Covers in uniform intersecting families and a counterexample to a conjecture of Lovász

Peter Frankl CNRS, ER 175 Combinatoire, 54 Bd Raspail, 75006 Paris, France

Katsuhiro Ota Department of Mathematics, Keio Univ., 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 Japan

Norihide Tokushige Department of Computer Science, Meiji Univ., 1-1-1 Higashimita, Tama-ku, Kawasaki, 214 Japan

January 27, 1994

Abstract

We discuss the maximum size of uniform intersecting families with covering number at least τ . Among others, we construct a large k-uniform intersecting family with covering number k, which provides a counterexample to a conjecture of Lovász. The construction for odd k can be visualized on an annulus, while for even k on a Möbius band.

Introduction 1

Let X be a finite set. $\binom{X}{k}$ denotes the family of all k-element subsets of X. We always assume that |X| is sufficiently large with respect to k. A family $\mathcal{F} \subset \binom{X}{k}$ is called k-uniform. The vertex set of \mathcal{F} is X and denoted by $V(\mathcal{F})$. An element of \mathcal{F} is called an edge of \mathcal{F} . $\mathcal{F} \subset \binom{X}{k}$ is called intersecting if $F \cap G \neq \emptyset$ holds for every $F, G \in \mathcal{F}$. A set $C \subset X$ is called a *cover* of \mathcal{F} if it intersects every edge of \mathcal{F} , i.e., $C \cap F \neq \emptyset$ holds for all $F \in \mathcal{F}$. A cover C is also called t-cover if |C| = t. The covering number $\tau(\mathcal{F})$ of \mathcal{F} is the minimum cardinality of the covers of \mathcal{F} . The degree of a vertex x is defined by $\deg(x) := \#\{F \in \mathcal{F} : x \in F\}.$ For a family $\mathcal{A} \subset 2^X$ and vertices $x, y \in X$, we define

$$\begin{array}{lll} \mathcal{A}(x) &:=& \{A-\{x\}: x \in A \in \mathcal{A}\}, \\ \mathcal{A}(\bar{x}) &:=& \{A: x \not\in A \in \mathcal{A}\}, \\ \mathcal{A}(\bar{x}\bar{y}) &:=& \{A: x, y \not\in A \in \mathcal{A}\}, \ etc, \end{array}$$

and for $Y \subset X$,

$$\begin{split} \mathcal{A}(Y) &:= & \{A-Y: Y \subset A \in \mathcal{A}\}, \\ \mathcal{A}(\bar{Y}) &:= & \{A \in \mathcal{A}: Y \cap A = \emptyset\}. \end{split}$$

For a family $\mathcal{F} \subset {X \choose k}$ and an integer $t \geq 1$, define

$$C_t(\mathcal{F}) = \{ C \in \begin{pmatrix} X \\ t \end{pmatrix} : C \cap F \neq \emptyset \text{ holds for all } F \in \mathcal{F} \}.$$

Note that $C_t(\mathcal{F}) = \emptyset$ for $t < \tau(\mathcal{F})$. Define

$$p_t(k) = \max\{|\mathcal{C}_t(\mathcal{F})| : \mathcal{F} \subset {X \choose k} \text{ is intersecting and } \tau(\mathcal{F}) \geq t\}.$$

Note that $|\mathcal{C}_t(\mathcal{F})| \leq k^t$ was proved by Gyárfás [7] without the assumption of \mathcal{F} being intersecting. In that inequality, equality is attained only if \mathcal{F} consists of t pairwise disjoint sets, in particular, for $t \geq 2$ if \mathcal{F} is non-intersecting.

The aim of the present paper is to attain better bounds for $p_t(k)$ and apply them to estimate the maximum size of intersecting families with fixed covering number.

Let us first derive some useful facts concerning $p_t(k)$.

- (1) $p_1(k) = k \ (take \ |\mathcal{F}| = 1).$
- (2) $p_{t+1}(k) \leq k p_t(k)$.

