is called shifted if Si,j(F) = F for all 1 ≤ i < j ≤ n. For any given family,
one can always obtain a shifted family by repeatedly shifting the family (finitely many
times). So to estimate the size of a maximum IU(rt, ℓs) family, we can always assume
that it is shifted. See [8] for more details.

Now we introduce Frankl’s random walk method. Associate
(
[n]
k

)
with the set of n-

step walks from (0, 0) to (n − k, k) on Z2 as follows. Let F ∈
(
[n]
k

)
correspond to the

n-step walk in which the i-th step is one unit up if i ∈ F and one unit right otherwise.
Roughly speaking, shifting a set F moves the corresponding walk up and to the left,

as is demonstrated in Figure 1. The bold line is the walk corresponding to the set
F = {2, 3, 6, 8, 9, 11, 12} ∈

(
[12]
7

)
and the dotted line is the walk corresponding to a subset

in S4,11(F).
The main idea behind the random walk method is that a walk in a shifted I(rt) family

hits some line determined by r and t. For example, the line for I(31) is y = 2x + 1. To
see this, consider F = {2, 3, 5, 6} whose walk does not hit the line. If F is in a shifted

6



Figure 1: Shifting moves a walk up and to the left

I(31) family F , then {1, 3, 4, 6} and {1, 2, 4, 5} would also be in F , but these 3 subsets
do not satisfy the intersection property I(31). Thus F cannot be in F . More generally,
we have the following, see [8, 29], which enables us to bound the size of an I(rt) family
by counting the number of walks touching the corresponding line.

Lemma 6. Let F ⊂
(
[n]
k

)
be a shifted I(rt) family. Then for every F ∈ F the walk

associated to F touches the line y = (r − 1)x+ t.

The next lemma estimates the number of walks touching a line y = 2x+ t. To state
the result, let p ∈ (0, 1), q = 1 − p, and let αr,p ∈ (p, 1) be the root of the equation
X = p + qXr. Observing that this is equivalently the root in the interval (0, 1) of the
equation 1/(1− p) = 1 +X +X2 + · · ·+Xr−1, one can show that αr,p is continuous as
a function of p on this interval. (In fact one can expand αr,p as a power series of p, that

is, αr,p =
∑

k≥0
1

rk+1

(
rk+1

k

)
p(r−1)k+1qk, but we will not use this.)

Lemma 7 ([11]). Let p ∈ Q and t ∈ N be fixed constants. Then, for every ϵ > 0 there
exists n0 such that for all n, k ∈ N with n ≥ n0, p = k/n, and p < 2/3, the following
holds: the number of walks from (0, 0) to (n − k, k) which touch the line L : y = 2x + t
is at most (αt

3,p + ϵ)
(
n
k

)
. Moreover, if p < 0.51, then one can take ϵ = 0.

Lemma 6 defines a property of the walks corresponding to the sets in a shifted I(rt)
family. As the complement family of a U(ℓs) family is I(ℓs) one gets a dual statement
about the walks corresponding to sets in such a family. Making the coordinate transfor-
mation x′ = k− y and y′ = (n− k)− x, we get that every walk in a shifted U(ℓs) family
touches the line y′ = (ℓ− 1)x′ + s, which is equivalently y = 1

ℓ−1 (x− (n− k− s))+ k. So

walks in an IU(rt, ℓs) family touch both lines, see Figure 2. The number of such walks
for the case r = ℓ = 3 can be bounded by the following result.

Lemma 8. Let 0 < p ≤ 1/2 and s, t ∈ N be fixed constants. Then, for every ϵ > 0,
there exists n0 such that for all n, k ∈ N with n ≥ n0, p = k/n. the following holds: the
number of walks from (0, 0) to (n − k, k) which touch both of the lines L1 : y = 2x + t
and L2 : y = 1

2 (x− (n− k − s)) + k is at most (αt
3,pα

s
3,q + ϵ)

(
n
k

)
.
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(0, 0)

(n− k, k)

L1

L2

Figure 2: The two lines for IU(32, 41)

