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Abstract

We determine the maximum size of uniform intersecting families with covering
number at least four. The unique extremal configuration turns out to be different
from the one that was conjectured 12 years ago. At the same time it permits us to
give a counterexample to a conjecture of Lovasz.

1 Introduction

Let X be a finite set. We denote by ()k() the family of all k-element subsets of X. A family
F satisfying F C ()k() is called k-uniform. The vertex set of F is X and it often denoted
by V(F). An element of F is also called an edge of F. The family F is called intersecting
if NG # 0 holds for every F,G € F.

A set € C X is called a cover (or transversal set) of F if it intersects every edge of
F. A cover C is also called t-cover if |C| = t. The set of all t-covers of F is denoted by
Ci(F). The covering number of F is the minimum cardinality of the covers, and denoted
by 7(F). By the definition, 7(F) = min{t : C;(F) # 0}.

For a family A C 2% and vertices 21, ..., 2, y1,. .. ,¥; € X, we define

A(zy...zitm ... g;) ={AeAraq,...,x, € Ay, ..,y A},
and for Y C X,

AY) = {A:Y C Ae A},
AY) = {AeA:YNnA=0}.

For fixed | X| and k, the maximum size of an intersecting family F C ()k() was de-
termined by Erdés, Ko and Rado[l]. The covering number of the extremal configuration
is one (if |X| > 2k), which means that there exists a vertex # € X such that all edges
of the family contain this vertex. Such families are called trivial. Hilton and Milner[9]



determined the maximum size of non-trivial (i.e., the covering number is at least 2) in-
tersecting families. Then, Frankl[3] determined the maximum size of intersecting families
with covering number three.

The main purpose of the present paper is to determine the maximum size of inter-
secting families with covering number four. We also prove the uniqueness of the extremal
configuration. This turns out to be completely different from the one conjectured in [3].
This new construction permits us to give a counterexample to a conjecture of Lovisz.

Let us begin with an important example.

Example 1 We construct an intersecting family Fy C ()k() with 7(Fo) = 4 as follows.
First, fix 14 3(k — 1) vertices xo, @i, yi, % (1 <i<k—=1)in X. Fori=1,2 we define 6
edges

Xi = {xlv-"vwk—hyi}v
1/2 = {ylv"'vyk—lvzi}v
Zi = {217"'7Zk—17$i}7

and set G := { X1, X2, Y1,Ys, Z1, Z3}. Next, we define By C (if) by

By = {{zo,zi,yj 2} 1<i,5,0 <k-1}
U{{zo, 21, 22,5} 1 1 <i <k =1}
U{{zo, 11,92, %} : 1 <i<k -1}
U{{zo,21,22,2;} : 1 <0< k—1}.

Finally, Fo C () is defined by
X
Fo:={F¢€ (k) :3B€ By, BC FYUGo. []

Remark 1 Let us examine Fy. By the definition it follows that |Go| = 6 and
|Bo| = k> — 3k% + 6k — 4.

If k = 4, then both By and Go are k-uniform, and so is Fo = Bo U Go as well. In this
case, |Fo| = 42. Erdés and Lovdsz constructed k-uniform intersecting family with covering
number k which has |k'(e — 1)| edges. Lovdsz conjectured that this is the exact mazimum
size. For the case of k = 4 their family has size 41. Thus, our example is a counterezample
to the conjecture of Lovdsz.

For k > 4, we have

X-B
FoC{BUA:Be€ByAe (k_4)}ug0

and

FoD{BUA:BeBy,A€ (X - ({zoijv(go)))}.

Therefore, we have

n— (14 3k) n—4
B < < |B 6.
|o|( e )_|7:0|_|0|(k_4)‘|‘ 0



For the case of covering number four, Frankl[3] conjectured that |F| < (k> —3k% + 3k +
D)(72]) + o(n*=%) holds if F C () is an intersecting family with covering number four.
Thus, Example 1 is a counterexample to his conjecture. The above example is important,
because it gives the maximum size of intersecting families with covering number four and
it is the unique extremal configuration, as it is shown by our main result:

Theorem 1 Let k > 9, n > ng(k) and | X| = n. Suppose that F C ()k() is an intersecting
family with 7(F) > 4, then
|71 < [Fol

holds. Fquality holds if and only if F is isomorphic to Fy. []

The essential part of our proof of Theorem 1 is to prove the following result.

