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1.
Burning Numbers b(G).



Alon’s transmitting problem

- A finite connected graph G is given.

- There is a Sender outside the graph, and Sender has a
sequence of vertices a4, @,, .. . (called a burning sequence).

- Sender sends a message to a vertex a; at round |.

- A vertex received the message at any round will transmit it to
its neighbors at the next round.

- What is the minimum number of rounds (over all burning
sequences) required for all vertices to receive the message?

- Let p(G) be the minimum number (called a burning number).
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What is b(Pg)?
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(a1, @z, a3) is a burning sequence giving p(Py) < 3.
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What is b(Pg)?

radius 2

V(Py) is covered by 3 disjoint balls of radius 2,1, 0.
b(Pg) = 3. Indeed, b(Pn) = [v/n].
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What is b(Qs)?

round 1 round 2 round 3
(a4, a2, %) is a burning sequence giving b(Qs3) < 3.
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Some facts about burning numbers

- b(G) was first introduced by Noga Alon (1992). Recently the
concept has been rediscovered and called “burning number”
- Graph burning process is a model for the spread of influence.
- b(Kpn) =2, b(Pn) =[+v/n], b(G) < diam(G) + 1.
- Burning number conjecture (Bonato et al. 2016)
For every connected n-vertex graph G, b(G) < [v/n].
- Graph burning problem is NP-complete.
(Instance) n-vertex graph G and k > 2. (Question) Is b(G) < k?
- Alon obtained the burning number of the hypercube graphs.
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Let Q, denote the n-dim hypercube, that is,

+ V(Qn) = {0,117 = {(vi,..., Vi) : Vi € {0,1}}, and

- two vertices u and v are adjacent if #{i : uj #v;} =1.
Theorem (Alon 1992)
b(Qn) = [n/2] +1.

- b(Qn) < [3]+1iseasy. Leta;=0and a, =1.
- To get the lower bound, Alon used the fact that Q, is realized
as a polytope in R".
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2.
Eigenpolytopes
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Eigenvalues are 3, 1,1,1, — 1, -1, -1, —=3.
Let 8 = 1. (the 2nd largest eigenvalue)
dim(6-eigenspace) = 3.
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column vectors are

ONB (orthonormal basis)

of #-eigenspace

1| =1
1| 1

1|1

1 1

B=7s 111
1 1

1)1

10 1

row vectors determine
8 points in R3 whose
convex hull is the cube
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-1 -1 -1
-1 1 -1
-1 =1 1
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1T =1 -1
T 1 -1
T -1 1
T 1 1
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a graph G
4

g-eigenspace (6 is the 2nd largest eigenvalue)

J

a polytope P
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Formal definition of an eigenpolytope

- Let G be an n-vertex graph.

- Let 6 be the 2nd largest eigenvalue, and m be its multiplicity.

- Let B be an n x m matrix whose columns are ONB of the
f-eigenspace.

- Let P C R™ be the convex hull of the n rows of B.

- P depends on the choice of ONB, but the inner product of any
two vertices of P is independent of the choice.

- We call P the eigenpolytope of G.
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Theorem (Godsil 1998, Eigenpolytopes of distance regular graphs)
Let G be distance regular and let P be the eigenpolytope of G.
Then G is the 1-skeleton of P if and only if it is one of the
following:

(a) a Hamming graph H(n, q),
(b) a Johnson graph J(n, k),
(c) a halved n-cube JH(n,2),

(d) the Schlafli graph, (e) the Gosset graph, (f) the icosahedron, (g) the
dodecahedron, (h) the complement of r copies of K, or (i) a cycle C,.

cf. The n-dim hypercube Q, is H(n, 2).
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3.
Results and proof ideas
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Our results (Tanaka-T 2025+)
(a) For Hamming graphs, we have

(-2) ) +1 b0 < (- ooz
(b) For Johnson graphs, we have

b(J(n,R)) = R+1forn > Rk?,
b(J(2R, R)) = [R/2] +1.

