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Abstract

We discuss the maximum size of uniform intersecting families with covering number

at least 7. Among others, we construct a large k-uniform intersecting family with

covering number k, which provides a counterexample to a conjecture of Lovasz. The

construction for odd & can be visualized on an annulus, while for even & on a Mobius

band.

1 Introduction

Let X be a finite set. ()k() denotes the family of all k-element subsets of X. We always
assume that | X| is sufficiently large with respect to k. A family F C <)k() is called k-
uniform. The vertex set of F is X and denoted by V(F). An element of F is called an
edge of F. F C ()k() is called intersecting if }' NG # 0 holds for every F,.G € F. A set
C C X is called a cover of F if it intersects every edge of F, i.e., C' N F # § holds for
all /'€ F. A cover C is also called t-cover if |C| = t. The covering number 7(F) of F
is the minimum cardinality of the covers of F. The degree of a vertex x is defined by

deg(z):=#{F € F:x e F}.
For a family A C 2% and vertices

and for Y C X,

&
i

x,y € X, we define
{A—A{z}:2 € Aec A},

{A:2 ¢ Aec A},
{A:2,y ¢ A€ A}, etc,

{A-Y :Y CAc A}
{AeA:YNnA=0.



For a family F C ()k() and an integer ¢ > 1, define
X
C(F)={C¢€ (t) :CNF # 0 holds for all F' € F}.
Note that C4(F) = 0 for t < 7(F). Define
XY .. .
pe(k) = max{|Cx(F)| : F C (k) is intersecting and 7(F) > t}.

Note that |C;(F)| < k' was proved by Gydrfas [7] without the assumption of F being
intersecting. In that inequality, equality is attained only if F consists of ¢ pairwise disjoint
sets, in particular, for ¢ > 2 if F is non-intersecting.

The aim of the present paper is to attain better bounds for p;(k) and apply them to
estimate the maximum size of intersecting families with fixed covering number.

Let us first derive some useful facts concerning p;(k).

(1) pi(k) = k (take |F| = 1).
(2) Pt—l—l(k) < kpt(k)'

Proof Take F C ()k(), F intersecting, 7(F) = t + 1 and |C;11(F)| = piy1(k). Define
C = Ci41(F). Let F' € F be an arbitrary member of F. By definition, "N C # () holds
for every C' € C. Thus |C| < 3 ,¢p |C(x)| holds. Therefore, in order to establish (2) it is
sufficient to prove |C(2)| < py(k) for all 2 € F. Consider F(z). It is intersecting with

t<7(Fz)<7(F)=t+1.
Moreover, C(z) C C¢(F(z)) is immediate from the definitions. Thus |C(z)| = 0 holds if
7(F(z)) =t + 1 and |C(z)| < pe(k), otherwise.

(3) For F C ()k(), intersecting, T(F) = t and an arbitrary set A € (f) with a < t, one
has

[CHF)A) < prealk).

Proof Consider 7(A) C F. Then 7(F(A)) > 7(F) — |A] = t — a. Moreover, C;(F)(A) C
Ci—o(F(A)) holds. By definition of p;_,(k) the desired inequality follows. |

The following was proved implicitly in Frankl [3]. For a simple proof, see [4].
(4) po(k) = k> -k + 1.
Using a construction described in the next section, it is not difficult to check that
p3(k) > (k=1 +3(k—1) =k —3k> + 6k — 4
holds for all £ > 3. The following is the key result proved in [4]. (The proof is not simple.)
(5) Fork >9, ps(k) = k> — 3k%* + 6k — 4.

Later we prove ps(3) = 14. The case 4 < k < 8 remains open. The authors do not know
an example with ps(k) > k° — 3k% + 6k — 4.
The following is proved in [5].



(6) Fork > ko, pa(k) = k* — 6k° + O(K?).

We will give a conjecture for pi(k) (¢ > 5) in section 3.
Let us define

r(k) := max{|F| : F is k-uniform and intersecting with 7(F) = k}.

For example, 7(2) = 3 and the only extremal configuration is a triangle. Note that,
Ci(F) D F for every intersecting k-uniform hypergraph, and equality must hold if |F| =
r(k) holds (together with 7(F) = k). Recall also, that r(k) < k* was proved by Erdés and
Lovasz [2].

(1) pr(k) = r(k).
The inequality in (7) is likely to be strict for all £ > 3. E.g. for £ = 3 consider the family

F={{1,2,3},{3,4,5},{5,6,1},{2,4,5},{4,6,1},{6,2,3} }.

Then F ¢ ($§) and 7(F) = 3 imply |C3(F)| = (§) — |F| = 14 (G ¢ C3(F) iff G is the
complement of some F' € F). On the other hand, r(3) = 10 is known. (See Appendix.)