Proof. Let ϵ > 0 be given. First assume that n is even. The idea of the proof is as
follows. All walks from (0, 0) to (n− k, k) hit the line L0 : x+ y = n/2 after n/2 steps.
Most of them hit L0 near the center point c = (n−k

2 , k
2 ). We will choose constants and

define “near the center” Cn ⊂ L0 so that

N1 := #{walks from (0, 0) to (n− k, k) that do not hit Cn} < ϵ
2

(
n
k

)
(6)

and
N2 := #{walks that hit L1, L2, and Cn} < (αt

3,pα
s
3,q +

ϵ
2 )
(
n
k

)
. (7)

Thus the number of walks that hit L1 and L2 is at most N1 +N2 < (αt
3,pα

s
3,q + ϵ)

(
n
k

)
, as

needed.
Let µj

(
n
k

)
be the number of walks from (0, 0) to (n−k, k) which cross L0 at the point

(n/2− j, j), namely, let

µj =

(
n/2
j

)(
n/2
k−j

)(
n
k

) .

For c > 0, let Jn = {j ∈ N : |j − k/2| ≤ c
√
n}. Then a variant of the central limit

theorem gives

lim
n→∞

∑
j∈Jn

µj =
1√
2π

∫ 2c√
pq

−2c√
pq

exp(−x2/2)dx.

Choose c > 0 so that the above quantity is more than 1 − ϵ/4, and choose n1 so that∑
j ̸∈Jn

µj < ϵ/2 holds for all n > n1. Let Cn = {(n/2 − j, j) : j ∈ Jn} ⊂ L0. Then we
have (6) for n > n1.

Now we look at the walks that do hit Cn. Since α3,z is a continuous function of z
around p, we can choose δ > 0 so that

αt
3,z < (1 + ϵ/5)αt

3,p and αs
3,1−z < (1 + ϵ/5)αs

3,q (8)

hold for all z with |z−p| < δ. Choose n2 so that 2c/
√
n2 < δ. For j ∈ Jn and n > n2, we

have |j−k/2| ≤ c
√
n. Let z = 2j/n. Then we have |z−p| = | 2jn − k

n | =
2
n |j−

k
2 | <

2c√
n
< δ.

That is, if j ∈ Jn and z = 2j/n, then |z − p| < δ.
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Now we choose n3 from Lemma 7 so that for all n, j, z with n > n3, z = j/(n/2)
and |z − p| < δ, the following holds: the number of walks from (0, 0) to (n/2− j, j) that
hit L1 is ≤ αt

3,z, and the number of walks from (n/2 − j, j) to (n − k, k) that hit L2

is ≤ αs
3,1−z. Finally choose n sufficiently large, i.e., n > n0 := max{n1, n2, n3}. Then,

letting z = 2j/n, we have N2 <
∑

j∈Jn
αt
3,z

(
n/2
j

)
αs
3,1−z

(
n/2
k−j

)
. By (8) we get

N2 <
∑
j∈Jn

(1 + ϵ/5)2αt
3,p

(
n/2
j

)
αs
3,q

(
n/2
k−j

)
< (1 + ϵ/2)αt

3,pα
s
3,q

(
n
k

)
,

where we used
∑n

j=0

(
n/2
j

)(
n/2
k−j

)
=

(
n
k

)
. This gives (7), and this completes the proof for

the case that n is even.
In the case that n is odd, we use the line x+ y = (n+1)/2 instead of x+ y = n/2 to

define Cn. The rest of the proof is almost identical.

With a more careful choice of constants, one can prove Lemma 8 not only for p ≤ 1/2
but also for p < 2/3. Moreover, one can extend Lemma 8 to r ≥ 4 and p ≤ (r−1)/(r+1).
The number of walks in this case is at most (αt

r,pα
s
r,q+ϵ)

(
n
k

)
, because Lemma 7 holds with

ϵ = 0 in this situation as well. However, it is known that ϵ > 0 is necessary in Lemma 8,
see [24]. For the proof of Theorem 4 we will only need Lemma 8 in the generality given,
so we refrain from proving a more general version.

