
CROSS t-INTERSECTING INTEGER SEQUENCES FROM
WEIGHTED ERDŐS–KO–RADO

NORIHIDE TOKUSHIGE

Abstract. Let m,n and t be positive integers. Consider [m]n as the set of se-
quences of length n on anm-letter alphabet. We say that two subsets A ⊂ [m]n and
B ⊂ [m]n cross t-intersect if any two sequences a ∈ A and b ∈ B match in at least
t positions. In this case it is shown that if m > (1− 1

t√2
)−1 then |A||B| ≤ (mn−t)2.

We derive this result from a weighted version of the Erdős–Ko–Rado theorem
concerning cross t-intersecting families of subsets, and we also include the corre-
sponding stability statement. One of our main tools is the eigenvalue method for
intersection matrices due to Friedgut [10].

(2010 AMS subject classification codes 05D05, 05C50.)

1. Introduction

Hoffman observed that one can get an upper bound of the independence number
of a given regular graph by using the eigenvalues of the adjacency matrix. This
eigenvalue method has been extended in various ways with many applications. For
example, this approach gave the exact bound for parameters in the Erdős–Ko–Rado
theorem [5]. Namely, Wilson [14] obtained the maximum size of n-vertex k-uniform
t-intersecting families, which is

(
n−t
k−t

)
if n ≥ (t + 1)(k − t + 1), and Frankl and Wil-

son [9] obtained the corresponding vector space analogue. Recently, Ellis, Friedgut
and Pilpel [4] succeeded to determine the maximum size of n-letter t-intersecting
permutations, which is (n − t)! if n ≫ t. As is pointed out in [4], it is one of the
merits of the eigenvalue method that one can modify a proof for t-intersecting result
only slightly to get the corresponding stronger “cross t-intersecting” result. In fact,
Ellis, Friedgut and Pilpel obtained ((n − t)!)2 bound for the product of the sizes
of two families of cross t-intersecting permutations. The same method can apply

to get
(
n−t
k−t

)2
bound for n-vertex k-uniform cross t-intersecting families, and its vec-

tor space analogue, see [16]. Along this line, in this article, we will determine the
maximum product of the sizes of two cross t-intersecting sets of integer sequences.
Gromov [11] claims that such inequalities can be equivalently reformulated in terms
of monomial subsets in the N -torus, and for example he obtained a homological sep-
aration inequality for pairs of disjoint subsets in N -torus from a cross intersecting
Erdős–Ko–Rado inequality obtained in [13].
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2 N. TOKUSHIGE

Let n, t be positive integers with n ≥ t, and let p, q ∈ (0, 1) be reals satisfying
p + q = 1. Let [n] := {1, 2, . . . , n} and let µp : 2[n] → [0, 1] be the product measure
defined by

µp(x) := p|x|qn−|x|

for a subset x ⊂ [n]. For a family of subsets F ⊂ 2[n] define the measure of F by

µp(F) :=
∑
x∈F

µp(x).

We say that F ⊂ 2[n] is t-intersecting if |x ∩ x′| ≥ t holds for all x, x′ ∈ F . What
is the maximum measure for t-intersecting families? To answer this question, let us
define a t-intersecting family Ar(n, t) ⊂ 2[n] by

Ar(n, t) := {A ⊂ [n] : |A ∩ [t+ 2r]| ≥ t+ r}.
The following result was first proved by Ahlswede and Khachatrian [1], see also Bey
and Engel [2], Dinur and Safra [3], and Tokushige [15].

Theorem 1 ([1, 2, 3, 15]). Let n ≥ t ≥ 1 be integers and let p ∈ (0, 1). If F ⊂
2[n] is t-intersecting, then µp(F) ≤ maxr µp(Ar(n, t)). If equality holds then F is
isomorphic to one of Ar(n, t)’s.

Consider the case p ∈ (0, 1
t+1

). Then maxr µp(Ar(n, t)) = µp(A0(n, t)) = pt.
Friedgut [10] gave a proof of this case of Theorem 1 using the eigenvalue method.
Furthermore he also showed the stability of the extremal structure described as
follows.

Theorem 2 ([10]). Let n ≥ t ≥ 1 be integers and let p ∈ (0, 1
t+1

). Suppose that

F ⊂ 2[n] is t-intersecting. Then the following holds.

(i) We have µp(F) ≤ pt with equality holding iff F is isomorphic to A0(n, t).
(ii) There is a constant c = c(t, p) such that if µp(F) > (1−ϵ)pt then µp(F△G) <

cϵ for some G ∼= A0(n, t).

We first extend (i) of the above result to cross t-intersecting families. We say that
two families of subsets F1,F2 ⊂ 2[n] are cross t-intersecting if |x∩ y| ≥ t holds for all

x ∈ F1, y ∈ F2. Let
(
[n]
k

)
denote the set of all k-subsets of [n].

Theorem 3. Let n ≥ t ≥ 1 be integers, let p ∈ (0, 1− 1
t√2
), and let F1,F2 ⊂ 2[n]. If

F1 and F2 are cross t-intersecting, then µp(F1)µp(F2) ≤ p2t with equality holding iff

F1 = F2
∼= A0(n, t), that is, F1 = F2 = {F ⊂ [n] : T ⊂ F} for some T ∈

(
[n]
t

)
.

