ON CROSSt-INTERSECTING FAMILIES OF SETS
NORIHIDE TOKUSHIGE

ABSTRACT. Forallp,twithO< p<0.11and 1<t < 1/(2p), there existsp such that for
all n,k with n > ng andk/n = p the following holds: if< and % arek-uniform families

onn vertices, andANB| >t holds for allA € &7 andB € %, then|«/|| %] < (Ej)z

1. INTRODUCTION

Letn, k andt be integers, and lén] = {1,2, ..., n}. Two families.#,% c 2I" are called
crosst-intersecting iffF NG| >t holds for allF € .#,G € 4. Pyber[L] generalized the
Erdés—Ko—Rado theoren[ to cross 1-intersecting families, and the result was slightly
refined by Matsumoto and Tokushid@ nd Bey P] as follows.

Theorem 1. Let n> max{2ky, 2k }. If 2% C ([knl]) and.a% C ([krlj) are crossl-intersecting
families, ther|.« ||| < (0 7) (0 1)-

For a realp € (0,1) and a family¥ C 2N we define thep-weight of ¢, denoted by
Wp(¥), as follows:
wp(@) = 5 pa-pn el
Ge¥
Our first result is the followingp-weight version of Theoref

Theorem 2. Let p,pz € (0,1/2). If 4 c 21" and %, c 2" are crossl-intersecting
families, then w, (¢41)wp,(%2) < p1p2.

Next we consider th@-weight of crosg-intersecting families for > 1, cf. [, 3 4, 12,
8.

Theorem 3. Let p be a real witlD < p < 0.114, and lett and n be integers with<t <
1/(2p), n>t. Suppose that two familieg c 2I" and% c 2I" are cross t-intersecting.
Then we have W% )wp(4,) < p? with equality holding iff9; = %, = {G C [n] : [t] € G}
(up to isomorphism).

We conjecture that Theorehis true for 0O< p<1/2 and 1<t <(1/p)—1. If p>
1/2, then we have limoWp(“1)Wp(%2) =1 for 4 =% = {G C [n] : 2|G| > n+t}.
Fort > (1/p) — 1, we havewp(%1)Wp(%) = ((t +r)pt*"1g+ p*")2 > p? by taking
9 =% ={GcC[n:|GN[t+2]| >t+1}. SeellT for the casep = 1/2 andt > 2.

Finally we will deduce the followinds-uniform version from Theorei@
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Theorem 4. Let p be areal witl) < p< 0.114 and lett be aninteger with<t <1/(2p).
For fixed p and t there exist positive constasat®; such that for all integers jk with
n>ng and|X - p| < ¢, the following is true: if two families# C ([ }) and.es C ([”]) are
cross t-intersecting, then

1\ 2
| All| < (3 )
with equality holding iff7; = %, = {F € (I') : [t] € F} (up to isomorphism).

Let.o” = {A€ ([E]) ' |AN[t+2]| > t+1}. Thens and.< are cross-intersecting and
7| > (h4) iff t+1>n/(k—t+1). Thus we cannot replace the conditiod 1/(2p) in
Theorenlwitht < 1/p.

For the proof of our results, we will use the random walk method developed by Frankl
in [6,[7, and a technique translating results abpuwteight version tdk-uniform version,
cf. [13. We will also include stability type results, see Theord@end@ at the ends of
the following sections.