The corresponding p-weight version of Lemma 8 is easier. In fact, if F ⊂ 2[n] is I(rt),
then wp(F) ≤ αt

r,p, see [28, 29]. Thus, using (4), we have

fp(n, r
t, ℓs) ≤ αt

r,pα
s
ℓ,q. (9)

4. Extending the Engel–Gronau inequality

Let 0 < p < 1 and q = 1 − p be fixed. Let k = pn. We will frequently use the fact
that for fixed a, b ∈ N, limn→∞

(
n−a
k−b

)
/
(
n
k

)
= pbqa−b. We also use the following version

of the Erdős–Ko–Rado Theorem. For the proof, see [8, 14], and also [21] for a stronger
version.

Lemma 9. Let r ≥ 2. If k ≤ r−1
r n and F ⊂

(
[n]
k

)
is I(r1), then |F| ≤

(
n−1
k−1

)
. If r ≥ 3,

then equality holds iff F ∼= F0(n, k, 1).

Proof of Theorem 4. Let r, ℓ ≥ 3, and n and k be integers satisfying (3). Let F ⊂(
[n]
k

)
be IU(r1, ℓ1). If F is not U((ℓ − 1)2), then we have F1, . . . , Fℓ−1 ∈ F such that

|F1 ∪ · · · ∪ Fℓ−1| = n − 1, say, F1 ∪ · · · ∪ Fℓ−1 = [n − 1]. Then, since F is U(ℓ1), we

have F ⊂
(
[n−1]

k

)
, which is case (i) from the statement of the theorem. Since F is I(r1)

and k ≤ r−1
r (n− 1), it follows from Lemma 9 that |F| ≤

(
n−2
k−1

)
with equality holding iff

F ∼= F0(n, k, 1). Similarly, if F is not I((r − 1)2), then we have Fc ⊂
(
[n−1]
n−k

)
, and this is

case (ii). Since F is U(ℓ1) and n−1
ℓ + 1 ≤ k, Lemma 9 gives the desired inequality.

So, we may assume that F is IU((r − 1)2, (ℓ− 1)2), on top of being IU(r1, ℓ1). This
implies, by definition, that F is IU(22, 22) and IU(31, 31). From this, we will show for
large enough n, that |F| < 0.9

(
n−2
k−1

)
, or equivalently, that |F|/

(
n
k

)
< 0.9pq + o(1), where

p = k/n and q = 1− p.
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When p ≤ 0.3 we use a result of Ray-Chaudhuri and Wilson [22], which states that
if H ⊂ 2[n] is L-intersecting, that is, H ∩ H ′ ∈ L ⊂ N for all distinct H,H ′ ∈ H, then
|H| ≤

(
n
|L|

)
. Now our family F is I(22) and therefore L = {2, 3, . . . , k − 1}-intersecting.

Thus we have |F| ≤
(

n
k−2

)
= (p/q3 + o(1))

(
n−2
k−1

)
< 0.9

(
n−2
k−1

)
for p ≤ 0.3 as needed.

Now we consider the case that 0.3 ≤ p ≤ 1/2. (If p > 1/2, then we consider Fc

instead of F .) Assume that F is shifted. Let

Ai = {A ∈
(
n
k

)
: |A ∩ [1 + 3x]| ≥ 1 + 2x first holds at x = i},

Aj̄ = {A ∈
(
n
k

)
: |A ∩ [n− 3x, n]| ≤ x first holds at x = j}.

So if A ∈ Ai then the walk corresponding to A touches the line y = 2x+1 at (i, 2i+1)
for the first time, and if A ∈ Aj̄ then the walk touches the line y = 1

2 (x− n+ k+ 1) + k
at (n− k − 2j − 1, k − j) for the last time.

