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1.
Burning Numbers b(G).
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Alon’s transmitting problem

• A finite connected graph G is given.
• There is a Sender outside the graph, and Sender has a
sequence of vertices a1,a2, . . . (called a burning sequence).

• Sender sends a message to a vertex ai at round i.
• A vertex received the message at any round will transmit it to
its neighbors at the next round.

• What is the minimum number of rounds (over all burning
sequences) required for all vertices to receive the message?

• Let b(G) be the minimum number (called a burning number).
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What is b(P9) ?

• • • • • • • • • round 1•
↓
a1

• • • • • • • • • round 2• • • •
↓

a1 a2

• • • • • • • • • round 3
↓

a1 a2 a3

(a1,a2,a3) is a burning sequence giving b(P9) ≤ 3.
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What is b(P9) ?

• • • • • • • • •

radius 2
1

0

↓ ↓ ↓

V(P9) is covered by 3 disjoint balls of radius 2, 1, 0.
b(P9) = 3. Indeed, b(Pn) = d

√
n e.

•

•

•

•

•

•

•

•

•

•

•

•
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What is b(Q3)?

a1
↓

round 1

a1 a2
↓

round 2

a1 a2

round 3
(a1,a2, ∗) is a burning sequence giving b(Q3) ≤ 3.
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Some facts about burning numbers

• b(G) was first introduced by Noga Alon (1992). Recently the
concept has been rediscovered and called “burning number.”

• Graph burning process is a model for the spread of influence.
• b(Kn) = 2, b(Pn) = d

√
ne, b(G) ≤ diam(G) + 1.

• Burning number conjecture (Bonato et al. 2016)
For every connected n-vertex graph G, b(G) ≤ d

√
ne.

• Graph burning problem is NP-complete.
(Instance) n-vertex graph G and k ≥ 2. (Question) Is b(G) ≤ k?

• Alon obtained the burning number of the hypercube graphs.
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Let Qn denote the n-dim hypercube, that is,

• V(Qn) = {0, 1}n = {(v1, . . . , vn) : vi ∈ {0, 1}}, and
• two vertices u and v are adjacent if #{i : ui 6= vi} = 1.

Theorem (Alon 1992)
b(Qn) = dn/2e+ 1.

• b(Qn) ≤ dn2e+ 1 is easy. Let a1 = 0 and a2 = 1.
• To get the lower bound, Alon used the fact that Qn is realized
as a polytope in Rn.
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2.
Eigenpolytopes

8/28



A toy example for an eigenpolytope

v1 v2

v3 v4

v5 v6

v7 v8

• •

• •

•

•

•

•
A =



0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0


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v1 v2

v3 v4

v5 v6

v7 v8

• •

• •

•

•

•

•
A =



1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1


Eigenvalues are 3, 1, 1, 1, − 1,−1,−1, −3.
Let θ = 1. (the 2nd largest eigenvalue)

dim(θ-eigenspace) = 3.
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column vectors are
ONB (orthonormal basis)
of θ-eigenspace

B = 1√
8



−1 −1 −1
−1 1 −1
−1 −1 1
−1 1 1
1 −1 −1
1 1 −1
1 −1 1
1 1 1



row vectors determine
8 points in R3 whose
convex hull is the cube

B = 1√
8



−1 −1 −1
−1 1 −1
−1 −1 1
−1 1 1
1 −1 −1
1 1 −1
1 −1 1
1 1 1


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a graph G

⇓

θ-eigenspace

⇓

a polytope P

• •

• •

•
•

•
•

(θ is the 2nd largest eigenvalue)
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Formal definition of an eigenpolytope

• Let G be an n-vertex graph.
• Let θ be the 2nd largest eigenvalue, and m be its multiplicity.
• Let B be an n×m matrix whose columns are ONB of the
θ-eigenspace.

• Let P ⊂ Rm be the convex hull of the n rows of B.
• P depends on the choice of ONB, but the inner product of any
two vertices of P is independent of the choice.

• We call P the eigenpolytope of G.
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Theorem (Godsil 1998, Eigenpolytopes of distance regular graphs)
Let G be distance regular and let P be the eigenpolytope of G.
Then G is the 1-skeleton of P if and only if it is one of the
following:
(a) a Hamming graph H(n,q),
(b) a Johnson graph J(n, k),
(c) a halved n-cube 1

2H(n, 2),
(d) the Schläfli graph, (e) the Gosset graph, (f) the icosahedron, (g) the
dodecahedron, (h) the complement of r copies of K2, or (i) a cycle Cn.

cf. The n-dim hypercube Qn is H(n, 2).
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3.
Results and proof ideas
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Our results (Tanaka-T 2025+)
(a) For Hamming graphs, we have⌊(

1− 1
q

)
n
⌋
+ 1 ≤ b(H(n,q)) ≤

⌊(
1− 1

q

)
n+ q+1

2

⌋
.