2. PROOF OFTHEOREM[Z

Fori =1,2 choose X ¢ < pj such thatp; + & < 1/2, and letgi =1—p;, li = ((pi —
&)n, (pi + &)n) NN. As the binomial distributiof8(n, p;) is concentrated aroungn, we
have

im S () plaf = pi, and lim S (1) plof =

n—>°°|(€|i kel
Thus, considering the cage— o, we have
Wpl(gl)Wm(gZ) < I_I Z |%ﬂ ‘p| ; p| Q|
1<i<2 kel;
= g m kl n— kl g m k2 n— k2 1
Z‘l P () | |p’d; %) +0(1)
k1€|1 k2€|2
< S (k'l_l)( D P play k2+o<1>
Thm(l k1€|1 k2€|2
= (Y @D Y (2P +o(1)
k1€|1 k2€|2
= p1p2+0(1). (1)

Now suppose that for somethere exist cross 1-intersecting famili@s, % c 2" with
Wp, (91)Wp,(42) > p1p2. Set¥ =4 u{GuU{n+1}:Ge 4} fori =12 then¥]
and ¥, are cross l-intersecting. Sine,(¢4) = wp, (4)(pi + i) = Wy (%) we have
Wp, (¢ )Wp,(¥;) > p1p2, which contradictsT). O

3. PROOF OFTHEOREMMB

Let us recall some basic facts about shifting fréfh [Let p € (0,1), and.Z,¥ c 2",
For integers K i < j <n, we define thei, j)-shift §; of .# as follows:

Si(#) ={Sj(F):Fe7},
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where

F otherwise.

Sj(F):{w—{j})u{i} figF jeF (F-{ihufi}¢ 7.

Then.% is called shifted if§; (.#) = .# forall 1 <i < j <n. One can easy to show that if
Z and¥ are cross-intersecting, then so af (.#) andS;(¥¢). By repeating this process,
one can eventually get shifted crdasmtersecting families#?’ and¥’ on the same vertex
set without changing profile vectors (and therefarg.7) = wp(.Z'), wp(¥) = wp(¥4')
and|.7| = |7], || = |4]).

For F C [n] we define the correspondingstep walk onZ?, denoted by walkF), as
follows. The walk is from(0,0) to (|F|,n—|F|), and thei-th step is one unit up(j if
i € F, or one unit to the right-G) if i ¢ F. Let A (%) be the maximumu € N such that
walk(F) touches the ling = x+ufor all F € .%. Frankl [[] observed the following.

Lemma 1. If # and¥ are shifted cross t-intersecting families, the(% ) + A (¢) > 2t.

Consider the infinite random walk I starting from(xo,yo) € Z?2, taking{ with prob-
ability p, and— with probabilityqg = 1— p at each step independently. The random walk
method is based on the following simple observation.

Lemma 2. Let &7 C 2" be a set of subsets A such thaalk(A) satisfies some given
propertyP. Then, the p-weight y(.Z) is bounded from above by the probability that the
(infinite) random walk satisfig3in the first n steps.

Let us see an important example of LemBa Suppose that¥ and¥ are crosg-
intersecting. Is € Z andyp < o+ S, then the random walk (starting frofg, yo)) hits the
line y = x+ swith probability as™ Yo, wherea = p/q (seelf,[I3)). Applying this to the
case % = Yo = 0 ands= A (.%),” we havewp(.Z) < a*(7), becausevy(#) is bounded
from above by the probability that the random walk (starting from the origin) hits the line
y = X+ A (Z) within the firstn steps. Similarly we haverp, (%) < a*#). Then Lemm4l
giveswp(F)wp(¥) < a?F)HAE) < g2, This gives already a good upper bound for the
product ofp-weights, but the bound? can be replaced witp? as we will show below.

Proof of Theorerf8. Let p be givenand let Kt < %. Let.# =% and¥ = % be cross
t-intersecting families ofn|. We may assume that both families are shifted pvaeight
maximal. (By thep-weight maximality, we notice thd € .# andF C F’ imply F’ € .%.)
Letg=1—p, a = p/q, u=A(F) andv=A(¥). Then, as mentioned above, we have
Wp(F) < aY, wp(¥) < a¥, andu+v > 2t. We will show thatwp(F )wp(¥) < p? for
p < 0.114 by case-wise analysis, and we will try to find better conditiorpf@than 0114)
in each case.