Proof Take $\mathcal{F} \subset {X \choose k}$, \mathcal{F} intersecting, $\tau(\mathcal{F}) = t + 1$ and $|\mathcal{C}_{t+1}(\mathcal{F})| = p_{t+1}(k)$. Define $\mathcal{C} = \mathcal{C}_{t+1}(\mathcal{F})$. Let $F \in \mathcal{F}$ be an arbitrary member of \mathcal{F} . By definition, $F \cap C \neq \emptyset$ holds for every $C \in \mathcal{C}$. Thus $|\mathcal{C}| \leq \sum_{x \in F} |\mathcal{C}(x)|$ holds. Therefore, in order to establish (2) it is sufficient to prove $|\mathcal{C}(x)| \leq p_t(k)$ for all $x \in F$. Consider $\mathcal{F}(\bar{x})$. It is intersecting with

$$t \le \tau(\mathcal{F}(\bar{x})) \le \tau(\mathcal{F}) = t + 1.$$

Moreover, $C(x) \subset C_t(\mathcal{F}(\bar{x}))$ is immediate from the definitions. Thus |C(x)| = 0 holds if $\tau(\mathcal{F}(\bar{x})) = t + 1$ and $|C(x)| \leq p_t(k)$, otherwise.

(3) For $\mathcal{F} \subset {X \choose k}$, intersecting, $\tau(\mathcal{F}) = t$ and an arbitrary set $A \in {X \choose a}$ with a < t, one has

$$|\mathcal{C}_t(\mathcal{F})(A)| \leq p_{t-a}(k).$$

Proof Consider $\mathcal{F}(\bar{A}) \subset \mathcal{F}$. Then $\tau(\mathcal{F}(\bar{A})) \geq \tau(\mathcal{F}) - |A| = t - a$. Moreover, $\mathcal{C}_t(\mathcal{F})(A) \subset \mathcal{C}_{t-a}(\mathcal{F}(\bar{A}))$ holds. By definition of $p_{t-a}(k)$ the desired inequality follows.

The following was proved implicitly in Frankl [3]. For a simple proof, see [4].

(4)
$$p_2(k) = k^2 - k + 1$$
.

Using a construction described in the next section, it is not difficult to check that

$$p_3(k) \ge (k-1)^3 + 3(k-1) = k^3 - 3k^2 + 6k - 4$$

holds for all $k \geq 3$. The following is the key result proved in [4]. (The proof is not simple.)

(5) For
$$k \ge 9$$
, $p_3(k) = k^3 - 3k^2 + 6k - 4$.

Later we prove $p_3(3) = 14$. The case $4 \le k \le 8$ remains open. The authors do not know an example with $p_3(k) > k^3 - 3k^2 + 6k - 4$.

The following is proved in [5].

(6) For $k \ge k_0$, $p_4(k) = k^4 - 6k^3 + O(k^2)$.

We will give a conjecture for $p_t(k)$ $(t \ge 5)$ in section 3. Let us define

 $r(k) := \max\{|\mathcal{F}| : \mathcal{F} \text{ is } k\text{-uniform and intersecting with } \tau(\mathcal{F}) = k\}.$

For example, r(2) = 3 and the only extremal configuration is a triangle. Note that, $C_k(\mathcal{F}) \supset \mathcal{F}$ for every intersecting k-uniform hypergraph, and equality must hold if $|\mathcal{F}| = r(k)$ holds (together with $\tau(\mathcal{F}) = k$). Recall also, that $r(k) \leq k^k$ was proved by Erdős and Lovász [2].

(7) $p_k(k) \ge r(k)$.

The inequality in (7) is likely to be strict for all $k \geq 3$. E.g. for k = 3 consider the family

$$\mathcal{F} = \{\{1, 2, 3\}, \{3, 4, 5\}, \{5, 6, 1\}, \{2, 4, 5\}, \{4, 6, 1\}, \{6, 2, 3\}\}.$$

Then $\mathcal{F} \subset \binom{[6]}{3}$ and $\tau(\mathcal{F}) = 3$ imply $|\mathcal{C}_3(\mathcal{F})| = \binom{6}{3} - |\mathcal{F}| = 14$ $(G \not\in \mathcal{C}_3(\mathcal{F}))$ iff G is the complement of some $F \in \mathcal{F}$). On the other hand, r(3) = 10 is known. (See Appendix.)

(8) Suppose that $\mathcal{F} \subset {X \choose k}$ is an intersecting family with $\tau(\mathcal{F}) = k$. Then for all $x \in F \in \mathcal{F}$, there exists $F' \in \mathcal{F}$ such that $F \cap F' = \{x\}$.

Proof Let $x \in F \in \mathcal{F}$. Suppose that for all $F \neq F' \in \mathcal{F}$, $|F \cap F'| \geq 2$. Then $F - \{x\}$ is a cover of \mathcal{F} , which means $\tau(\mathcal{F}) \leq k - 1$.