(8) Suppose that F C ()]g) is an intersecting family with 7(F) = k. Then for allz € I' €
F, there exists F' € F such that F'nF' = {z}.

Proof Let @ € F € F. Suppose that for all F # F' € F, |FnF'| > 2. Then F — {z} is
a cover of 7, which means 7(F) < k — 1.

(9) Suppose that F C

()3() is an intersecting family with 7(F) = 3. Then there exists
x € X such that deg(z) > 3,

and |F| > 6.

Proof We can choose F,F’' € F such that F' = {1,2,3}, F' = {1,4,5}. There exists
G € F such that GN{2,4} = 0. If 1 € G, then deg(1) > 3. Otherwise we may assume
G = {3,5,6}. We can choose G' € F such that G' N {3,4} = 0. Since F/' NG’ # 0, we
have G' N {1,5} # 0. This implies deg(1) > 3 or deg(5) > 3.

Next we prove |F| > 6. Assume on the contrary that |F| < 5. We choose z € X such
that deg(z) > 3. Thus the number of edges which do not contain z is at most 2. Let F
and F’ be such edges. Choose y € F'N F'. Then {z,y} is a cover of F, which contradicts
(F) = 3. §

(10) ps(3) = 14.

Proof Case 1. There exist F, F' € F such that |[F'n F'| = 2.
Let 1" ={1,2,3}, F' = {1,2,4}, and C = C3(F). By (3) and (4), |C(1)] < Tand |C(2)] < 7.
Thus, since F, F' € C(1) N C(2),

C(HUC2)| <T+T7—2=12.

Suppose [C| > 15. Then |C(12)| > 3. Every member of C(12) must meet F' at {3} and F’
at {4}, and hence
{37 475}7 {3747 6}7 {37 47 7} E C'

Since F(34) # 0, we must have {5,6,7} € F(34). But F'n{5,6,7} = 0, a contradiction.



Case 2. For all distinct edges F, F' € F, |[Fn F'| = 1.
Let C = C3(F). We may assume that deg(1) > 3 (by (9)) and

{17273}7 {1747 5}7 {17677} E f‘

Note that if F' € F(1) then

Fe ({2,3}) ! ({4,5}) ! ({6,7})‘
1 1 1

Consequently, there exist no other edges containing 1, i.e., deg(1) = 3. Hence by (9), we
have F(1) > 3. Thus, we have

D <2° = |F(D)] < 5.
Therefore, |C| = |C(1)| 4+ [C(1)| < T+ 5 = 12. |
(11) pealk +1) > (k + Dpe(k) holds for t <k and peer(k+ 1) > (k1 Dpyk) 1 1 for
t=k.

Proof Take an intersecting family F C ()k() with 7(F) = ¢ and C = Cy(F) of size p(k).
Let Y be a (k4 1)-element set which is disjoint to X. Define

H={FU{y}:FeF, yeY}u{Y}

Then H is intersecting, (k 4+ 1)-uniform with 7(H) =t + 1. Also {CU{y} : C€C, y€
Y} C Ci41(H) holds, proving the first inequality. To prove the second, note that YV is a
cover of H, too. [

Let us remark that the same proof yields
(12) r(k+1) > (k+ 1)r(k)+ 1.
Using the above inequality together with 7(2) = 3, we obtain
(13) #(k) > [k1(e — 1)].
Actually, (13) was proved by Erdés and Lovasz [2].

(14) Let k > ko(1), | X| > no(k). Suppose that F C ()k() is an intersecting family with
covering number 7. Then,

|F| < PT_l(k)(Dkﬂ_— 7') 40 (|X|k—7—1)

-
holds.

The above claim is proved in [4] for 7 = 4. One can prove the general case in the same
way.



2 A counterexample to a conjecture of Lovasz

Erdés and Lovdsz[2] proved that the maximum size of k-uniform intersecting families with
covering number k is at least |k!(e — 1)] and at most k*. Lovész[10] conjectured that
|kl(e — 1)] is the exact bound. This conjecture is true for k = 2,3. However, for the case
k > 4, this conjecture turns out to be false. In this section, we will construct k-uniform
intersecting family with covering number k whose size is greater than (’“"2'—1)’“_1.

The constructions are rather complicated, therefore we first give an outline of them.
There is a particular element zg which will have the unique highest degree in general.
We construct an intersecting family G C (X_éx()}) with 7(G) = 7 — 1. (7 = k in the
Erdos-Lovasz case, and 7 < k in general.) Next we define

k-1
B:={{zo}uC:CE€ U Ci(G)}.

t=7—1

Finally, the family Fy = Fo(k, 7) is defined as
X
Fo:=GU{F e (k),HBe B,B C I'}.