If u+v>2t+1, then we havev, (7 )wp(¥) < aUV < a2+, Sincef () :=a(a/p)? =
(p/g)g~2 is an increasing function of we havef (t) < f(%). Then a simple computation

showsf(%)) < 1for p<0.241. Namely, we have
Wp(:F)Wp(¥) < a?* = p?f(t) < p? )

for p<0.241 and < %). Thus we may assume that-v=2t, and 1I<u <t <wv.
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Let us define familieszy, 74" 21" by
My = {Hcn:[ucH},
A = {(He2\ 4 HN[u+2)| =u+1}.
In other words, ifH € J7;' then walKH) hits (0,u), and ifH € JZ" then walKH) hits
(1,u+ 1) without hitting (O,u). We definesy’ and.7#]’ similarly. Fori > 0 we define
special subsets € 7" andBy' € 77" as in Figurdll by

A= (Ufuti+2j+1:§> 1)),

B' = (u—1Ju{u+lu+2}u{u+i+2j+3:j>1})n[n.
SetA' = Ay = [N\ {u+L,u+2,u+4,u+6,...},B' =By =[n]\ {u,u+3,u+4,u+6,...}.
Consider a walk which satisfies that

() it does not cross the ling= x+u, and

(ii) it hits the line only at(0, u).
Then, walKAY) is the maximal walk with these properties, namely, if walksatisfies
(i) and (ii), then we can find aA’ c A" such thatd’ is obtained fromA by shifting. (In
fact, if |A| = u+¢, thenA is uniquely determined by = [uUU{n+2j+1:1<j </})
Similarly, walk(BY) is the maximal walk which does not cross the line x+ u, and hits

the line only at(1,u+ 1). We will look at the structure of# and¥ usingA" andB". Let
Fp=FnAHand¥) =9GN forl =1,2.

Case 1.A'¢ % and B' ¢ .#.

First letF € .%§. ThenF D [u], and walKF) must reach{O,u). The next step goes to
(O,u+1) or (1,u). If walk(F) reacheg1,u), then the walk will hit the line/ = x+ u after
passing1,u). (OtherwiseA’ = [u/U{n+2j+1:1< j <|F|—u} C A" can be obtained
from F by shifting, but then it follows from thg-weight maximality thatA" € .#, a
contradiction.) In summary, walk) has one of the following two possibilities:

walk(F) reachegO,u+1),
or
walk(F ) reacheg1,u) and then it hits the ling = x+u.

FIGURE 1.
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The former occurs with probabilitg"™1. The latter occurs with probability at mostqa,
where p'q is the probability that the random walk reachdsu) after passing through
(O,u), anda is the upper bound for the probability that the random walk starting from
(1,u) hits the liney = x+ u, or equivalently, the random walk starting from the origin hits
the liney = x+ 1. Thus we have
wp(Zg) < pH+ plga = 2p*tt. €)

Next letF € .7}, SinceB" ¢ .7, we find that

walk(F) reacheg1,u+2),
or

walk(F) reacheg2,u+ 1) and then it hits the ling = x4 u.

The former occurs with probabilitypit2q, because there ane ways of walks from
the origin to(1,u+ 2) without hitting (0,u). The latter occurs with probability at most
up'tlo?a, whereup'tig? is the probability that the random walk reackigsu+ 1) pass-
ing through(1,u-+ 1) without hitting (O,u), anda is the upper bound for the probability
that the random walk starting frof2, u+ 1) hits the liney = x+ u. Thus we have

Wp(g{l) < upu+2q+ upu+lq2a —2U pu+2q.