(9) Suppose that $\mathcal{F} \subset {X \choose 3}$ is an intersecting family with $\tau(\mathcal{F}) = 3$. Then there exists $x \in X$ such that $\deg(x) \geq 3$, and $|\mathcal{F}| \geq 6$.

Proof We can choose $F, F' \in \mathcal{F}$ such that $F = \{1, 2, 3\}$, $F' = \{1, 4, 5\}$. There exists $G \in \mathcal{F}$ such that $G \cap \{2, 4\} = \emptyset$. If $1 \in G$, then $\deg(1) \geq 3$. Otherwise we may assume $G = \{3, 5, 6\}$. We can choose $G' \in \mathcal{F}$ such that $G' \cap \{3, 4\} = \emptyset$. Since $F' \cap G' \neq \emptyset$, we have $G' \cap \{1, 5\} \neq \emptyset$. This implies $\deg(1) \geq 3$ or $\deg(5) \geq 3$.

Next we prove $|\mathcal{F}| \geq 6$. Assume on the contrary that $|\mathcal{F}| \leq 5$. We choose $x \in X$ such that $\deg(x) \geq 3$. Thus the number of edges which do not contain x is at most 2. Let F and F' be such edges. Choose $y \in F \cap F'$. Then $\{x,y\}$ is a cover of \mathcal{F} , which contradicts $\tau(\mathcal{F}) = 3$.

(10) $p_3(3) = 14$.

Proof Case 1. There exist $F, F' \in \mathcal{F}$ such that $|F \cap F'| = 2$. Let $F = \{1, 2, 3\}, F' = \{1, 2, 4\}, \text{ and } \mathcal{C} = \mathcal{C}_3(\mathcal{F}).$ By (3) and (4), $|\mathcal{C}(1)| \leq 7$ and $|\mathcal{C}(2)| \leq 7$. Thus, since $F, F' \in \mathcal{C}(1) \cap \mathcal{C}(2)$,

$$|\mathcal{C}(1) \cup \mathcal{C}(2)| \le 7 + 7 - 2 = 12.$$

Suppose $|\mathcal{C}| \geq 15$. Then $|\mathcal{C}(\bar{1}\bar{2})| \geq 3$. Every member of $\mathcal{C}(\bar{1}\bar{2})$ must meet F at $\{3\}$ and F' at $\{4\}$, and hence

$$\{3,4,5\}, \{3,4,6\}, \{3,4,7\} \in \mathcal{C}.$$

Since $\mathcal{F}(\bar{3}\bar{4}) \neq \emptyset$, we must have $\{5,6,7\} \in \mathcal{F}(\bar{3}\bar{4})$. But $F \cap \{5,6,7\} = \emptyset$, a contradiction.

<u>Case 2</u>. For all distinct edges $F, F' \in \mathcal{F}, |F \cap F'| = 1$. Let $\mathcal{C} = \mathcal{C}_3(\mathcal{F})$. We may assume that $\deg(1) \geq 3$ (by (9)) and

$$\{1,2,3\}, \{1,4,5\}, \{1,6,7\} \in \mathcal{F}.$$

Note that if $F \in \mathcal{F}(\overline{1})$ then

$$F \in \begin{pmatrix} \{2,3\} \\ 1 \end{pmatrix} \cup \begin{pmatrix} \{4,5\} \\ 1 \end{pmatrix} \cup \begin{pmatrix} \{6,7\} \\ 1 \end{pmatrix}.$$

Consequently, there exist no other edges containing 1, i.e., deg(1) = 3. Hence by (9), we have $\mathcal{F}(\bar{1}) \geq 3$. Thus, we have

$$|\mathcal{C}(\bar{1})| \le 2^3 - |\mathcal{F}(\bar{1})| \le 5.$$

Therefore, $|C| = |C(1)| + |C(\bar{1})| \le 7 + 5 = 12$.

(11) $p_{t+1}(k+1) \ge (k+1)p_t(k)$ holds for t < k and $p_{k+1}(k+1) \ge (k+1)p_k(k) + 1$ for t = k.