Theorem 2 Let k > 9 and | X| = n. Suppose that G C ()é) is an intersecting family with
7(G) > 3. Then,
IC3(G)| < k* — 3k* + 6k — 4

holds. Equality holds if and only if G is isomorphic to Gg. []
The proof of Theorem 2 is valid for a proof of the following.

Theorem 3 Let k > 9 and | X| = n. Suppose that G C ()é) is an intersecting family with
7(G) = 7 > 3. Then, for every A € (T)_(S) we have

#{C ¢ (f) tACC, CeC(Q)) <k -3k +6k—4. []

2 Theorem 2 implies Theorem 1

In this section, we assume Theorem 2 and prove Theorem 1. Let k > 9, n > ng(k) and
| X| = n. Suppose that F C ()k() is an intersecting family with 7(F) =71 > 4.

Let 2 € F' € F. We define edge-shrinking(see [10]) ¢(z, I, F) as the following operation
on a family F. If 0 # F':= F —{a}, and F' := (F — {F})U{F’} is still intersecting, then
we define ¢(z, F,F) := F', otherwise ¢(x, F, F) := F. (If we obtain multiple edges in this
operation, we replace them by a single edge.) We continue this operation until we get a
family F’ such that

Oz, F\F'Y=F forallz e FelF.

Of course, F' is not uniquely determined from F in general, it depends on the choice of
operations. We fix one such shrink-invariant family F’. F' is called a kernel of F. By the
construction, F' is intersecting and 7(F’') = 7. (Thus, |F’| > 7 holds for every F' € F'.)
Note also that for every F' € F there exists I/ € F' such that I’ C F. Define

B:=F'n (X),
-

which we call a base of F. B is intersecting and every edge of B is a 7-cover of F.
Let G be the set of edges G € F such that B ¢ G for every B € B. Finally, we define
K := BUG. Clearly, we have

fc{Fe(X

k) 3K C F, K € K},



which implies
n— |K]| n—rT
< <|B . 1
EDY (,C_|K|)_| |(,€_T)+|g| (1)
Kek

It is known that |V(K)| is bounded by a function not depending on n, i.e., |V(K)| < f(k, 7).
So, we have |G| < O(n*~7~1). Thus, in order to give an upper bound of |F| we estimate
the size of the base B. First we consider the covering number of B. The following result
is a slight extension of an inequality obtained in [2].

Lemma 1 Let s:= 7(B). Then |B|] < st*7 k75,

Proof For A C X, we define B(A) := {B € B: A C B}. Since 7(B) = s, there exists an
s-cover S of B. So we can choose z1 € S such that |[B(X1)| > |B|/s where X1 := {z1}.
Suppose that we could define X; = {&q,...,2;} (i < s) such that

BX:)| 2 [B]/(s7'7).

X is not a cover of B, because | X;| < 7(B). So there exists B € B such that X; n B = 0.
Since B is intersecting, every edge in B(X;) meets the T-element set B. Thus, we can find
%41 € B such that '

[B(Xip1)| 2 |BX:)|/7 = |BI/(s7°),

where X;11 = X; U{x;41}. Continuing this way, we obtain an s-element set X such that
1B(X) > |B]/(sm*7H).

If s < 7, X, is not a cover of . So there exists I' € F such that X,NF = (. Since F is
intersecting, every edge in B(X;) meets the k-element set F'. Thus, we can find 2,41 € F
such that

1B(Xosp1)] > [B(X)l/k > |B]/(s7*~ k),

where X411 = X, U {2,41}. Continuing this way, we finally get a 7-element set X, such
that
|B(X)| > |B] /(s> k7).

Clearly |B(X;)| <1, and we have the desired inequality. [

The RHS of (1) attains its maximum when 7 = 4. So, from now on, we assume that
7(F) = 4. In this case, B consists of 4-covers of F, and it follows that

|F| < |B|(Z:i) —I—O(nk—S)' (2)

Define b(k) := |Bo| = k* — 3k? + 6k — 4.
Lemma 2 For every v,y € X, we have |B(zy)| < k* -k + 1.