Finally letF € .7\ (%5 U.%;"). Then walKF) hits the liney = x+ u without hitting (0, u)
nor (1,u+ 1), and this occurs with probability at most' — (p¥ +up’*q). Therefore we
have

Wp(F) = Wp(F\(FoUFT))+Wp(Fg) +Wp(F71)
< al— <pu + upu+lq) + 2pu+1 +2u pu+2q
= p(q " (1-2p)(1+upa)).
For% we use a trivial upper bountly(¢) < aV = p?~Ug~2+U. Consequently we have
Wp(Z)Wp(¥) < p (47" — (1-2p)(1+upd)g == p? f(ut).
Noting that—logq > p, one can verify tha’}u f(ut)>0 and% f(t,t) > 0. Thus we have
f(ut) < f(t,t) < f(55,25)- Finally, for p < 0.1144, we havef (55, z5) < 1, which gives
Wp(F )Wp(¥) < p?.
Case2.A¢ #Z andB' € 7.
Using [3), we have
Wp(F) = Wp(F \ ) +Wp(Fg) < (0= p')+2p** = pU(a™"— (1-2p)).  (4)
Suppose thaB}' € .# for somei > 0. We will find C with |BNC| <t. Then the cross
t-intersecting property implieS ¢ ¢, which will give an upper bound fawp(¥).
If u=t—1, then let
C=(t+i+3—{t+1}H)Uu{t+i+3+2j:j>1}.
Since|B'NC|=t—1wehaveC ¢ 4. LetG € 4. SinceC ¢ ¢, we find that
walk(G) reacheg0,t + 1),

p

or
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walk(G) does not reaclO,t + 1) and it hits the liney = x+t +i+ 2.

In the latter case, wa(ks) must hit one of(j,t +1— j), where 1< j <t + 1. The prob-
ability that the random walk starting frofj,t +-1— j) hits the liney = x4+t +i+2 is at
mosta'T21+1, Thus the latter case occurs with probability at most

t+1

t+1\ Gt+1- 2j+1 t+i4+2 f+1i+1
Z(J)p+ qua|+ J+1 _ gt+i+2 _ p+a|+’
=1

1 i 2] R _
where we usedZt+1 (”J )pHi-igigit2itl — (p/q)ttit2 Zt+1 (t+J )plgit-i = gt+i+2
Thus we have

Wp(g) pt+1 ( t+|+2 pt+lal+l> pt+1(1+ al+l(q7t 1 1))
<pHi+a(@tt-1). (5)
By @) and B), we have
Wp(.F)Wp(9) < p* (g~ = (1-2p))(1+a(g - 1)) = p* f(1).

Then a direct computation shoviigt) < f( ) < 1forp<0.188.
If u<t—1,then let

C=[2t—u+iju{2t—u+i+2j:j>1}.

Since|B'NC| <twe haveC ¢ 9. So, forG € ¢, walk(G) hits the liney = x+2t —u+i+1.
Thus we havevp(¥) < a?-Ut+l < g2-Utl This together withig) gives

Wp(:Z)Wp(%) < pU(q = (1-2p))a® 1 = p?(q = (1-2p))pg * 1= p? f(ut).

Then a computation showfgu,t) < f(t —2,t) < f(z; -2, 3;) < 1for p<0.333.
If u=v=t, then let

C=(t+i+4\{t+Lt+2})U{t+i+4+2j:j>1}.
LetG e ¢. SinceC ¢ ¢ we find that
walk(G) reacheg0,t + 1) or (1,t + 1),
or
walk(G) hits the liney =x+t+i+21inx> 2.
Thus we have

Wp(g) pt+1 ( )pt+1q+ at+i+l pt+l(1+ (t 4 1)q+ aq7t71>.
This together with[4) implies
Wp(F)Wp(%) < p?(q" = (1-2p))p(L+ (t+1)g+aq " ~F) = p* £ (1).
Then we have (t) < f(55 5) <1lforp<0.2.

Case 3.A' ¢ . and u< v.
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Suppose thafy' € .# for somei > 0. Let
C=[2t—u+iju{2t—u+i+2j:j>1}.
Then we findA'NC| <tandC ¢ ¢4. Thus, forG € ¢, walk(G) hits the liney = x+ 2t —

u+i+1and _
Wp(g) < aZt—u+|+1 < aZt—u+1

Thus we havevp (% )wp(¥4) < ala? U1 = g2+ < p? for p < 0.241 by P).
Cased4.u=v=tandAc .7, A¢Y.