Proof Take an intersecting family $\mathcal{F} \subset {X \choose k}$ with $\tau(\mathcal{F}) = t$ and $\mathcal{C} = \mathcal{C}_t(\mathcal{F})$ of size $p_t(k)$. Let Y be a (k+1)-element set which is disjoint to X. Define

$$\mathcal{H} = \{ F \cup \{ y \} : F \in \mathcal{F}, \ y \in Y \} \cup \{ Y \}.$$

Then \mathcal{H} is intersecting, (k+1)-uniform with $\tau(\mathcal{H}) = t+1$. Also $\{C \cup \{y\} : C \in \mathcal{C}, y \in Y\} \subset \mathcal{C}_{t+1}(\mathcal{H})$ holds, proving the first inequality. To prove the second, note that Y is a cover of \mathcal{H} , too.

Let us remark that the same proof yields

(12)
$$r(k+1) \ge (k+1)r(k) + 1$$
.

Using the above inequality together with r(2) = 3, we obtain

(13)
$$r(k) \ge |k!(e-1)|$$
.

Actually, (13) was proved by Erdős and Lovász [2].

(14) Let $k > k_0(\tau)$, $|X| > n_0(k)$. Suppose that $\mathcal{F} \subset {X \choose k}$ is an intersecting family with covering number τ . Then,

$$|\mathcal{F}| \le p_{\tau-1}(k) {|X| - \tau \choose k - \tau} + O\left(|X|^{k-\tau-1}\right)$$

holds.

The above claim is proved in [4] for $\tau = 4$. One can prove the general case in the same way.

2 A counterexample to a conjecture of Lovász

Erdős and Lovász[2] proved that the maximum size of k-uniform intersecting families with covering number k is at least $\lfloor k!(e-1) \rfloor$ and at most k^k . Lovász[10] conjectured that $\lfloor k!(e-1) \rfloor$ is the exact bound. This conjecture is true for k=2,3. However, for the case $k \geq 4$, this conjecture turns out to be false. In this section, we will construct k-uniform intersecting family with covering number k whose size is greater than $(\frac{k+1}{2})^{k-1}$.

The constructions are rather complicated, therefore we first give an outline of them. There is a particular element x_0 which will have the unique highest degree in general. We construct an intersecting family $\mathcal{G} \subset {X-\{x_0\} \choose k}$ with $\tau(\mathcal{G}) = \tau - 1$. $(\tau = k \text{ in the Erdős-Lovász case, and } \tau \leq k \text{ in general.})$ Next we define

$$\mathcal{B} := \{ \{x_0\} \cup C : C \in \bigcup_{t=\tau-1}^{k-1} \mathcal{C}_t(\mathcal{G}) \}.$$

Finally, the family $\mathcal{F}_0 = \mathcal{F}_0(k,\tau)$ is defined as

$$\mathcal{F}_0 := \mathcal{G} \cup \{ F \in {X \choose k}, \exists B \in \mathcal{B}, B \subset F \}.$$

Now we give the two examples, according to the parity of τ .

Example 1 (The case $\tau = 2s + 2$.) Let h = k - s. First we define an infinite k-uniform family $\mathcal{G}^* = \mathcal{G}^*(h)$ as follows. Let

$$V(\mathcal{G}^*) := \{(2i,2j) : i \in \mathbf{Z}, 0 \le j < h\}$$
$$\cup \{(2i+1,2j+1) : i \in \mathbf{Z}, 0 \le j < h\}.$$

We define a broom structure G_i as follows. A broom G_i has a broomstick

$$S_i := \{(i,j) : (i,j) \in V(\mathcal{G}^*)\}, \quad (|S_i| = h)$$

and tails

$$\mathcal{T}_i := \{\{(i, j_0), (i+1, j_1), (i+2, j_2), \dots, (i+s, j_s)\} : j_{t+1} - j_t \in \{1, -1\} \text{ for } 0 \le \forall t < s\}$$

where

$$j_0 := \begin{cases} h & \text{if } h+i \text{ is even} \\ h-1 & \text{if } h+i \text{ is odd.} \end{cases}$$

Set $G_i := \{S_i \cup T : T \in T_i\}$. Note that G_i is a k-uniform family with size $|T_i| = 2^s$. Now define $G^* := \bigcup_{i \in \mathbb{Z}} G_i$.

Next we define an equivalence relation R(s) on $V(\mathcal{G}^*)$ induced by

$$(i,j) \equiv (i+2s+1,2h-1-j)$$
 for all $i \in \mathbb{Z}$ and $0 \le j \le 2h-1$.