Proof Suppose 7(F(zy)) = 1 and z € C1(F(zy)). Then {z,y,z} is a cover of F, which
contradicts 7(F) = 4. So 7(F(zy)) > 2 must hold. Using Proposition 1 (see Appendix),
we have

ICo(F(z7))| < k* — k + 1.
If {z,y,z,w} € B, then this edge is a cover of F, which implies

{z,w} € Co(F(z7)).



Thus, we have

|B(ay)| < [C2(F(zg)| < k* =k + L.

The next lemma settles the case 7(B) > 2.
Lemma 3 If s := 7(B) > 2 then |B| < b(k).
Proof By Lemma 1, we have

B < 48k if s=3
B < 256 if s=4.

These upper bounds are less than b(k) if & > 9. For s = 2, we have |B| < 8k% < b(k) if
k> 11

Finally we settle the case 9 < & < 10 and s = 2. Suppose {1,2} € Co(B). Since {1}
is not a cover of B, we may suppose {2,3,4,5} € B. Every edge in B(12) meets {3,4,5}.
Thus, using Lemma 2, we have

IB12)] < [BO13)] + [B4)| + [BO15) <302 — & + 1).
In the same way, we also have
|B(12)] < 3(k* — k + 1).
Therefore, we have

|B| < |B(12)| + |B(12)| + |B(12)| < 7(k* — k + 1) < b(k).

The next lemma shows that |B| = b(k) must hold to attain |F| > |Fyl.
Lemma 4 If |[B] <b(k) — 1, then |F| < |Fol.
Proof Using inequality (2), we obtain

n—4

7] < (k) - 1>(k - 4) +O(nt7%),

By the construction of Fy (see Remark 1), we have

n—4\ (n—3k+1) 1 1
(k—4)/( k-4 )+O(" N CESS



Consequently, we get |F| < |Fol. |

Now we return to the proof of Theorem 1. By Lemma 3 and Lemma 4, we have
|F| < |Fo| if 7(B) > 2. Thus, we may assume that 7(B) = 1. Let {z¢} be a 1-cover of B.
Then, we have

G={GeF: 20 ¢G}.
G is an intersecting family with 7(G) = 3. Using Theorem 2, we have |C5(G)| < b(k).

If {20} UC € B (and 2o ¢ C), then C' € C3(G). So, we have |C3(G)| > |B|. Hence we
have |B| < b(k). If |B| < b(k), we have |F| < |Fo| by Lemma 4. Thus, we may suppose
|B| = b(k). Then, by Theorem 2, B = By and G = Gy hold. That is F C Fy. This

completes a proof of Theorem 1 assuming Theorem 2.

3 Proof of Theorem 2

Throughout this section, we assume that & > 9 and |X| = n. Suppose that G C ()k() is

an intersecting family with 7(G) = 3. Recall the definition of Gy and By (see Example 1).
Let Co:= {B — {20} : B € By}, i.e.,

Co = {{ziyjat:1<i,5,0<k-1}
U{{ar, 22,9} 11 <i <k -1}
U{{y1,92,2} : 1 <i <k —1}
U{{z1, 22,2} s 1 < i <k — 1.

Let C := C3(G). The destination of this section is to prove |C] < |Co| = k% — 3k + 6k — 4.
We also determine the unique extremal configuration.
For z € G € G, we define

= #{C €l(a):|C NG| =1},
= #{C el(z):|CNG| =2},
= #{C el(2):|C NG| =3},

= ale,G)+ LB, G) + ()

(z,G)
(z,G)
(z,G)
(z,G)

C

&

c(x,q) is called a contribution of z for GG, because a simple enumeration shows the fol-
lowing.

Lemma 5 Forany G € G, |C| =3 ,.cq (2, G) holds. []

The following inequality was implicitly proved by Frankl[3]. (We include a proof in Ap-
pendix for the self-completeness. We recommend the reader to see this proof first, because
it is short but it contains several basic ideas for our lengthy proof of Theorem 2.)

Lemma 6 Forany x € X, |C(2)] < k* — k + 1 holds. M
Lemma 7 Let v € G € G. Then a(z,G) < k* — 3k + 3 holds.

Proof Choose Gy € G(Z), 1 € GNGy and Gy € G(Z41). Set a := |GNG|, b= |GNGy|,
c:=|(G1NGy) — G|. Then we have

a(z,G)<(k—a—-c)(k=b—c)+c(k—1). (3)



As a function of ¢, the RHS attains its maximum when ¢« = b = 1. So,
a(z,G) < (k—c—=1P2+c(k-1)
= & —(k=1)c+(k—1)>~.