For comparison we mention the corresponding k-uniform version from [16].

Theorem 4 ([16]). Let n ≥ k ≥ t ≥ 1 be integers, let k
n
< 1− 1

t√2
, and let F1,F2 ⊂(

[n]
k

)
. If F1 and F2 are cross t-intersecting, then |F1||F2| ≤

(
n−t
k−t

)2
with equality

holding iff F1 = F2
∼= A0(n, t) ∩

(
[n]
k

)
, that is, F1 = F2 = {F ∈

(
[n]
k

)
: T ⊂ F} for

some T ∈
(
[n]
t

)
.

Next we extend (ii) of Theorem 2 to cross t-intersecting families.
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Theorem 5. Let t ≥ 1 be an integer and let p ∈ (0, 1− 1
t√2
). Then there is a constant

c = c(t, p) which satisfies the following. Let n ≥ t be an integer and let F1,F2 ⊂ 2[n].

If F1 and F2 are cross t-intersecting families with
√

µp(F1)µp(F2) > (1− ϵ)pt, then
there is a family G ∼= A0(n, t) such that µp(F1 △G) < c

√
ϵ and µp(F2 △G) < c

√
ϵ.

Finally we consider a t-intersecting set of integer sequences. Let n,m, t be posi-
tive integers with m ≥ 2 and n ≥ t. Then H ⊂ [m]n is a set of integer sequences
(a1, . . . , an), 1 ≤ ai ≤ m. We say that H is t-intersecting if any two sequences
intersect in at least t positions, more precisely, #{i : ai = bi} ≥ t holds for all
(a1, . . . , an), (b1, . . . , bn) ∈ H. Let f1(n,m, t) be the maximum size of H ⊂ [m]n

which is t-intersecting. The following result was proved by Alhswede and Khacha-
trian [1] and Frankl and Tokushige [8] independently, see also Bey and Engel [2].

Theorem 6 ([1, 8, 2]). Let r = ⌊ t−1
m−2

⌋. If n ≥ t+2r then f1(n,m, t) = mnµ 1
m
(Ar(n, t)).

We notice that

mnµ 1
m
(A0(n, t)) =

∑
x∈A0

(m− 1)|x| =
n−t∑
k=0

(
n− t

k

)
1k(m− 1)n−t−k = mn−t.

Frankl and Füredi [7] had settled the following case, which was a starting point of
the research resulting Theorem 6.

Corollary 1 ([7]). If n ≥ t ≥ 1 and m ≥ t+ 1, then f1(n,m, t) = mn−t.

We extend this result to cross t-intersecting sets of integer sequences. ForH1, H2 ⊂
[m]n we say that they are cross t-intersecting if #{i : ai = bi} ≥ t holds for all
(a1, . . . , an) ∈ H1 and (b1, . . . , bn) ∈ H2. Let f2(n,m, t) be the maximum of |H1||H2|,
where H1, H2 ⊂ [m]n run over all cross t-intersecting sets of integer sequences. The
next result shows that this function f2 is closely related to the measure µp (p = 1/m)
as was the case with f1.

Theorem 7. We have f2(n,m, t) = max{m2nµ 1
m
(F1)µ 1

m
(F2)}, where F1,F2 ⊂ 2[n]

run over all cross t-intersecting families.

Consequently we obtain the following result from Theorem 3.

Theorem 8. If n ≥ t ≥ 1 and m > (1− 1
t√2
)−1, then f2(n,m, t) = (mn−t)2.

It seems very likely that the best possible upper bound for p in Theorems 3 and 5
is 1

t+1
instead of 1− 1

t√2
. More precisely, we conjecture the following.

Conjecture 1. Let n ≥ t ≥ 1 be integers, let p1, p2 ∈ (0, 1
t+1

), and let F1,F2 ⊂ 2[n].

If F1 and F2 are cross t-intersecting, then µp1(F1)µp2(F2) ≤ (p1p2)
t with equality

holding iff F1 = F2
∼= A0(n, t), that is, F1 = F2 = {F ⊂ [n] : T ⊂ F} for some

T ∈
(
[n]
t

)
.

Conjecture 2. Let t ≥ 1 be an integer and let p1, p2 ∈ (0, 1
t+1

). Then there is a
constant c = c(t, p1, p2) which satisfies the following. Let n ≥ t be an integer and let
F1,F2 ⊂ 2[n]. If F1 and F2 are cross t-intersecting families with µp1(F1)µp2(F2) >
(1− ϵ)2(p1p2)

t, then there is a family G ∼= A0(n, t) such that µp1(F1 △G) < c
√
ϵ and

µp2(F2 △G) < c
√
ϵ.
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Conjecture 3. If n ≥ t ≥ 1 and m ≥ t+ 1, then f2(n,m, t) = (mn−t)2.

Very recently, Frankl, Lee, Siggers, and Tokushige [6] proved Conjectures 1 and
3 for the case when p1 = p2 and t ≥ 14. Their approach is completely different
from ours. See also [16] for some related problems concerning “k-uniform” cross
t-intersecting families.

2. Inequality and uniqueness: Proof of Theorem 3

We follow the proof in [10] and [4]. In fact, the key observation, Lemma 1, is
essentially due to Friedgut [10], and we include a (slightly more direct) proof for
convenience.