Note that this equivalence transforms the infinite tape into a Möbius band. Finally, we define \mathcal{G} as a quotient family of \mathcal{G}^* by R(s), that is,

$$\mathcal{G} := \mathcal{G}^*/R(s)$$
.

Note that $|V(\mathcal{G})| = (2s+1)h$.

Example 2 (The case $\tau = 2s + 1$.) Let h = k - s, and

$$V(\mathcal{G}) := \{(2i,2j) : i \in \mathbf{Z}_{2s}, 0 \le i < s, 0 \le j \le h\}$$

$$\cup \{(2i+1,2j+1) : i \in \mathbf{Z}_{2s}, 0 \le i < s, 0 \le j \le h\}$$

$$-\{(2i,0) : i \in \mathbf{Z}_{2s}, s \le 2i < 2s, \}$$

$$-\{(2i+1,2h+1) : i \in \mathbf{Z}_{2s}, s \le 2i + 1 < 2s, \}$$

Note that $|V(\mathcal{G})| = s(2h+1)$. We define a broom structure \mathcal{G}_i as follows. A broom \mathcal{G}_i has a broomstick

$$S_i := \{(i,j) : (i,j) \in V(\mathcal{G})\},$$

$$(|S_0| = \dots = |S_{s-1}| = h + 1, |S_s| = \dots = |S_{2s-1}| = h)$$

and tails

$$\mathcal{T}_i := \{\{(i, j_0), (i+1, j_1), (i+2, j_2), \dots, (i+u, j_u)\} : j_{t+1} - j_t \in \{1, -1\} \text{ for } 0 \le \forall t < u\}$$

where

$$u := \begin{cases} s-1 & \text{if } i \in \{0, 1, \dots, s-1\} \ (mod. \ 2s) \\ s & \text{if } i \in \{s, s+1, \dots, 2s-1\} \ (mod. \ 2s), \end{cases}$$

and

$$j_0 := \begin{cases} h & \text{if } h+i \text{ is even} \\ h+1 & \text{if } h+i \text{ is odd.} \end{cases}$$

Set $\mathcal{G}_i := \{S_i \cup T : T \in \mathcal{T}_i\}, \text{ and define } \mathcal{G} := \bigcup_{0 \le i \le 2s} \mathcal{G}_i.$

Remark 1 In both examples, any edge of type

$$\{x_0, x_1, \dots, x_{\tau-1}\}\ (x_i \in S_i \text{ for all } 0 \le j \le \tau - 1)$$

is a cover of G. This implies that

$$|\mathcal{C}_{\tau-1}(\mathcal{G})| \ge \prod_{i=0}^{\tau-2} |S_i|.$$

Now we check that the above constructions satisfy the required conditions. It is easy to see that the family \mathcal{G} is intersecting. But $\tau(\mathcal{G}) = \tau - 1$ is not trivial. We only prove the case $\tau = 2s + 2$, because the proof for the case $\tau = 2s + 1$ is very similar.

Let us consider properties of covers of \mathcal{T}_0 . Define $I_t := \bigcup_{T \in \mathcal{T}_0} (S_t \cap T)$, $J_t := \bigcup_{l=0}^t I_l$, and fix a cover $C \in \mathcal{C}(\mathcal{T}_0)$. A vertex $y_i \in S_i$ is called suspicious (under C) if there exists

$$T = \{y_0, y_1, \dots, y_s\} \in \mathcal{T}_0 \quad (y_j \in S_j \text{ for all } 0 \le j \le s)$$

such that

$$\{y_0, y_1, \dots, y_i\} \cap C = \emptyset.$$

Let L = L(C) be the set of all suspicious vertices.

Let us start with a trivial but useful fact.

Claim 1 If $C \cap I_{i+1} = \emptyset$ then $|L \cap I_{i+1}| \ge |L \cap I_i| + 1$ and equality holds only if $L \cap I_i$ consists of consecutive vertices on I_i .

The following fact is easily proved by induction on i.

Claim 2 Let $a = |C \cap I_i|$. Suppose that $|C \cap J_i| \le l$ for all $0 \le l < i$. Then $|L \cap I_i| \ge i - a + 1$ and equality holds only if $L \cap I_i$ consists of consecutive vertices on I_i .

The following is a direct consequence of the above fact.