Case 1. 1 <e <k -2.
In this case, a(x,G) attains the maximum when ¢ =1 or ¢ = k — 2, which implies

a(x,G) < (k=12 =(k =1+ (k=1 = k* = 3k + 3.

Case 2. ¢ = 0.
Since G1 N Gy # 0, we have a > 2. So the RHS of (3) takes maximum when ¢ = 2 and
b =1. Thus,
a(z,G) < (k—2)(k—1) < k* — 3k + 3.

Now we may assume that
GlﬂngGl—{xl}, GﬂGlﬂng@

hold for every Gy € G(Za71). Choose y € G1 NGy and G € G(Z7). Since Gq U {x1} ¢ G,
we have Gz € G(Z#1) and so 21 € G3. Hence we have |(G3 N Gy) — G| < k — 2, because
z2,y € (G3UGy) — G. Thus, we can apply case 1 again (replace Gy by G'a). [

Lemma 8 Letx € G €G. Then c(x,G) < k* — 2k + 2.

Proof Using Lemma 6 and Lemma 7,

c(z,q)

IN

a(w,G) + 5(C(2)] - a(, )

1
= 5{(k2—k—1)+(k2—3k—|—3)}
= k*—2k+2.

Lemma 9 If 5 < |AN B| <k — 3 holds for some A, B € G, then |C| < |Co| holds.
Proof Suppose that 5 < a:=|ANB| <k —-3. If 2 € A— B, then we have
a(z,A) < (k—a)k-1),
cr,4) < SR~k + 1)+ (k- a)(k - 1)}
If € An B, by Lemma 8, we have
oz, A) < k* — 2k + 2.

Using Lemma 5, we have

|C| = Z C(va)
r€A
— (k—a)x %{(k?—k+1)+(k—a)(k—1)}+a(k2—2k+2)
_ %(a—k){(k— Va— 262 4 2k — 1} + a(k® — 2k +2)
=: f(a).



A simple computation shows that f(a) attains the maximum when a = k£ — 3. Thus,
cl < fk=3)
1
= |Co| - 5{(k —a)(k— 1)+ 1} <|Col.

Lemma 10 If|[AN B|, |BNC|, |C N A| <4 holds for some A, B,C € G, then one of the
following holds.

(i) |C] < |Col.

(i) [AnB|=|BnC|=|CnA|=1and ANBNC = 0.

(iii) [ANB|=|BNnC|=|CNnAl=|AnBnC|=1.

Proof Fix A, B, C € G such that each of the pairwise intersection consists of at most
four vertices. We define

D:=AnBnC,
Us:=(BNC)— A, Ug:= (CNA)—B, Ug:=(AnB) - C,
W= U4 UUg U U U D,

Ali=A-W, B :=B-W, C':=C-W,

a:=|Uy|, b:=|Up|, c:=|Uc|, d:=|D|.

We distinguish three types of 3-covers in C. Let Cy := U,epC(v), Ca := e C(w) and
Cs:=C—Cy —Cy. By Lemma 5,

il < Y 16| < dik? — &+ 1). (4)
veD

Since every 3-cover in Cy consists of three vertices each from A’, B’ and C’, we have
ICo| < |A'|B||C | =(k—d—a=b)(k—d—-b—c)(k—d—c—a). (5)

Now, we want to estimate the size of C3. By the definition, each 3-cover T" € C3 contains
some vertex in Uy U Ug U Ug and no vertex in D. If T contains a vertex in Uy, it must
also contain a vertex in A — D = A’ U Ug U Ugs. We define “contributions” of pairs of
vertices to the size of C3. For uy € Uy and z € A’, we define

c(ur,z) = #{T €Cs(wz):|T'N(A-D)| =1}
+ %#{T € Cs(ugz): TN (A - D) =2}
For uqy € Uy and uy € Ug, we define
c(ur,ua) = #{T € Cs(wmuz):|TN(AUB)| =2}
+ %#{T € Cs(uug): T C(A-B)Uu(B - A)}

+ %#{T € C3(U1U2) :I'nlcg 7’é Q)}



We also define the contributions of the other pairs of vertices, symmetrically. Then, by
the above argument, we can show the following.