SinceA! ¢ ¢, it follows from @) thatwy(4}) < 2p'* = p'(2p).
First suppose thdt] € .%. Then, the croskintersecting property implies thiif C G
forall G € ¢, and sc%\%t
Next suppose thaﬂ;} andA,t Z for somei > 0. Let
= ([t+|+2]\{t})u{t+i+2+2€:£2 1}.

Then we haveA! mC] <t. SinceAl € .7 we haveC ¢ 4. Thus, forG € 4\ ¥}, walk(G)
hits the liney=x+t+i+1inx> 1, and

Wp(g\gt) < at—l—H—l p aH—l pta'H(q 1) < pta(q—t . 1)
Thus, in both cases, we hawg(¥4) = wp(4}) +Wp(4\ 4) < p'(2p+a(gt—1)) and

Wp(F)Wp(¢) < a'pl(2p+a(a ' —1)) = p?a (2p+a(g ' — 1)) = p*f(1).
Then a computation showst) < f( ) < 1forp<0.195.

Case5.u=v=tandAc .7 AcY9.
First suppose thdt] ¢ .# and[t] ¢ 4. Then we can choosej > 0 so thatAl € .7,

A, ¢ 3" A c9andA, ¢9. LetF € . If walk(F) reachegi +2,t), then, using
A}H we find that this walk hits the ling=x+t —i—1inx > i+ 2. This gives

wp(Zg) < (p' = p'd*?) + p'dPa = pl(1—q*(1-2p)). 6)
Let
C=(t+j+2\{tHhu{t+j+2+20:¢>1}.
Then we haveA; NC| <t. SinceA} € ¢ we haveC ¢ #. Thus, forF € .7\ 7, walk(F)
hits the liney = x+t+ j+1inx>1, and
wp(F \ F) < a' I —plaltt = plalti (gt - 1). (7
Therefore we have
Wp(F) = Wp(Fg) +Wp(F \ Fp) < p(1-0d"H(1-2p)+al* (@' ~1)). (8)
We use
q'<qg’e <2 (9)
for 0 < p<1/2. Then, forp < 1/4, the RHS of[@) is less thanptqj, wherec; j =
1-g+1/2+ al*l In the same way, we also havg (%) < p'cji. Now it suffices to
showg; jcji < 1, or equivalently, log; j +logc;j; < 0. Using log1l+Xx) < x, we have
logci j+logeji < (G j—1)+(cji—1) = —q*t/2+a+1 —qgitt/2+ al*Ll. By symmetry
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it suffices to show-q't1/2+ a'*1 < 0, or equivalently, 2 (¢?/p)'*1. Forp < 1/4 we
certainly have 2 ¢?/p < (¢?/p)'*2.

Next suppose thdt] € # and[t] ¢ 4. Choosej > 0 so thatA| € ¢ andA, ., ¢ 9.
Since[t] € .#, we have? \ 4! = 0. Then, using the same reasoning as wel@et\e have

Wp() = Wp(%5) +Wp(9 \ 45) = Wp(%) < p'(1— /" (1-2p)). (10)
Using a trivial boundvy(.4) < pt and [7) with (@), we have
Wp(F) = Wp(.Fg) +Wp(:F \ Fg) < p'(1+al (g - 1) < p'(1+al*h). (1)

We will show wp(.Z)wp(¥) < pZ, or (1—qi*1(1—2p))(1+ al*l) < 1. For this, it
suffices to showr 1+1 < gi*1(1—2p), or equivalently, ¥(1—2p) < (¢?/p)!*L. Forp <
1/4, we have 1(1—2p) <2< (¢?/p)i*1, as desired.