Let G = (V,E) be a graph with V = 2[n] and E = {{x, y} ∈
(
V
2

)
: |x ∩ y| < t}.

Recall that µp is the product measure on V . In this graph, we have F1,F2 ⊂ V
and there are no edges between them, namely, {{x, y} : x ∈ F1, y ∈ F2} ∩ E = ∅,
because F1 and F2 are cross t-intersecting. For i = 1, 2, let fi be the characteristic
function of Fi, that is, fi(x) = 1 if x ∈ Fi and fi(x) = 0 if x ∈ V \ Fi. Let

αi := µp(Fi) =
∑
x∈Fi

µp(x)

be the measure of Fi. We shall show that α1α2 ≤ p2t.
We will define a pseudo adjacency matrix of the graph G. First let

A(1) =

(
1 + c− cX −c+ cX

1−X X

)
,

where c := −p/q. Both rows and columns of A(1) are indexed by subsets of [1],
namely, ∅ and {1} itself. The eigenvalues of A(1) are 1 and c(1 − 1

p
X), and the

corresponding eigenvectors are (1, 1)T and (
√
−c,−

√
−1/c)T , respectively. Next let

A(n) = A(1) ⊗ · · · ⊗ A(1)

be a 2n×2n matrix obtained by taking n-fold tensor of A(1) over the ring R[X]/(X t).
Then A(n) = (axy) is a pseudo adjacency matrix of G, that is, axy = 0 whenever
{x, y} ̸∈ E. (One can verify this by induction on n, see [10] for details.) Then the
set of eigenvalues {λx}x∈V of the matrix A(n) is given by

λx := c|x|(1− 1
p
X)|x| = c|x|

t−1∑
m=0

λ(m)
x Xm, (1)

where λ
(m)
x :=

(|x|
m

)
(−1

p
)m. (We define

(
a
b

)
= 0 if a < b, so λ

(m)
x = 0 if |x| < m. Thus

the sum in the RHS of (1) is actually taken over m = 0, 1, . . . ,min{|x|, t− 1}.) For
1 ≤ i ≤ n define the function χ{i} : V → R by

χ{i}(x) :=

{√
−c if i ̸∈ x

−
√

−1/c if i ∈ x.

Then the eigenvector χx corresponding to λx is given by χx :=
∏

i∈x χ{i}. For x = ∅
we let χ∅ := 1V (all one vector of length 2n).
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We introduce an inner product on Hn := {f : V → R}, the set of real-valued
functions on V , by

⟨f, g⟩p :=
∑
x∈V

f(x)g(x)µp(x).

Then the set of eigenvectors {χx}x∈V of A(n) forms an orthonormal system of the
inner product space Hn. Thus we can expand the characteristic function fi as fi =∑

x∈V f̂i(x)χx where f̂i(x) = ⟨fi, χx⟩p.

Claim 1. The Fourier coefficients f̂i(x)’s satisfy the following properties.

(C1) αi = f̂i(∅).
(C2) αi =

∑
x∈V f̂i(x)

2.

(C3) A(n)fi =
∑

x∈V f̂i(x)λxχx.

(C4)
∑

x∈V f̂1(x)f̂2(x)λx = 0.

(C5)
∑

x∈V c|x|
(|x|
m

)
f̂1(x)f̂2(x) = 0 for 0 ≤ m ≤ t− 1.

Proof. We write ⟨f, g⟩ and µ instead of ⟨f, g⟩p and µp for simplicity. Recall that
χ∅ = 1V . By computing |fi|1 and |fi|22 we have (C1) and (C2), respectively:

αi =
∑
x∈Fi

µ(x) =
∑
x∈V

fi(x)χ∅(x)µ(x) = ⟨fi, χ∅⟩ = f̂i(∅),

αi =
∑
x∈Fi

µ(x) =
∑
x∈V

fi(x)
2µ(x) = ⟨fi, fi⟩ = ⟨

∑
x∈V

f̂i(x)χx,
∑
x∈V

f̂i(x)χx⟩ =
∑
x∈V

f̂i(x)
2.

(C3) follows from A(n)χx = λxχx and fi =
∑

x∈V f̂i(x)χx.

To show (C4) we compute ⟨f1, A(n)f2⟩ in two ways. On one hand, it follows from
(C3) that

⟨f1, A(n)f2⟩ = ⟨
∑
x∈V

f̂1(x)χx,
∑
x∈V

f̂2(x)λxχx⟩ =
∑
x∈V

f̂1(x)f̂2(x)λx,

which is the LHS of (C4). On the other hand, we have

⟨f1, A(n)f2⟩ =
∑
x∈V

f1(x)
(
(A(n)f2)(x)

)
µ(x) =

∑
x∈V

f1(x)
(∑
y∈V

ax,yf2(y)
)
µ(x)

=
∑
x∈V

∑
y∈V

ax,yf1(x)f2(y)µ(x) = 0.

This is because if {x, y} ̸∈ E then ax,y = 0 by the fact that A(n) is a pseudo adjacency
matrix, and if {x, y} ∈ E then f1(x)f2(y) = 0 by the cross t-intersecting property of
F1 and F2.