ICs| = Z c(uy,z)+ Z c(uz, y) + Z c(us, 2)

u1€UA,x€A/ uQEUB,yEB/ ugeUc,ZEC/
+ > cluu)+ Y, cluguz)+ Y, c(us w)
UlEUA,UQEUB ’U,QEUB,’U,;:,EUC ugEUc,uleUA

From now on, we estimate the contribution of each pair of vertices. Fix uy € Uy and
x € A'. Take an edge G € G(uw1Z). We note that G N A # 0, and that every T € Cs(uy2)
contains a vertex in G. Therefore, c(uy,z) < |G — Al + LGN (A-D)| <k - .

Next, we fix uy € Uy and uy € Up, and take an edge G € G(wyuz). We note that
GNA#Qand GNB # 0. f GN(ANB) # 0, then it is easy to see that c(uy,up) < k— 2.
Otherwise, we have GN (A — B) # 0 and GN (B — A) # 0, and hence, c(uy,u2) < k — 1.
Thus, we can estimate c(uy,up) < k — 2.

3
Adding up these contributions, we get

Cs| < a(k—d—b—c)(k—%)+b(k—d—c—a)(k—%)
—|—c(k—d—a—b)(k—%)—l—(ab—l—bc—l—ca)(k—%). (6)

By three inequalities (4), (5) and (6), we have
Ic] < dE* —k+1)+(k—-d—a—b)k—d—b—c)k—d—c—a)

—|—a(k—d—b—c)(k—%)+b(k—d—c—a)(k—%)

be(k—d—a—byk— %)—l—(ab—l—bc—l—ca)(k— g) —: (k). ()

Here ¢(k) is a cubic polynomial of k, where the coefficients of &% and k% are 1 and —(a+b+
c+2d), respectively. Hence if a+b+c+2d > 4 and k is sufficiently large, then ¢(k) is much
less than |Co| = k3 — 3k% + 6k — 4. So, we must check the cases where a + b + ¢ + 2d < 3.
When d = 0, since A, B and C are pairwise intersecting, we have a = b = ¢ = 1, and (ii)
follows. When d = 1, we have a+ b+ ¢ < 1. If a = b = ¢ = 0, then (iii) follows. So, we
may assume that @ = 1 and b = ¢ = 0. Then, the RHS of (7) is equal to k® — 3k? + 12—1k— %,
and is less than |Cp].

For small value of k, one can check directly. Recall, that 1 < a+d,b+d,c+d < 4
there are only finitely many possibilities to choose a,b,¢,d (164 ways). Checking them one
by one (of course by a computer), one can show that the ¢(k) is less than |Co| if & > 9,
except for the following two cases, that imply (ii) or (iii).

a=b=c=1 and d=0, or
a=b=c=0 and d=1.

Lemma 11 If |AN B| > k — 2 holds for every A, B € G (A # B), then |C| < |Co| holds.
Proof Fix G € G. For every © € G, we have

a(z,G) < 2x2=4,

o(2,G) < %{(kQ 1) 4} = %(kQ —k+5).

9



Thus,
1
IC| < k x 5(kz —k+5) < |Col.

Lemma 12 Suppose that |[A N B| < 4 holds for some A,B € G. If |GNA| >k —2 or
|G N B| >k —2 holds for every G € G, then |C| < |Col| holds.

Proof Set a:=|ANB| (1<a<4). Ifz € A— B, then we have

a(z,4) < (k-a) (2 + ’“‘2#_1) = (K — (20~ )k +a” — 30},

oz, 4) < %{(k? k4 1)+ i(k? — (20— 3)k + d® — 3a)}

= %{3/%2 —(2a — 1)k + a* — 3a + 2}.
If v € AN B, we use ¢(z,A) < k* — 2k 4+ 2 by Lemma 8. Thus,
c| < %(k — {3 — (20— 1)k + a® — 3a + 2} + a(k? — 2k + 2).
The RHS is less than |Cy| when k> 9 and 1 < a < 4. [ |

Lemma 13 If2 < |AN B| <k — 3 holds for some A, B € G, then |C| < |Cy| holds.