Finally suppose that] € .# and[t] € 4. Then we haveZ = %} and¥ = ¥}. Thus
we havewp(.F )wp(%) < p? with equality holding iff# =% = {F c [n] : [t] C F}. For
later use, we notice that this is the only case we have equality in our target inequality. This
completes the proof of Theordh O

For the proof of Theorer@we only needed to showp (.7 )wp(¥) < p?, but actually
we have proved slightly more. Namely, in CalEd, our proof shows

Wp(.F )Wp(¥) < (0.999p")2, (12)
which we will use to prove Theoreh

On the other hand, in CalSewe see that ift] € .7 thenwp (4 \ 4}) = 0; if [t] € .Z then
there is somésuch that\l € . andAl, ; ¢ .Z, which implies

Wp(:75) < P'(1—d (1 —2p)) andwp(¥\ %) < pla’ (gt 1) < platt,  (13)
cf. @, @. So, ifwp(.#}) is large, theri needs to be large, avi,(¢ \ 45) is small. In
fact, for everye > 0 we can find somé = d(¢) > € such that ifwp(.#) > (1— ) p' then
Wp(9\4}) < ep'. To see this, led = q°9¢/1099 (1 _ 2p) and suppose, on the contrary,
thatep' < wp(¥9\4}) < a'*1p'. Then, by [[3, we havewy(F}) < (1-8(a'1))pt <
(1—5(¢))p'. We can summarize this observation as the following stability type statement.

Theorem 5. Let p be a real witlD < p < 0.114, and lett and n be integers with<t <
1/(2p), n>t. Suppose tha#;, ¢ 2I" and%, c 2" are shifted cross t-intersecting families.
Then, for anye € (0, p| there existy > 0 such that if w(%1)wp(%2) > (1—y)p?, then
Wp(%\ 9 )Wp(42\ 9)) < ep?, where¥/ = {Ge % : [t] C G} fori=1,2.

Sketch of proofLet & be given. Choosg so that 1- y = max.<4p<p(1—d(a)+a)(1—
3(B)+B). Letwp(4\¥4) = &p' fori = 1,2. Suppose, on the contrary, that, > €.
Then, by the remark aftell), we havewp(4) < (1—5(&) + &) p', andwp(41)wp(4») <
(1-y)p*. 0

4. PROOF OFTHEOREMA

Let <4 and.o,> be k-uniform shifted cross-intersecting families ofn]. Letq=1—p,
a=p/g, u=A() andv= A (o). We start with the case corresponding to CBse
in the proof of Theoren and we borrow notation used there. In this part we will
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just translate verbatim what we did fprweight version tdk-uniform version. FoA =
{ag,ap,...,8,...} with ag < ap < ---, let firsttA) = {a3,ay,...,a/} be consisting of the
firstk elements of. LetK' = first(A') andT = first(Al , ;), which will play a role ofA!
and[t] in the p-weight version, respectively. We consider the case that

u=v=tandK! c ., K! € . (14)
First suppose thal ¢ <1 andT ¢ o%. Let.o/] = {A € o4 : [t] C A}. Then in this
k-uniform version,[@) reads as follows:
] < (o) = (M) + () (15)
where we used the reflection principle to count the number of walks touching the line.
Also, (7) reads

IN

[\ | < (") = (et a)
By (15 and [L6) we have
ol/ () < 1+ {= (M) + OG0/ (5D =1 146y

In the same way, we haves|/ (7 ;) < 1+cj;. We need to shoWl + ¢ j)(1+cj;) < 1,
orlog(1+¢;)+log(1+cji) <0. Using log1+Xx) < x, it suffices to shoveg; j+c¢;; <0,
and by symmetry this follows from

("0 = (M) = (D), (a7
which can be verified fop = k/n < 0.17 andt < 1/(2p) by standard calculation. Frankl

proved [[7) in [[7].
Next suppose thal € & andT ¢ . Notice thatT € <7 implies % = <7,. In this
subcase[0) and 1) read as

|| = |ty + | o\ | = |og) < (1) — ("D + (D),
| = || + A\ | < (1) + (o)

L) (16)

Then, |« ||| < (2-1)? follows from (L2).