Proposition 1 Suppose that $|C \cap J_l| \leq l$ for all $0 \leq l < i$ and $L \cap I_i = \emptyset$. Then $|C \cap J_i| \geq i + 1$ and equality holds only if $C \cap I_i$ consists of consecutive vertices on I_i .

Proposition 2 $\tau(\mathcal{G}) = 2s + 1$.

Proof Let C be any cover for G. For each $0 \le i \le 2s$, we define the interval $W_i = [i, i+r]$ (mod 2s + 1) so that r is the minimum non-negative integer satisfying

$$|C \cap (S_i \cup S_{i+1} \cup ... \cup S_{i+r})| \ge r + 1.$$

In fact, such an integer r exists by Proposition 1. The following claim can be shown easily.

Claim 3 If W_i and W_j have non-empty intersection, then $W_i \subset W_j$ or $W_j \subset W_i$ holds.

Using this, we can choose disjoint intervals from W_0, W_1, \ldots, W_{2s} whose union is exactly [0, 2s]. And so, $|C| \geq 2s + 1$. This completes the proof of $\tau(\mathcal{G}) = 2s + 1$.

Now we know that

$$\mathcal{F}_0 := \mathcal{G} \cup \{ F \in \binom{X}{k}, \exists B \in \mathcal{B}, B \subset F \}$$

is intersecting, and $\tau - 1 \le \tau(\mathcal{F}_0) \le \tau$. We can check that $\tau(\mathcal{F}_0) = \tau$ using the following easy fact.

Proposition 3 Let $\mathcal{G} \subset {X-\{x_0\} \choose k}$ be an intersecting family with $\tau(\mathcal{G}) = \tau - 1$. Define

$$\mathcal{B} := \{\{x_0\} \cup C : C \in \bigcup_{t=\tau-1}^{k-1} \mathcal{C}_t(\mathcal{G})\},\$$

$$\mathcal{F} := \mathcal{G} \cup \{ F \in \binom{X}{k}, \exists B \in \mathcal{B}, B \subset F \}.$$

Then $\tau(\mathcal{F}) = \tau$ if and only if for all $C \in \mathcal{C}_{\tau-1}(\mathcal{G})$ there exists $C' \in \mathcal{C}_{\tau-1}(\mathcal{G})$ such that $C \cap C' = \emptyset$.

Lovász conjectured that $r(k) = \lfloor k!(e-1) \rfloor < e^2(\frac{k+1}{e})^{k+1}$. Our construction beats this conjecture as follows. Let \mathcal{G} be a k-uniform intersecting family defined in Example 1 or Example 2. Then $\tau(\mathcal{G}) = k$. By Remark 1, we have the following lower bound.

Theorem 1

$$r(k) > |\mathcal{C}_{k-1}(\mathcal{G})| > \begin{cases} \left(\frac{k}{2} + 1\right)^{k-1} & \text{if k is even,} \\ \left(\frac{k+3}{2}\right)^{\frac{k-1}{2}} \left(\frac{k+1}{2}\right)^{\frac{k-1}{2}} & \text{if k is odd.} \end{cases}$$

Thus, our construction is exponentially larger than Erdős-Lovász construction.

3 Open problems

Problem 1 Determine the maximum size of 4-uniform intersecting families with covering number four. Does r(4) = 42 hold?

Problem 2 Determine $p_3(k)$ for $4 \le k \le 8$. Does $p_3(k) = k^3 - 3k^2 + 6k - 4$ hold in these cases?

Conjecture 3 Let $\mathcal{F} \subset {X \choose k}$ be an intersecting family with covering number τ . If $k > k_0(\tau)$, $|X| > n_0(k)$, then we have

$$|\mathcal{F}| \le \left(k^{\tau - 1} - \binom{\tau - 1}{2}k^{\tau - 2} + c(k, \tau)\right) \binom{|X| - \tau}{k - \tau} + O\left(|X|^{k - \tau - 1}\right),$$

where $c(k,\tau)$ is a polynomial of k and τ , and the degree of k is at most $\tau-3$.

Using (14), the above conjecture would follow from the following conjecture by setting $\tau = t + 1$.

Conjecture 4 Let $k \geq k_0(t)$. Then

$$p_t(k) = k^t - {t \choose 2} k^{t-1} + O(k^{t-2})$$

holds.

This conjecture holds for $t \leq 4$. It seems that the coefficient of k^{t-2} in the above conjecture is

$$\frac{t}{4} \left| \frac{(t+1)(t^2-4t+7)}{2} \right|.$$

For the case $\tau = k$, we conjecture the following.