By (1) and (C4) we have

0 =
∑
x∈V

f̂1(x)f̂2(x)c
|x|

t−1∑
m=0

λ(m)
x Xm =

t−1∑
m=0

(
− 1

p

)m
Xm

∑
x∈V

c|x|
(
|x|
m

)
f̂1(x)f̂2(x).

So, for each m, the coefficient of Xm in the RHS vanishes and (C5) follows. �
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For anyQ(Y ) ∈ R[Y ]/(Y t) we can writeQ(Y ) =
∑t−1

m=0 βm

(
Y
m

)
for some β0, . . . , βt−1 ∈

R. Then, from (C5), we have

0 =
t−1∑
m=0

βm

(∑
x∈V

c|x|
(|x|
m

)
f̂1(x)f̂2(x)

)
=

∑
x∈V

c|x|Q(|x|) f̂1(x)f̂2(x). (2)

For 0 ≤ i ≤ n, let

θi := ciQ(i),

which will play the role of an “eigenvalue.” By (2) with (C1) we have

α1α2θ0 = −
∑
x̸=∅

θ|x| f̂1(x)f̂2(x). (3)

Now let Q(Y ) ∈ R[Y ]/(Y t) be the unique polynomial of degree t − 1 such that
Q(i) = −c−i for i = 1, . . . , t, that is,

θ1 = θ2 = · · · = θt = −1. (4)

Lemma 1. The polynomial Q(Y ) satisfies the following properties about θi = ciQ(i).

(Q1) θ0 = p−t − 1.
(Q2) If q−t < 2, then −1 ≤ θi < 1 for all 1 ≤ i ≤ n.

Proof. By the extrapolation form, we have

Q(Y ) = −
t∑

i=1

∏
j∈[t]\{i}

Y − j

i− j
c−i. (5)

Let d = −1/c = q/p > 1. For (Q1), by setting Y = 0 in (5), we have

θ0 = c0Q(0) = −
t∑

i=1

(−1)tt!

(i− 1)!(−1)t−i(t− i)!(−i)
c−i =

t∑
i=1

(
t

i

)
di

=
t∑

i=0

(
t

i

)
di1t−i − 1 = (d+ 1)t − 1 = p−t − 1.

Next we show (Q2). We have θi = −1 for 1 ≤ i ≤ t by (4). Now we will show that

1 > |θt+1| > |θt+2| > · · · > |θn|. (6)

For Y ≥ t+ 1 it follows from (5) that

−Q(Y ) =
t∑

i=1

(Y − 1) · · · (Y − t) c−i

(i− 1)!(−1)t−i(t− i)!(Y − i)
= (−1)t

t∑
i=1

(Y − 1) · · · (Y − t) di

(i− 1)!(t− i)!(Y − i)
. (7)

Claim 2. If q−t < 2, then 0 < θt+1 < 1.

Proof. By (7) we have

−Q(t+ 1) = (−1)t
t∑

i=1

(
t

i− 1

)
di = (−1)td

t−1∑
j=0

(
t

j

)
dj = (−1)td

(
(1 + d)t − dt

)
.
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Thus we get

θt+1 = ct+1Q(t+ 1) = d−t
(
(d+ 1)t − dt

)
=

(
1 +

1

d

)t

− 1 =
1

qt
− 1. (8)

Using 0 < q−t < 2 we have 0 < θt+1 < 1. �
Claim 3. Let p < 1

t+1
. Then |θY | > |θY+1| for Y = t+ 1, . . . , n− 1.

Proof. By (7) we have |Q(Y )| =
∑t

i=1 ϕ(Y, i), where

ϕ(Y, i) :=
(Y − 1) · · · (Y − t)

(i− 1)!(t− i)!(Y − i)
di > 0.

We prove |θY | > |θY+1|, or equivalently, |cYQ(Y )| > |cY+1Q(Y + 1)|, by showing

|cY ϕ(Y, i)|/|cY+1ϕ(Y + 1, i)| = d ϕ(Y, i)/ϕ(Y + 1, i) > 1

for all 1 ≤ i ≤ t. In fact we have

d ϕ(Y, i)

ϕ(Y + 1, i)
=

(Y − t)(Y + 1− i)

Y (Y − i)
d ≥ (Y − t)(Y + 1− 1)

Y (Y − 1)
d =

Y − t

Y − 1

q

p
.

If t = 1 then the RHS is q/p > 1. If t ≥ 2 then it follows from Y ≥ t+ 1 that

Y − t

Y − 1

q

p
≥ (t+ 1)− t

(t+ 1)− 1

q

p
=

q

tp
.

Then q
tp
> 1 is equivalent to our assumption p < 1

t+1
. �

The above two claims show (6). Then (4) and (6) give (Q2), and this completes
the proof of Lemma 1. �

For those who might wonder how Lemma 1 relates to the Hoffman’s ratio bound,
we give a short remark here. In our case θi’s play the role of “eigenvalues.” Then the
the largest one is θ0 = p−t−1 and the least one is θ1 = −1. (This is true for p ≤ 1

t+1
.

We needed q−t < 2 only to guarantee that θt+1 < 1.) Thus the corresponding ratio
bound is −θ1

θ0−θ1
= pt, as expected.