Now we give the two examples, according to the parity of 7.

Example 1 (The case 7 = 2s + 2.) Let h = k—s. First we define an infinite k-uniform
family G* = G*(h) as follows. Let

V(G*) = {(2i,2j):1€ Z,0<j<h}
U{(20 4+ 1,25+ 1):71€ Z,0 < j < h}.
We define a broom structure G; as follows. A broom G; has a broomstick
Sii=A{(6,4) 1 (5,7) e V(GT)}, (I15:] = h)
and tails

7; = {{(27]0)7 (l + 17j1)7 (l + 27j2)7 R (l + Svjs)} :
Jer1 — je € {1,—=1} for 0 <Vt < s}

where

h—1 ifh+1is odd.

Set G; :={S; UT :T € 7;}. Note that G; is a k-uniform family with size |T;| = 2°. Now
define G* 1= ;7 G-
Next we define an equivalence relation R(s) on V(G*) induced by

. {h if h+ 1 is even
Jo =

(i,j)=(i4+2s4+1,2h—1—j) foralli€Z and 0 < j < 2h—1.

Note that this equivalence transforms the infinite tape into a Mébius band. Finally, we
define G as a quotient family of G* by R(s), that is,

G:=G"/R(s).
Note that |V(G)| = (2s 4+ 1)h. []



Example 2 (The case 7 =2s+ 1.) Let h =k — s, and

V(G) = {(20,2)):i1€Zy,0<i<5,0<j<h}
U{(2¢0 + 1,25+ 1) 11 € Z5,0< i< 5,0< 7 < h}
—{(20,0) 11 € Zps,5 <20 < 25, }
—{(20+1,2h+1) 11 € Zys,5 <20+ 1< 2s,}

Note that |[V(G)| = s(2h 4+ 1). We define a broom structure G; as follows. A broom G; has
a broomstick

Si = { Z,]) : (lvj) € V(g)}v
([Sof =+ = |Sscal = h 4+ 1, |Ss| = -+ = [925-1| = h)
and tails
7; = {{(27]0)7(l+17]1)7(Z+27]2)77(l+u7]u)}
Jtg1 — Jt € {1, =1} for 0 <Vt < u}
where
) s—=1 dfiefo0,1,...,5—1} (mod. 2s)
T s ified{s,s+1,...,2s — 1} (mod. 2s),
and
. ) h if h+ 1 is even
JOZY ha1 ifh+iis odd.
Set G := {5 UT : T € T;}, and define G := Up<icas Gi- ]

Remark 1 In both examples, any edge of type
{zg,21,...,2,21} (z; €8 forall0<j<T-1)

is a cover of G. This implies that

Ca@l = [IIs [

Now we check that the above constructions satisfy the required conditions. It is easy
to see that the family G is intersecting. But 7(G) = 7 — 1 is not trivial. We only prove
the case 7 = 2s + 2, because the proof for the case 7 = 2s + 1 is very similar.

Let us consider properties of covers of 7y. Define [; := UTeTO(St ntT), J; = U;:O 1,
and fix a cover C' € C(7p). A vertex y; € 5; is called suspicious (under C') if there exists

T =A{yo.y1,---,ys} €To (y; € 55 forall 0<j <)

such that
{3/073/17---73/2'}“0 = 0.

Let L = L(C) be the set of all suspicious vertices.
Let us start with a trivial but useful fact.

Claim 1 If Cn1ipy = 0 then |[LN L] > |L N L]+ 1 and equality holds only if L N I;
consists of consecutive vertices on I;. []



The following fact is easily proved by induction on .

Claim 2 Leta = |CnI;|. Suppose that |CNJy| <1 forall0 <! < i. Then|LNI;| > i—a+1
and equality holds only if L N I; consists of consecutive vertices on I;. []

The following is a direct consequence of the above fact.

Proposition 1 Suppose that |C N J;| < I for all0 < | < i and LN 1I; = 0. Then
|C N J;| > i+ 1 and equality holds only if C N I; consists of consecutive vertices on I;.

[

Proposition 2 7(G) = 2s + 1.

Proof Let C' be any cover for G. For each 0 < ¢ < 2s, we define the interval W; = [i, i+ r]
(mod 2s 4 1) so that r is the minimum non-negative integer satisfying

|ICN(S; US4 U US4 )| >r+ 1.
In fact, such an integer r exists by Proposition 1. The following claim can be shown easily.

Claim 3 If W; and W; have non-empty intersection, then W; C W; or W; C W, holds.