Let Aij̄ = Ai ∩ Aj̄ . Then, F ⊂
∪

ij Aij̄ . Set

Fi := Ai ∩ F , Fj̄ := Aj̄ ∩ F , Fij̄ := Aij̄ ∩ F ,

fi := |Fi|/
(
n−2
k−1

)
, fj̄ := |Fj̄ |/

(
n−2
k−1

)
, fij̄ := |Fij̄ |/

(
n−2
k−1

)
,

ai := |Ai|/
(
n−2
k−1

)
, aj̄ := |Aj̄ |/

(
n−2
k−1

)
, aij̄ := |Aij̄ |/

(
n−2
k−1

)
,

and
Gij̄ = {F ∩ [3i+ 2, n− 3j − 1] : F ∈ Fij̄}.

If F ∈ Fij̄ , then |F ∩ [3i + 1]| = 2i + 1 and |F ∩ [n − 3j, n]| = j. This gives Gij̄ ⊂(
[3i+2,n−3j−1]

k−2i−j−1

)
. In particular, for i, j ∈ {0, 1}, we have

|Gij̄ | = |Fij̄ | ≤ |Aij̄ | =
(
n−3i−3j−2
k−2i−j−1

)
= (p2i+j+1qi+2j+1 + o(1))

(
n
k

)
,

and aij̄ = p2i+jqi+2j + o(1). (For i or j ̸∈ {0, 1}, things are more complicated.) The
following two claims are valid for all j, but we will use the case j ∈ {0, 1} only.

Claim 10. G0j̄ is I(21).

Proof. Suppose, to the contrary, that there are G1, G2 ∈ G0j̄ ⊂
(
[2,n−3j−1]

k−j−1

)
such that

G1 ∩G2 = ∅. These sets come from sets in F0j̄ ⊂ Aj̄ , which means they can be shifted
to sets containing {n− 3m− s : 0 ≤ m < j} for s = 1, 2.

Thus, by the shiftedness of F , we have Fs ∈ F for s = 1, 2 where Fs = {1} ∪ Gs ∪
{n − 3m − s : 0 ≤ m < j}. But F1 ∩ F2 = {1} contradicts our assumption that F is
I(22).

Claim 11. If G1j̄ is not I(21), then |F| < 0.8
(
n−2
k−1

)
.

Proof. Choose G1, G2 ∈ G1j̄ ⊂
(
[5,n−3j−1]

k−j−3

)
such that G1 ∩ G2 = ∅. Then, by the

shiftedness, we have Fs ∈ F for s = 1, 2 where Fs = ([4] \ {s}) ∪ Gs ∪ {n − 3m − s :
0 ≤ m < j}. Since F1 ∩ F2 = {3, 4} and F is I(31), we must have |F ∩ [4]| ≥ 3 for all
F ∈ F . Indeed, if F ∈ F satisfies |F ∩ [4]| ≤ 2, then by the shiftedness we can assume
that F ∩ [4] ⊂ [2], which implies F1 ∩ F2 ∩ F = ∅, a contradiction.
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The walks from (0, 0) to (n − k, k), corresponding to sets F ∈ F , hit either (0, 4) or
(1, 3). Notice that the walk from (0, 0) to (0, 4) is unique but there are 4 walks from
(0, 0) to (1, 3). Thus we have |F| ≤

(
n−4
k−4

)
+ 4

(
n−4
k−3

)
= (p3/q + 4p2 + o(1))

(
n−2
k−1

)
, which is

less than 0.8
(
n−2
k−1

)
for p ≤ 0.4. So we may assume that p > 0.4.

As F is U(31) the walks also hit the line L : y = 1
2 (x − (n − k − 1)) + k. Using

the change of variables x′ = k − y and y′ = n − k − x, we see that (x, y) = (0, 4) or
(1, 3) corresponds to (x′, y′) = (k − 4, n− k) or (k − 3, n− k − 1), and L corresponds to
L′ : y′ = 2x′ + 1. Now we apply Lemma 7 to the complement of F . Namely, we count
the number of walks from (x′, y′) = (0, 0) to (n− k, k) passing through (k − 4, n− k) or
(k − 3, n− k − 1), which hit L′. Then it follows that

|F| ≤ (α3,q + o(1))
((

n−4
k−4

)
+ 4

(
n−4
k−3

))
= α3,q(p

3/q + 4p2 + o(1))
(
n−2
k−1

)
,

which is less than 0.8
(
n−2
k−1

)
for 0.4 < p ≤ 1/2.