It follows from (3) with Lemma 1 that

α1α2θ0 =
∑
x̸=∅

θ|x|f̂1(x)f̂2(x) ≤
∑
x ̸=∅

|f̂1(x)f̂2(x)|. (9)

Applying the Cauchy–Schwarz inequality, and then by (C1) and (C2), we have∑
x ̸=∅

|f̂1(x)f̂2(x)| ≤
2∏

i=1

(∑
x ̸=∅

f̂i(x)
2
) 1

2 =
2∏

i=1

√
αi − α2

i =
√
α1α2

√
1− α1

√
1− α2.

(10)

Claim 4. If α1, α2 ∈ [0, 1] then
√
1− α1

√
1− α2 ≤ 1−√

α1α2.

Proof. We apply the inequality of arithmetic and geometric means twice:

√
1− α1

√
1− α2 ≤

(1− α1) + (1− α2)

2
= 1− α1 + α2

2
≤ 1−

√
α1α2.

�
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By (9), (10) and Claim 4 we have

α1α2θ0 ≤
∑
x ̸=∅

|f̂1(x)f̂2(x)| ≤
√
α1α2

√
1− α1

√
1− α2 ≤

√
α1α2(1−

√
α1α2). (11)

Using θ0 = p−t − 1 and rearranging we get α1α2 ≤ p2t.
In the case of equality, we have equality in Claim 4. This gives α1 = α2, that is,

f̂1(∅) = f̂2(∅) by (C1). We also have equality in (10), which gives

|f̂1(x)| = |f̂2(x)| (12)

for all x ̸= ∅. Moreover by the equality in (9) we have

α1α2θ0 = −
∑
x ̸=∅

θ|x|f̂1(x)f̂2(x) =
∑
x ̸=∅

|f̂1(x)f̂2(x)|.

This means that if x ̸= ∅, then we have (i) f̂1(x) = f̂2(x) = 0, or (ii) θ|x| = −1 and

f̂1(x)f̂2(x) = |f̂1(x)f̂2(x)|. If (ii) happens, then it follows f̂1(x) = f̂2(x) from (12).

Consequently we have f̂1(x) = f̂2(x) for all x ∈ V . Thus f1 ≡ f2, that is, F1 = F2.
In this case, F1 is t-intersecting itself and µp(F1) = pt. Then F1

∼= A0(n, t) follows
from Theorem 2. This completes the proof of Theorem 3.

3. Stability: Proof of Theorem 5

Let ϵ0 > 0 be a small absolute constant (independent from t and p) which is
chosen so that ϵ0 satisfies several inequalities appeared in this section. (One can
easily verify that these inequalities hold by choosing ϵ0 sufficiently small.) By taking
c large enough so that c

√
ϵ0 ≥ 1, the theorem clearly holds for all ϵ ≥ ϵ0. Thus it

suffices to show that the theorem holds for all 0 < ϵ < ϵ0.
We say that a family of subsets F ⊂ 2[n] is an upset if G ⊃ F ∈ F implies G ∈ F .

Without loss of generality we may assume that both F1 and F2 are upsets. To see
this, suppose that the theorem is true for cross t-intersecting upsets. If F1 and F2

are not necessarily upsets, but they are cross t-intersecting families with

µp(F1)µp(F2) > (1− ϵ)2p2t,

then we can find upsets F̃1 ⊃ F1 and F̃2 ⊃ F2. By the assumption we have

µp(F̃i △G) < c̃
√
ϵ

for some G ∼= A0(n, t) and i = 1, 2. Let µp(F̃i \ F) = ϵi and suppose that ϵ1 ≥ ϵ2.
We claim that ϵ1 <

√
ϵ, which will give

µp(Fi △G) ≤ ϵi + µp(F̃i △F) < (1 + c̃)
√
ϵ.

Namely, by setting c = 1+ c̃, the theorem is true for F1 and F2 as well. To this end
we use Theorem 3 to get

p2t ≥ µp(F̃1)µp(F̃2) = (µp(F1) + ϵ1)(µp(F̃2) + ϵ2)

≥ (µp(F1) + ϵ1)µp(F̃2) > (µp(F1) + ϵ1)
(1− ϵ)2p2t

µp(F1)
.
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This gives

ϵ1 <
1− (1− ϵ)2

(1− ϵ)2
µp(F1) ≤

2ϵ− ϵ2

(1− ϵ)2
.

The RHS is less than
√
ϵ for ϵ < 0.15, as needed. (Thus we need to choose ϵ0 < 0.15

and this is one of the constraints for ϵ0.) Therefore we may assume that F1 and F2

are upsets from the beginning.
Before starting the actual proof we briefly explain our plan. We use notation in

the proof of Theorem 3. We fix t and p, and treat them as constants. Define the
norm of f ∈ Hn by

|f |2 :=
√

⟨f, f⟩p.

Let Bn := {f : 2[n] → {0, 1}} ⊂ Hn be the set of characteristic functions. Let
F1,F2 ⊂ 2[n] and suppose that they are cross t-intersecting upsets. For i = 1, 2, let
fi ∈ Bn be the characteristic function of Fi. Then we can write

αi := µp(Fi) = |fi|22,
and it follows from Theorem 3 that |f1|22|f2|22 ≤ p2t. By symmetry we may assume
that |f2|22 ≤ |f1|22. Then we have

|f2|22 ≤ pt.