Conjecture 5 For some absolute constant $\frac{1}{2} \le \mu < 1$, $r(k) < (\mu k)^k$ holds.

We close this section with a bold conjecture.

Conjecture 6 Let $k \geq \tau \geq 4$ and $n > n_0(k)$. Let \mathcal{F}_0 be the family defined in Example 1 or Example 2. Suppose that $\mathcal{F} \subset {X \choose k}$ is an intersecting family with covering number τ , then

$$|\mathcal{F}| < |\mathcal{F}_0|$$

holds. Equality holds if and only if \mathcal{F} is isomorphic to \mathcal{F}_0 .

This conjecture is true if " $k \ge 4$ and $\tau = 2$ [9]," or " $k \ge 4$ and $\tau = 3$ [3]," or " $k \ge 10$ and $\tau = 4$ [4]." (Inequality holds even if "k = 3 and $\tau = 2$," or "k = 3 and $\tau = 3$," but the uniqueness of the extremal configuration does not hold in these cases.) Of course, this conjecture is much stronger than Conjecture 3. Note that for $k = \tau$ this conjecture would give the solution to the problem of Erdős–Lovász, and in particular, it would show that the answer to Problem 1 is 42.

4 Appendix

4.1 Numerical data

The following is a table of the size of k-uniform intersecting families with covering number k, i.e., known lower bounds for r(k).

k	Erdős-Lovász construction	Example 1, Example 2
2	3	3
3	10	10
4	41	42
5	206	228
6	1,237	1,639
7	8,660	13,264
8	69,281	128,469
9	623,530	1,327,677
10	6,235,301	15,962,373
11	68,588,312	202, 391, 317
12	823,059,745	2,942,955,330
13	10,699,776,686	44,744,668,113
14	149,796,873,605	770, 458, 315, 037
15	2,246,953,104,076	13,752,147,069,844
16	35,951,249,665,217	274,736,003,372,155

4.2 $k = \tau = 3$

The maximum size of 3-uniform intersecting families with covering number 3 is 10, i.e., r(3) = 10. There are 7 configurations which attain the maximum. The following is the list of these extremal configurations.

(#1) 123	(#2) 123	(#3) 123	(#4) 123
12 4	12 4	12 4	12 4
12 5	12 5	12 5	12 5
345	345	345	345
1 34	136	1 3 6	1 34
1 3 5	1 4 6	1 4 6	1 4 6
1 45	1 56	1 56	1 56
234	23 6	1 34	23 5
23 5	2 4 6	23 6	23 6
2 45	2 56	2 4 6	2 45

(#5)	123	(#6)	123	(#7)	12	3	
	12 4		12 4		12	4	
	12 5		12 5		12		5
	345		345			345	5
	1 34		1 34		1	34	
	1 3 5		1 3 6		1	3	6
	1 56		1 56		1	4	7
	23 5		23 5		2	34	
	2 45		23 6		2	:3	7
	23 6		2 4 6		2	4	6

References

- [1] P. Erdős, C. Ko and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
- [2] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In *Infinite and Finite Sets (Proc. Colloq. Math. Soc. J. Bolyai 10)*, edited by A. Hajnal et al. pages 609–627. Amsterdam: North-Holland 1975.
- [3] P. Frankl. On intersecting families of finite sets. *Bull. Austral. Math. Soc.*, 21:363–372, 1980.
- [4] P. Frankl, K. Ota, N. Tokushige. Uniform intersecting families with covering number four. preprint, 1992.
- [5] P. Frankl, K. Ota, N. Tokushige. Uniform intersecting families with covering number restrictions. preprint, 1992.
- [6] Z. Füredi. Matchings and covers in hypergraphs. Graphs and Comb., 4:115-206, 1988.
- [7] A. Gyárfás. Partition covers and blocking sets in hypergraphs (in Hungarian). MTA SZTAKI Tanulmányok, 71: 1977.
- [8] D. Hanson, B. Toft. On the maximum number of vertices in n-uniform cliques. Ars Combinatoria, 16 (A):205–216, 1983.
- [9] A.J.W. Hilton and E.C.Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 18:369–384, 1967.
- [10] L. Lovász. On minimax theorems of combinatorics (Doctoral thesis, in Hungarian). Mathematikai Lapok, 26:209–264, 1975.