(b) For Johnson graphs, we have

b(J(n, k)) = k+ 1 for n > k2,
b(J(2k, k)) = dk/2e+ 1.

(c) For halved n-cubes, we have

b( 12H(n, 2)) = dn/4e+ 1.
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Outline of proof

• Upper bounds:
— We construct a burning sequence. This part is easy.
• Lower bounds:
— We want to show that b(G) > b.
— To this end, for any given burning sequence a1,a2, . . . ,ab, we will find a

vertex x which remains unburned at round b.
— We give an algorithm finding such vertex by solving a system of linear

equations repeatedly on the faces of the eigenpolytope.
— I’ll explain the algorithm using the case b(Q4) as a toy example.
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How to prove b(Q4) > 2 ?
For any given burning sequence (a1,a2), we need to find a vertex
x which remains unburned at round 2.

• Let a1,a2 ∈ V(Q4) be given.
• Want: ∃ x ∈ V(Q4) such that d(a1, x) > 1, d(a2, x) > 0.

Let Pn be the eigenpolytope of Qn.
Put P4 ⊂ R4 so that all the vertices are on the unit sphere
centered at 0.
• Let a1,a2 ∈ V(P4) be given.
• Want: ∃ x ∈ V(P4) such that a1 · x ≤ 0, a2 · x ≤ 1/2.
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The algorithm: b(Q4) > 2 ?

• Put P4 ⊂ R4 so that all the vertices are on the unit sphere
centered at 0.

• Let a1,a2 ∈ V(P4) be given.
• We show ∃ x ∈ V(P4) such that a1 · x ≤ 0, a2 · x ≤ 1/2.
• Choose a3 ∈ V(P4) arbitrarily.
• For i = 3, 2, 1, 0, we will find an i-dim face Fi ⊂ P4 and a point
xi ∈ Fi such that ai · xi = 0.

• Then x := x0 satisfies the required conditions.

19/28



• Let a1,a2,a3 ∈ V(P4) be given. (coefficient vectors)
• For i = 3, 2, 1, 0, we will find an i-dim face Fi ⊂ P4 and a point
xi ∈ Fi such that ai · xi = 0.

Step 1: ( i = 3 )

• Solve a1 · z = 0, a2 · z = 0, a3 · z = 0 in R4.
• z = 0 = (0, 0, 0, 0) is one of the solutions.
• 3 equations, 4 variables (z ∈ R4).
• There is a line of solutions passing through 0.

•
0

line
of s

olut
ions

P4
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Step 1: ( i = 3 )
• Solve a1 · z = 0, a2 · z = 0, a3 · z = 0 in R4.
• move along the line until we hit a facet F3 ∼= P3.
• Let x3 ∈ F3 be a solution of the intersection. (so a3 · x3 = 0)

x3
•

•
0

P4
F3
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Step 2: ( i = 2 )
• Solve a1 · z = 0, a2 · z = 0 in F3.
• move along the line until we hit a face F2 ∼= P2.
• Let x2 ∈ F2 be the intersection. (so a2 · x2 = 0)

x2•

•x3F3 F2
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Step 3 and 4: ( i = 1 and 0)
• Solve a1 · z = 0 in F2.
• move along the line until we hit an edge F1 ∼= P1.
• Let x1 ∈ F1 be the intersection. (so a1 · x1 = 0)
• Let x be one of the endpoints of F1.
• Then x ∈ F1 ⊂ F2.
• The x is the desired vertex, that is,
a1 · x ≤ 0, a2 · x ≤ 1/2.

x2•

•x1
•x

F2
F1
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Why ai · x is small in general ?
• We have xi, x ∈ Fi ∼= Pi.
• Then, |xi − x| ≤ diam(Pi).
• So, xi and x are close (depending on diam), and
• ai · xi and ai · x are close, say,

ai · x ≤ ai · xi + ε

for some ε (depending on diam(Pi)).
• Since ai · xi = 0, we have ai · x ≤ ε. �
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Background and References
• This search algorithm was introduced by Beck and Fiala.
(Integer making theorem, 1981)

• Beck and Spencer used it to solve a Berlekamp’s puzzle.
(Balancing matrices with line shifts, 1983).

• Alon used a lemma by Beck and Spencer to get b(Qn).
(Transmitting in the n-dimensional cube, 1992)

• To bound ai · x, Alon used a fixed coordinate system.
This works well for Qn.

• For H(n,q) and J(n, k), we used cosine of the angle between ai
and x based on Godsil’s observation.

25/28



Problems
• What is the exact burning number of H(n,q) and J(n, k) ?
• Is b(H(3s, 3)) = 2s+ 2 ? We know 2s+ 1 ≤ b ≤ 2s+ 2.
• Other graphs ?
• Alternative proofs ?
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hirasakajuku.blogspot.com/2025/08/blog-post_27.html
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