(c) For halved n-cubes, we have

b(3H(n,2)) = [n/4] +1.
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Outline of proof

- Upper bounds:

We construct a burning sequence. This part is easy.

- Lower bounds:

We want to show that p(G) > b.

To this end, for any given burning sequence a,, a,, ..., ay, we will find a
vertex x which remains unburned at round b.

We give an algorithm finding such vertex by solving a system of linear
equations repeatedly on the faces of the eigenpolytope.

I'll explain the algorithm using the case b(Q,) as a toy example.
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How to prove b(Q,) >27?
For any given burning sequence (as, a;), we need to find a vertex
x which remains unburned at round 2.

- Let aq,a; € V(Q,4) be given.
- Want: 3x € V(Q,) such that d(as,x) > 1, d(az,x) > 0.

Let P, be the eigenpolytope of Q.

Put P, C R* so that all the vertices are on the unit sphere
centered at 0.

- Let aq, a; € V(P,) be given.

- Want: 3x € V(P,) suchthata,;-x<0,a;-x <1/2.
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The algorithm: b(Q,) > 27?

- Put P, C R* so that all the vertices are on the unit sphere
centered at 0.

- Let a4, a, € V(P,) be given.

- We show 3x € V(P,) such thata;-x <0,a, -x<1/2

- Choose a3 € V(P,) arbitrarily.

- Fori=3,2,1,0, we will find an i-dim face F; ¢ P, and a point
X; € F; such thata;-x; = 0.

- Then x := xq satisfies the required conditions.
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- Let aq, @z, a3 € V(P,) be given. (coefficient vectors)
- Fori=3,2,1,0, we will find an i-dim face F; ¢ P, and a point
X; € F; such thata;-x; = 0.

Step1: (i=3)
- Solvea,-z=0,a,-2=0,a;-z=0in R" o8
- z=0=(0,0,0,0) is one of the solutions. eo&SO\

- 3 equations, 4 variables (z € R?). 0
- There is a line of solutions passing through 0. P,
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Step1: (i=3)

- Solvea;-z=0,a,-2=0,a;-z=0in R*

- move along the line until we hit a facet F; = Pxs.
- Let X3 € F3 be a solution of the intersection. (so a3 - x3 = 0)

Py
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Step2: (i=2)
- Solvea,;-z=0,a,-z=0In Fs.
- move along the line until we hit a face F, & P..
- Let x, € F, be the intersection. (so a; - X, = 0)
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Step3and 4: (i=1and 0)
- Solvea;-z=0inF,.
- move along the line until we hit an edge F, & P;.
- Let x; € F; be the intersection. (so a; - x; = 0)
- Let x be one of the endpoints of F,. X

- Thenx € F; C F.

- The x is the desired vertex, that is, F,
a-x<0,a-x<1/2 =
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Why a; - x is small in general ?
- We have x;,x € F; £ P;.
- Then, |x; — x| < diam(P)).
- S0, X; and x are close (depending on diam), and
- @;-X;and a; - x are close, say,

a-X<Qj-Xj+e

for some e (depending on diam(7;)).
- Sincea;-x;=0,we haveag; - x <e. O
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Background and References
- This search algorithm was introduced by Beck and Fiala.
(Integer making theorem, 1981)
- Beck and Spencer used it to solve a Berlekamp’s puzzle.
(Balancing matrices with line shifts, 1983).
- Alon used a lemma by Beck and Spencer to get b(Qp).
(Transmitting in the n-dimensional cube, 1992)

- To bound a; - x, Alon used a fixed coordinate system.
This works well for Q.

- For H(n, q) and J(n, R), we used cosine of the angle between a;
and x based on Godsil's observation.
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Problems
- What is the exact burning number of H(n, g) and J(n,R) ?

- Isb(H(3s,3)) =25s+27? We know2s+1< b <2s+2.
- Other graphs ?
- Alternative proofs ?
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