So we may assume that G1j̄ is I(21). Recall that G1j̄ is a subfamily of
(
[5, n−3j−1]
k−2−j−1

)
and that G0j̄ is an I(21) subfamily of

(
[2, n−3j−1]

k−j−1

)
. Thus, for i, j ∈ {0, 1}, Lemma 9 gives

|Gij̄ | ≤
(
n−3i−3j−3
k−2i−j−2

)
= (p2i+j+2qi+2j+1 + o(1))

(
n
k

)
,

and
fij̄ ≤ p aij̄ = p(p2i+jqi+2j) + o(1).

Therefore we have

H1 :=
∑
i,j≤1

fij̄ = f00 + f01̄ + f10̄ + f11̄ < p(1 + pq2 + p2q + p3q3) + o(1).

Since
∑

i,j≥0 |Aij̄ | is the number of walks from (x, y) = (0, 0) to (n − k, k) which touch

both lines y = 2x+ 1 and y = 1
2 (x− (n− k − 1)) + k, it follows from Lemma 8 that∑

i,j≥0

|Aij̄ |/
(
n
k

)
=

∑
i,j≥0

aij̄
(
n−2
k−1

)
/
(
n
k

)
< α3,pα3,q + o(1).

Then, ∑
i≥2 or j≥2

fij̄ ≤
∑

i≥2 or j≥2

aij̄ =
∑
i,j≥0

aij̄ −
∑
i,j≤1

aij̄

< α3,pα3,q/(pq)− (1 + pq2 + p2q + p3q3) + o(1) =: H2,

and
|F|/

(
n−2
k−1

)
=

∑
i,j≥0

fij̄ =
∑
i,j≤1

fij̄ +
∑

i≥2 or j≥2

fij̄ ≤ H1 +H2.

The RHS is less than 0.9 for 0.3 ≤ p ≤ 1/2. This completes the proof of Theorem 4.

One can show Theorem 2 along the same lines, using (9) instead of Lemma 8. The
proof would be slightly easier. Here we deduce Theorem 2 from Theorem 4.
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Proof of Theorem 2. Let F ⊂ 2[n] be IU(r1, ℓ1). If F is not U((ℓ − 1)2), then as in the
proof of Theorem 4 we get (i). Similarly, if F is not I((r − 1)2), then we have (ii). So,
we may assume that F is IU((r − 1)2, (ℓ− 1)2).

Let ϵ > 0 be given. Then we can choose δ > 0 small enough and n0 large enough so
that the following three conditions hold for all n > n0:

• I := ((1− δ)pn, (1 + δ)pn) ∩ N ⊂ (nℓ , (1−
1
r )n),

• S1 :=
∑

k ̸∈I

(
n
k

)
pkqn−k < ϵ, and

•
(
n−2
n−1

)
< (pq + ϵ)

(
n
k

)
for all k ∈ I.

Let Fk = F ∩
(
[n]
k

)
. Then by Theorem 4, we have |Fk| < 0.9

(
n−2
k−1

)
< 0.9(pq + ϵ)

(
n
k

)
for

k ∈ I, and S2 :=
∑

k∈I |Fk|pkqn−k < 0.9(pq + ϵ). Thus, we have

wp(F) =
n∑

k=0

|Fk|pkqn−k ≤ S1 + S2 < 0.9pq + 2ϵ.

Now let Xn be the collection of families F ⊂ 2[n] which are IU(r1, ℓ1) with
∪
F = [n]

and
∩
F = ∅, and let fn = max{wp(F) : F ∈ Xn}. Notice that if F ∈ Xn then

F ∪ {F ∪ {n + 1} : F ∈ F} ∈ Xn+1, and fn ≤ fn+1. On the other hand, we have just
showed that for all ϵ > 0, fn < 0.9pq + 2ϵ for large enough n. Thus limn→∞ fn ≤ 0.9pq,
and so fn ≤ 0.9pq must hold for all n.
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