On the other hand, using our assumption
√
α1α2 = |f1|2|f2|2 > (1− ϵ)pt, (13)

we will show that ∑
|x|>t

f̂2(x)
2 = O(

√
ϵ),

namely, the LHS is less than C
√
ϵ for some constant C and all 0 < ϵ < ϵ0. Then

we can apply the following result due to Friedgut [10]. (Lemma 2.8 in [10] is stated
slightly differently, but what is actually proved there is exactly as follows.)

Theorem 9 ([10]). Let t ≥ 1 be an integer and let 0 < p < 1/2. Let f ∈ Bn be a char-

acteristic function of some (not necessarily t-intersecting) upset. If
∑

|x|>t f̂(x)
2 < ϵ̃

and |f |22 ≤ pt, then either |f |22 = O(ϵ̃), or there is a t-intersecting family G ∼= A0(n, t)
with the characteristic function g ∈ Bn such that |f − g|22 = O(ϵ̃).

Theorem 9 will imply that there is a family G ∼= A0(n, t) with the characteristic
function g such that

|f2 − g|22 = µp(F2 △G) = O(
√
ϵ).

Next we will show that |f1 − f2|22 = O(
√
ϵ), which will imply

µp(F1 △G) = |f1 − g|22 = |(f1 − f2) + (f2 − g)|22 ≤ (|f1 − f2|2 + |f2 − g|2)2 = O(
√
ϵ).

This is the plan of our proof.
Now we get into details. By (4) and (8) we find a “spectral gap”

δ := |θt| − |θt+1| = 1− (q−t − 1) = 2− q−t > 0.

Notice δ is a constants depending only on t and p. We recall from (4) and (6) that

|θ1| = · · · = |θt| = 1 > 1− δ = |θt+1| > · · · > |θn|. (14)



10 N. TOKUSHIGE

For i = 1, 2, let βi :=
∑

x̸=∅ f̂i(x)
2 = αi − α2

i ∈ (0, 1). We define τi ∈ [0, 1] to divide
βi into two parts as follows:∑

|x|>t

f̂i(x)
2 = τiβi,

∑
1≤|x|≤t

f̂i(x)
2 = (1− τi)βi.

We will show that both τ1 and τ2 are small. First we check that the product τ1τ2
is small.

Claim 5.
√
τ1τ2 = O(ϵ).

Proof. By (9) and (14) we get

α1α2θ0 ≤ (1− δ)
∑
|x|>t

|f̂1(x)f̂2(x)|+
∑

1≤|x|≤t

|f̂1(x)f̂2(x)|.

Applying the Cauchy–Schwarz inequality, we have

α1α2θ0 ≤ (1− δ)
√
τ1β1

√
τ2β2 +

√
(1− τ1)β1

√
(1− τ2)β2

=
√

β1β2

(
(1− δ)

√
τ1τ2 +

√
(1− τ1)(1− τ2)

)
. (15)

Using Claim 4 we have√
β1β2 =

√
α1α2

√
1− α1

√
1− α2 ≤

√
α1α2(1−

√
α1α2)

and √
1− τ1

√
1− τ2 ≤ 1−

√
τ1τ2.

Thus we get

α1α2θ0 ≤
√
α1α2(1−

√
α1α2)

(
(1− δ)

√
τ1τ2 + (1−

√
τ1τ2)

)
,

that is,
√
α1α2 θ0 ≤ (1−

√
α1α2)(1− δ

√
τ1τ2).

This gives

√
α1α2 ≤

1− δ
√
τ1τ2

1 + θ0 − δ
√
τ1τ2

.

Since
√
α1α2 > (1− ϵ)pt the above inequality implies

√
τ1τ2 <

ϵ

δ(1− (1− ϵ)pt)
<

ϵ

δ(1− pt)
= O(ϵ), (16)

as desired. �

To show that τ1 and τ2 are close to each other we need a stronger version of Claim 4
as follows.

Claim 6. Let a1, a2, γ ∈ [0, 1]. If a1 ≥ a2 + 8γ then
√
1− a1

√
1− a2 ≤ 1−

√
a1a2 − 2γ2.
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Proof. We start with noting that
√
1− a2 ≥

√
1− a1 + 8γ ≥

√
1− a1 + 2γ. (17)

In fact the second inequality follows from

1− a1 + 8γ ≥ (1− a1) + 4γ2 + 4γ
√
1− a1,

or equivalently, 2 ≥ γ +
√
1− a1, which clearly holds.

For b1, b2, ξ ∈ R if b2 − b1 ≥ 2ξ then

b21 + b22
2

− b1b2 =
(b2 − b1)

2

2
≥ (2ξ)2

2
= 2ξ2,

that is, b1b2 ≤ b21+b22
2

− 2ξ2. To apply this inequality, let bi :=
√
1− ai and ξ := γ.

Then we have b2 − b1 ≥ 2γ from (17), and thus

√
1− a1

√
1− a2 ≤

(1− a1) + (1− a2)

2
−2γ2 = 1− a1 + a2

2
−2γ2 ≤ 1−

√
a1a2−2γ2.

�
Claim 7. max{τ1, τ2} = O(

√
ϵ).