[

Using this, we can choose disjoint intervals from Wy, Wy, ..., W5, whose union is exactly
[0,2s]. And so, |C| > 2s + 1. This completes the proof of 7(G) = 2s + 1. |

Now we know that

fo:IgU{FE (X

k),HBeB,BCF}

is intersecting, and 7 — 1 < 7(Fp) < 7. We can check that 7(Fy) = 7 using the following
easy fact.

Proposition 3 Let G C (X_éxO}) be an intersecting family with 7(G) = 7 — 1. Define

k-1
B = {{z}uC:Ce |J (9},
F = gU{FE()k(),EIBEB,BCF}.

Then 7(F) = 7 if and only if for all C € C._1(G) there exists C' € C._1(G) such that
cnc’ =9. ]

Lovész conjectured that (k) = |k!(e — 1)] < e2(£EL)*1 Our construction beats this
conjecture as follows. Let G be a k-uniform intersecting family defined in Example 1 or
Example 2. Then 7(G) = k. By Remark 1, we have the following lower bound.

Theorem 1

(5 + 1) e if k is even,
r(k) > [Chi(G)| > 2 k=1
(52) 7 (H2) 7 ifk is odd.

Thus, our construction is exponentially larger than Erdos—Lovdsz construction.



3 Open problems

Problem 1 Determine the mazimum size of 4-uniform intersecting families with covering
number four. Does r(4) = 42 hold? (]

Problem 2 Determine p3(k) for 4 <k < 8. Does p3(k) = k* — 3k* + 6k — 4 hold in these
cases? ]

Conjecture 3 Let F C ()k() be an intersecting family with covering number 7. If k >

ko(T), | X| > no(k), then we have

< (1= (7 ) (R + o0 ().

where ¢(k,T) is a polynomial of k and 7, and the degree of k is at most T — 3. ]

Using (14), the above conjecture would follow from the following conjecture by setting
T=1t+1.

Conjecture 4 Let k > ko(t). Then

zumzﬁ—(gw*+owF%

holds. []

This conjecture holds for t < 4. It seems that the coefficient of £/=2 in the above
conjecture is

t {(t +1)(12 — 4t + 7)J

4 2

For the case 7 = k, we conjecture the following.
Conjecture 5 For some absolute constant 3 < i < 1, r(k) < (uk)* holds. []

We close this section with a bold conjecture.

Conjecture 6 Let k> 7> 4 and n > ng(k). Let Fo be the family defined in Example 1
or Fxample 2. Suppose that F C ()k() 1s an intersecting family with covering number T,
then

|7 < | Fol

holds. Fquality holds if and only if F is isomorphic to Fy. []

This conjecture is true if “k > 4 and 7 =2 [9],” or “k > 4 and 7 = 3 [3],” or “k > 10
and 7 = 4 [4].” (Inequality holds even if “6 = 3 and 7 = 2,” or “k = 3 and 7 = 3,” but
the uniqueness of the extremal configuration does not hold in these cases.) Of course, this
conjecture is much stronger than Conjecture 3. Note that for £ = 7 this conjecture would
give the solution to the problem of Erdés—Lovasz, and in particular, it would show that
the answer to Problem 1 is 42.



4 Appendix

4.1

The following is a table of the size of k-uniform intersecting families with covering number

Numerical data

k,i.e., known lower bounds for (k).

4.2

k | Erdos—Lovasz construction | Example 1, Example 2
2 3 3
3 10 10
4 41 42
5 206 228
6 1,237 1,639
7 8,660 13,264
8 69,281 128, 469
9 623,530 1,327,677
10 6,235,301 15,962,373
11 68, 588, 312 202,391,317
12 823,059, 745 2,942,955, 330
13 10,699, 776, 686 44,744,668, 113
14 149, 796, 873,605 770,458, 315,037
15 2,246,953,104,076 | 13,752, 147,069, 844
16 35,951,249, 665,217 | 274,736,003,372, 155
k=717=3

The maximum size of 3-uniform intersecting families with covering number 3 is 10, i.e.,

7(3) = 10. There are 7 configurations which attain the maximum. The following is the
list of these extremal configurations.

(#1) 123 (#2) 123
12 4 12 4

12 5 12 5

345 345

1 34 13 6

135 1 46

1 45 1 56

234 23 6

23 5 246

2 45 2 56

(#3) 123
12 4
12 5
345
3 6
46
56
34
23 6
246

e

(#4) 123
12 4
12 5
345
1 34
1 46
56
23 5
23 6
2 45



(#5) 123 (#6) 123 (#7) 123

12 4 12 4 12 4

12 5 12 5 12 5
345 345 345

1 34 1 34 1 34

135 13 6 13 6

1 56 1 56 1 4 7
23 5 23 5 234

2 45 23 6 23 7
23 6 246 246
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