Proof Fix A, B € G such that 2 < |ANn B| < k — 3. By Lemma 9, we may assume
that 2 < |A N B| < 4. By Lemma 12, we may assume that there exists G € G such that
|GNA|,|GNB| <4. We use Lemma 10. In this situation, neither (ii) nor (iii) can happen.
Thus |C| < |Co] follows.

From now on, we may assume that |AN B| € {1,k —2,k— 1} holds for every A, B € G
(A#B).

Lemma 14 If |C| > |Co| then there exists A, B,C € G such that An BN C = 0 and
[ANB|=|BNnC|=|CnA|=1.

Proof By Lemma 11, we can choose Gy, G2 € G such that |Gy N Gy| = 1. By Lemma 12,
we can choose G5 € G such that |Gy NG3| = |Ga NG| = 1. Gy NGyNGs = 0 then
these are the desired edges.
Let {z} = GiNG2NG3s. Choose A € G(Z). Note that #{i : |ANG;| =k -2} < 1. So,
we may assume that |[A N Gy| = |[AN Gs| = 1. Then, A, G5, G5 are the desired edges. W
From now on, we fix A, B,C € G such that An B ={z}, BnC ={a},CnA={y}
(e y#z#o)

Lemma 15 If |C| > |Co| then for every G € G, G contains A —{y,z} or B — {z,z} or
¢ - {xvy}

10



Proof Fix any G € G — {A, B,C}.
Case 1. |GNA|=|GNB|=|GNnC|=1.
Let GNA={2"},GNnB ={y'}, GNnC ={z'}. (We does not assume that z’, y’ and 2’
are distinct.) For every K € C we have K N{z,y,z,2",y',2'} # 0. Thus,
IC| < 6(k* —k +1) < |Co

holds if & > 8.
Case 2. Otherwise.

By symmetry, we may assume that |G N A| > k — 2. In this case, |GN B| = |GNC| =1
holds. Suppose that GNA 5 A—{y,z}. Choose v € A—{y,z}—G. Since |[GNA| > k-2,
we have y € G or z € G. We may assume z € G, i.e., GN B = {z}. Then, we have

C(zyzo)] < A~ {y,2,0}||B — {z,2}]|C — {z,y}| = (k- 2)*(k - 3),

|IC(zyzv)| < |B—-A{zz}|/|CNnG|=Fk-2.
By Lemma 6, both |C(2)|, |C(y)| and |C(z)| are at most k% — k + 1. Therefore, we can
estimate

Ic] < (k=2Pk=3)+(k-2)+3Kk —k+1)
[Col = (k = 1)(k = T7) < |Col.

Lemma 16 (i) |C(zyz)| < k% — 3k + 3.
(i) If G N A ={y} or {z} holds for some G € G(z), then |C(zyz)| < k* — 3k + 2.

Proof For u € A —{y, z}, we define

o(u) = #{K €C(zuyz):|K nA|l =1},
B'(u) = #{K €C(zuyz):|K n Al =2},
d(uw) = alu)+ %ﬁ(u)

Note that |C(zy2)| = 2 ,ca_fy..} ¢'(u). We estimate ¢'(u) for each u € A —{y,z}. We use
o' (u)+ p'(u) = |C(zuyz)| < |C(zu)| < k.

We also use the fact that for every u € A—{y, 2} we have o/(u) < k—1and ¢/(u) < k—1/2.
This follows from that we can choose G € G(Zu) and so a'(u) < |G — A| <k — 1.

Case 1. There exists G € G(z) such that G N A = {y} or {z}.
In this case, for every v € A — {y,z} we have #'(u) = 0 which implies that

du)=a'(u) <k-1.
Thus, [C(72)] = Taenr g €(0) < (k= 2)(k 1)

Case 2. Otherwise.
Choose 1 € G(zu). Using Lemma 15 and u ¢ G, we have |Gy N A| = 1. Let {v1} =
GiNA C A—{y, z}. Choose Gy € G(Tv1) then |GoNA| = 1. Let {vo} = GonA C A—{y, z}.
For u € A —{y, z,v1,v2}, we have §'(u) = 0, and so ¢/(u) = a'(u) < k — 1. For vy, vq, we
estimate ¢'(v;) < k — 1/2. Thus,
Cags)l = X )< (k- a)k— 1)+ 20k 1/2)
u€A—{y,z}
= k*—3k+3.
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Remark 2 With the above assumptions, we have the following.