Proof. Suppose that τ1 ≥ τ2. (The opposite case can be proved in the same way.)
First we show that

τ1 − τ2 < 8γ, (18)

where γ =
√

ϵ
2(1−(1−ϵ)pt)

. Suppose, to the contrary, that τ1 − τ2 ≥ 8γ. Then by

Claim 6 we have √
1− τ1

√
1− τ2 ≤ 1−

√
τ1τ2 − 2γ2.

Using this with (15) we get

α1α2θ0 ≤
√

β1β2

(
(1− δ)

√
τ1τ2 + (1−

√
τ1τ2 − 2γ2)

)
≤

√
α1α2(1−

√
α1α2)(1− 2γ2 − δ

√
τ1τ2),

and so
√
α1α2 ≤

1− 2γ2 − δ
√
τ1τ2

θ0 + 1− 2γ2 − δ
√
τ1τ2

<
1− 2γ2

θ0 + 1− 2γ2
= (1− ϵ)pt,

which contradicts (13). This proves (18).
It follows from τ2 ≤ τ1 and (16) that

τ2 ≤
√
τ1τ2 <

ϵ

δ(1− pt)
.

This and (18) give

τ1 < τ2 + 8γ <
ϵ

δ(1− pt)
+

√
32ϵ

1− pt
= O(

√
ϵ).

�
Without loss of generality we may assume that |f2|22 ≤ |f1|22. Since |f1|22|f2|22 ≤ p2t

we have |f2|22 ≤ pt. In other words, we have α1 ≥ α2, α2 ≤ pt. Recall from (13) that√
α1α2 > (1− ϵ)pt.
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Claim 8. α1 − α2 < 4
√
2ϵ.

Proof. Suppose, to the contrary, that α1 − α2 ≥ 8γ where γ =
√
ϵ/2. Then by

Claim 6 we have √
1− α1

√
1− α2 ≤ 1−

√
α1α2 − 2γ2.

Thus by (11) we get

α1α2θ0 ≤
√
α1α2

√
1− α1

√
1− α2 ≤

√
α1α2(1−

√
α1α2 − 2γ2),

or
√
α1α2 ≤ pt(1− 2γ2) = (1− ϵ)pt, which is a contradiction. �

Claim 9. α2 > (1− ϵ)pt − 4
√
2ϵ.

Proof. Using Claim 8 we have(
(1− ϵ)pt

)2
< α1α2 < (α2 + 4

√
2ϵ)α2 < (α2 + 4

√
2ϵ)2,

and (1− ϵ)pt < α2 + 4
√
2ϵ. �

We are going to apply Theorem 9 to f2. By Claim 7 we have∑
|x|>t

f̂2(x)
2 = τ2β2 < τ2 = O(

√
ϵ).

Recall that α2 = |f2|22 ≤ pt. On the other hand, if |f2|22 = O(
√
ϵ), then this contra-

dicts Claim 9. Thus |f2|22 = O(
√
ϵ) is not the case, and then Theorem 9 gives

µp(F2 △G) = |f2 − g|22 = O(
√
ϵ) (19)

for some family G ∼= A0(n, t) with the characteristic function g ∈ Bn.
Now we will show that |f1 − f2|22 = O(

√
ϵ) to prove µp(F1 △G) = O(

√
ϵ).

Claim 10. α1 + α2 ≤ 2pt + 4
√
2ϵ.

Proof. This follows from Claim 8 and α2 ≤ pt. �

Claim 11.
∑

x ̸=∅ f̂1(x)f̂2(x) = α1α2θ0 +O(ϵ).

Proof. Claim 5 gives∑
|x|>t

f̂1(x)f̂2(x) ≤
∑
|x|>t

|f̂1(x)f̂2(x)| ≤
√

τ1β1

√
τ2β2 <

√
τ1τ2 = O(ϵ). (20)

By (9) and (4) we have ∑
1≤|x|≤t

f̂1(x)f̂2(x) = α1α2θ0 + γ, (21)

where γ =
∑

|x|>t θ|x|f̂1(x)f̂2(x). By (14) and (20) we have

|γ| ≤ (1− δ)
∑
|x|>t

|f̂1(x)f̂2(x)| = O(ϵ). (22)

Then the the desired result follows from (20), (21) and (22). �
Claim 12. |f1 − f2|22 = O(

√
ϵ).
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Proof. We have

|f1 − f2|22 = ⟨f1 − f2, f1 − f2⟩ = ⟨f1, f1⟩+ ⟨f2, f2⟩ − 2⟨f1, f2⟩

=
∑
x ̸=∅

f̂1(x)
2 +

∑
x ̸=∅

f̂2(x)
2 − 2

∑
x ̸=∅

f̂1(x)f̂2(x) + (1 + 1− 2)

= (α1 − α2
1) + (α2 − α2

2)− 2
∑
x ̸=∅

f̂1(x)f̂2(x) (by Claim 1 (C1) and (C2))

≤ (α1 + α2)− 2α1α2 − 2
∑
x ̸=∅

f̂1(x)f̂2(x) (by AM–GM ineq.)