C(zyz)| < (k—2),
C(zyz)l.[C(zy2)l C(zyz)] < K =3k +3,
[Clzyz)l,[C(zy=)l, [C(2y=)] < K,

[Clayz)] <

Thus, we get
IC| < k> — 3k% + 6k 4+ 2 = |Co| + 6.

We shall improve this bound. To reduce the size of 3-covers by 6 more edges, we need more
precise discussion as we will see in the sequel. ]

Lemma 17 If G(zyz) # 0 then |C| < |Co| holds.

Proof lix G € G(zyz). By Lemma 15, we may assume that GN A = A — {y,z}. Let
GNB={w}and GNC ={wy}. Fixue A—{y,z} and Gy € G(zu). Using Lemma 15,
and by symmetry, we may assume that Gy N B DO B — {z,z}. Since |G N G1| = 1 and
GiNA#0Q, wehave |{y,z} N Gy| = 1.

Case 1. y € Gj.

We have
IC(zyz)] < k*—=3k+2 (by Lemma 16 (ii)),
ICzyz)] < | =L@,y wa |G N Ga| +[Gr —{y}]
= (k=3)x1+4(k—1)=2k—4,
Cleg2)l < 1,
|IC(zyz)] = 0.

This together with Remark 2, we get |C| < |Co| — (k? — 4k + 2) < |Co.
Case 2. z € GG1. In this case, we have

IC(zyz)] < Kk*—3k+2 (by Lemma 16 (ii)),

Clzyz)| < 1,
Clayz)| = 0.
Thus, [C| < |Co| = (k= 5) < |Col- i

From now on, we may assume that |GN{z,y,z}| = 1 holds for every G € G—{A, B,C}.
Edges G in G — {A, B,C} are classified into two types.

(i) type . |GN((AUBUC )—{2,y,2})| = k—2. For example, G = (A—{y, z})U{z}u{w},
wg AUBUC.

(ii) type IL. |GN((AUBUC) — {2,y,2})| = k— 1. For example, G = (A — {z})U{z'},
el —A{x,z}.

Lemma 18 I[f there exists a type I edge G € G — {A, B,C}, then |C| < |Cy| holds.

Proof By symmetry, we may assume that G = (A — {y,z}) U{z}U{w}, wg AUBUC.
Choose u € A —{y,z} and G; € G(zu). Using Lemma 15, and by symmetry, we may
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assume that Gy D B — {z,z}. If z € G| then G NGy = 0, a contradiction. So Gy is type
I, which implies G; = (B —{z,2}) U {y,w}. Then, we have

|C(xy2)],|C(zyz)] < k*—=3k+2 (by Lemma 16 (ii)),
[Czyz)] < |C—A{z,y}|GNC] =k =2,
Clay)l < &,
|IC(zyz)|,|C(2yz)] < k-1
Thus, |C] < |Co| — (k2 — 4k +4) < |Col. |

Now we are in the final stage. From now on, we may assume that all edges in G —
{4, B,C} are type II. Choose G; = (A—{z})U{#x}, z1 € B—{z,2}. Choose u € A—{y, 2}
and G € G(zu). (Of course, Gy is also type 1I.)

Case 1. Gy D C —{x,y}.

Choose 1 € B —{#,z,z1} and Gy = (C — {a}) U {x1}. Then, we have

|C(xy2)],|C(zyz)] < k*—=3k+2 (by Lemma 16 (ii)),
Clzyz)|1C(=yz)| < k-1,
|C($Z | S |G1 N G2| =1.

Thus, |C] < |Co| — (k= 2) < |Col.

Case 2. G D B —{z,z}.
Choose z1 € C'—{z,y} and Gy = (B—{2})U{21}. Choose v € B—{z,z} and G5 € G(y0).
Applying the same argument in Case 1 to G5 and G3, we can choose 3, € A — {y,z} and
Gs=(C —{y})U{y}. Then, we have

[C(zg2)|, [C(zy=)|, [C(zy=)]
[C(zy=)|,[C(zy=)], [C(xy=)]
This together with Remark 2, we have |C| < |Co|.

Here, we determine the extremal configuration. Suppose that |C| = |Cg|. Then all
equalities must hold in the above eight inequalities. Let

k* =3k +2 (by Lemma 16 (ii)),

<
< k-1

Ay =A—{y,z}, Bi=B—-{zz}, C1=C—{z,y}.
In this situation, we have

C

{{a,b,c} :a € Aj,b€ By,ce Cy}
{{z,a,b} :a € A1,b € BU{a1}}
{{y,b,c} :be By,ce CU{y1}}
{{z,¢,a} :c€Crya € AU{z}}
{{z,y,b} :be BU{x1}}
Hy,z,cpce Cu{nm})
{{z,2,a} ra € AU{z}}

He,y. 21

CcC C Cc Cc c c c

This is isomorphic to Cp.
Finally, we consider G. At this point, we know that G D {A, B,C,G1,G2,G3} =: H and
H is isomorphic to Gy. Suppose that G € G —H exists. If G D C —{z}, then G = CU{x2},
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x9 € B—{x,xy,z}. This case is impossible, because there exists K = {z,21,a} € C,a € Ay
which satisfies GN K = (. By the same argument, we may assume that G' does not contain
neither A — {y}, B — {z}, nor C' — {z}. But in this case, there exists K = {a,b,c} € C,
ac€A—{y},b € B—{z},and ¢ € C'—{a} such that GNK = 0, a contradiction. Therefore,
G = 'H = Gy must hold.

Consequently, we have |C| < |Cy| and equality holds if and only if C is isomorphic to
Cop and G is isomorphic to Go. This completes the proof of Theorem 2.

4 Appendix — Proof of Lemma 6

First we prove the following proposition.

Proposition 1 Let F C ()k() be an intersecting family with 7(F) > 2. Let IV := Co(F).
Then, |E| < k? —k 41 holds.

Proof Let 2 € '€ F. We define

a(e,F) = #{eye Ly g I},
B, F) = F{aye E:yel},
clz, F) = a(w,F)—l—%ﬁ(x,F).

¢(x, F') is considered as a contribution of x for F', because |E| = 3 cp c(x, F') holds. Since
F is non-trivial intersecting, we have

alz, Fy+ pe, F) < k for Vo € F,
a(z, F) < k=1 forVael.

If B(z,F)= 0 then we have ¢(z,}") = a(z, F') < k— 1. If §(«,F) > 2 then

o, F) = %{a(w,F)—l—ﬁ(w,F)}—l—%a(w,F)
< Sh=14 k- =k-1,

Thus, if B(2, F') # 1 holds for every @ € F, we obtain

1B <Y e(x,F) <k(k—1) <k —k+1.
z€F

So we may assume that g(z, F') = 1 holds for some z € F. In this case,
1
C(va) < Oé($,F)-|— §ﬁ($7F) < (k - 1)+
Let us define
A=#{z e F:a(z,F)=Fk—1and f(z, F)=1}.
Then, we have

1 A
)< A0k — ) 4 (k= ATk~ 1) = K2 — k4 1
Thus, in order to attain |E| > k? — k + 1, we need |A| > 2. Let F' = {xq,...,2,} and
suppose that x1,23 € A. Define the neighborhood of z; by N(z;) := {y : 2,y € F'}. Note
that N(xzy), N(xzq) € F.
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Case 1. xy29 € F.
Ify € F'—{a1,22} and yz € F, then z € N(x1) N N(zz). This means zjz is the only
edge which contained in F'. Thus, 8(x;, F') = 0 holds if ¢ > 3. Therefore, we have

|E| < ZC(JUZ',F)-I-ZC(%,F)

i=1,2 i>3
< 2k =1/2)+ (k=2)(k—=1)=k* — k + 1.
Case 2. z129 € F.
Let zqx3 € E. If 292 € I then z € N(z1), which means N(z1) = N(z2). Further,

N(z;) C N(zq) holds for every ¢ > 3. Thus, every edge which meets F' has z3 as an
endpoint. Therefore, we have

Bl < el F) +{a(es, F) + 3805, F)
i#3
(k—1)2—|-(k—2)—|-%><2:k2—k—|-1.

IN

Now, we prove Lemma 6. Since G = G(2) U G(Z) has covering number 3, we see that
G(z) is an intersecting family with 7(G(z)) > 2. Let E := C2(G()). Then we have

C(z) = {z} UE,

and |C(z)| < k% — k + 1 follows from the proposition.
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