= (α1 + α2)− 2α1α2(1 + θ0) +O(ϵ). (by Claim 11)

Then we use Claim 10 to bound the first term, and we use (13) and 1+ θ0 = p−t for
the second term. Thus we get

|f1 − f2|22 < (2pt + 4
√
2ϵ)− 2((1− ϵ)pt)2 p−t +O(ϵ) = O(

√
ϵ).

�
By (19) and Claim 12 we have

µp(F1 △G) = |f1 − g|22 = |(f1 − f2) + (f2 − g)|22 ≤ (|f1 − f2|2 + |f2 − g|2)2 = O(
√
ϵ),

which completes the proof of Theorem 5.

4. Integer sequences: Proof of Theorem 7 and Theorem 8

For H ⊂ [m]n, 1 ≤ j ≤ n and c ∈ [m], we define a shifting operation Sj,c(H) =
{Sj,c(a) : a ∈ H} ⊂ [m]n as follows. For a = (a1, . . . , an) let Sj(a1, . . . , an) :=
(b1, . . . , bn) where bℓ = aℓ for ℓ ∈ [n] \ {j} and bj = 1, and let Sj,c(a) = Sj(a) if
aj = c and Sj(a) ̸∈ H, otherwise let Sj,c(a) = a. Namely, by Sj,c(a), we replace aj
with 1 if aj = c, but we do this replacement only if the resulting sequence is not in
the original set H. The following observation is due to Kleitman [12].

Claim 13. Let H1, H2 ⊂ [m]n, 1 ≤ j ≤ n and c ∈ [m]. If H1 and H2 are cross
t-intersecting, then Sj,c(H1) and Sj,c(H2) are also cross t-intersecting.

Starting from cross t-intersecting sets of sequences H1, H2 ⊂ [m]n, we repeat the
shifting operations simultaneously. Then after finitely many steps we eventually get
“shifted” sets H ′

1 and H ′
2, namely, Sj,c(H

′
1) = H ′

1 and Sj,c(H
′
2) = H ′

2 for all j and
c. Since |H ′

1| = |H1| and |H ′
2| = |H2|, and we are interested in the maximum of

|H1||H2|, we may assume that both H1 and H2 are shifted cross t-intersecting from
the beginning.

Now we reduce the problem of cross t-intersecting sets of sequences to the problem
of cross t-intersecting families of subsets with weights. For H ⊂ [m]n and a =
(a1, . . . , an) ∈ H, let σ(a) := {i : ai = 1} ⊂ [n] and σ(H) := {σ(a) : a ∈ H} ⊂ 2[n].
Frankl and Füredi [7] observed the following.

Claim 14. Let H1, H2 ⊂ [m]n. If H1 and H2 are shifted cross t-intersecting sets of
sequences, then σ(H1) and σ(H2) are cross t-intersecting families of subsets.
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Proof. For σ(a) ∈ σ(H1) and σ(b) ∈ σ(H2) we need to show that |σ(a) ∩ σ(b)| ≥ t.
Let a = (a1, . . . , an) ∈ H1 and b = (b1, . . . , bn) ∈ H2, and let I := {i : ai = bi ̸= 1}.
Since H1 is shifted, we have (a′1, . . . , a

′
n) ∈ H1, where a′j = aj if j ̸∈ I, and a′i = 1 if

i ∈ I. Then cross t-intersecting property implies that

t ≤ #{j ∈ [n] : a′j = bj} = #{j ∈ [n] \ I : a′j = bj}
= #{j ∈ [n] : aj = bj = 1} = |σ(a) ∩ σ(b)|.

�
Let f̃2(n,m, t) = max{m2nµ 1

m
(F1)µ 1

m
(F2)}, where F1,F2 ⊂ 2[n] run over all cross

t-intersecting families.

Proof of Theorem 7. If F1,F2 ⊂ 2[n] are cross t-intersecting, then by letting Hi :=
{a ∈ [m]n : σ(a) ∈ Fi} for i = 1, 2, we have

|Hi| =
∑
x∈Fi

(m− 1)n−|x| = mn
∑
x∈Fi

( 1
m
)
|x|
(1− 1

m
)
n−|x|

= mnµ 1
m
(Fi),

and H1 and H2 are clearly cross t-intersecting sets of integer sequences. This gives
f2(n,m, t) ≥ f̃2(n,m, t).

On the other hand, if H1, H2 ⊂ [m]n are cross t-intersecting sets of integer se-
quences, then by letting Fi := σ(Hi) ⊂ 2[n] for i = 1, 2, we have

|Hi| ≤
∑
x∈Fi

(m− 1)n−|x| = mnµ 1
m
(Fi),

and F1 and F2 are cross t-intersecting by Claim 14. This gives f2(n,m, t) ≤
f̃2(n,m, t). �
Proof of Theorem 8. Let p := 1/m. If m > (1− 1

t√2
)−1, or equivalently, p < 1− 1

t√2
,

then by Theorem 3 we have

f̃2(n,m, t) = max{m2nµp(F1)µp(F2)} = m2np2t = m2n(1/m)2t = (mn−t)2.

Since f2(n,m, t) = f̃2(n,m, t) by Theorem 7, we have f2(n,m, t) = (mn−t)2. �
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[5] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math.
Oxford (2), 12:313–320, 1961.

[6] P. Frankl, S. J. Lee, M. Siggers, N. Tokushige. An Erdős–Ko–Rado theorem for cross t-
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