Finally suppose thal € <1 andT € .%. Then we have#; = 7] and.a% = 7). Thus
we havel.#4||.#| < (-0)% with equality holding iffo4 = % = {Ac () : [t]  A}. So
far, this is the only case we have equality in our target inequality, and we will see that
equality never holds in the remaining cases below.

Now we consider the situation corresponding to C&&6 Namely we assume the
negation of[[4). Fors= 1,2 let % be the collection of all upper shadows .¢£, that
is, % = Uxejen(0j (%)), wheredj (a%) = {H € () : H 5 3F € o%}. Then% and%;
satisfy one of CasdéB{, and we getll2). We only use the following weaker claim.

Claim 1. Let0 < p< 0.114and1 <t < 1/(2p) be fixed. Let n>t and let%, % c 2"
be cross t-intersecting families corresponding to Cases 1-4. Then therg,@xisO such
that w (%1 )Wx(%2) < (1— y)x? holds for all x with|x— p| < &.

To complete the proof of Theordd it suffices to show the following.
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Claim 2. LetO < p< 0.114and1 <t < 1/(2p) be fixed. Then there exigte > 0and iy

such that the following holds for all, k € N with n> ng and|¥ — p| < &: If @4 (%)) and

atp C ([E]) are cross t-intersecting families corresponding to Cases 1-4, |thghas| <

1-vGD~

Proof of ClaimZ Assume the negation of Claih Then the statement starts with
3p3tVyVevno3n 3k -, (18)

where the underlines will indicate the choice of parameters described below. We will
construct a counterexample to Cldlhusing [[8). Recall that Clainfl starts with

VpWt3y3e ---. (19)

First, assuming the negation of Clanthere exists somp andt (corresponding to the
first and second underlines i@f)) such that the rest of Claiffl does not hold. For this
p andt, Claim[Il provides somep = yo(p,t) andeg = &(p,t) (corresponding to the third
and fourth underlines ifil@) such that

W (91 )Wy (%) < (1— yp)x2 (20)
holds for allx with |[x— p| < &.

For reals O< € < p we write p+ € to mean the open intervép — €, p+ €). Since we
have fixedp andt, we note thatf (x) := x? is a uniformly continuous function of on
p+&. Lete =&/2, y= yw/4, andX = p+ €. Now we are going to definey. Choose
€1 < € so that

(1-3y)f(x) > (1—4y)f(x+9) (21)
holds for allx € X and all 0< d < &;. As the binomial distributioB(n, p) is concentrated
aroundpn, we can choose; so that

Z (MY 1=y >/(1-3y)/(1-2y) (22)

IE

holds for alln > n; and ally € Y := p+ 3, whered = ((y— &)n, (y+ &)n)NN. A little
computation shows that we can chooseso that

62 2
1=V > =291 () (23)
holds for alln > ny and allk with k/n € X. Finally setng = max{ns, n,}.
We plug thesey/, € andng into (I8). Then the negation of Claif gives us some, k

and cross-intersecting families#, .o% C ([E]) with
12

[l > (1= ) (D), (24)
wheren > np andk/n € X. We fix thesen, k and{.«, #4}, and sek = k/n. By (23 and
(29 we have|.a ||as| > (1—2y) f(X) (2)2 or equivalently,

c1C2 > (1—2y)f(x) (25)

wherecs = ||/ (}) for s=1,2. Fixy:=x+¢& €Y.
Claim 3. |0j(e%)| > (7)) for j € J.
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Proof of Claimi3 Choose a reat < n so thatcs(y) = (,,%,). Since|as| =cs(y) = (%)
the Kruskal-Katona theorem implies thatj (.«7%)| > (nfj). Thus it suffices to show that

(nfj) > Cs(T) or equivalently,

Usingj > kthisis equivalenttg--- (k+1) > (z—n+j)--- (z—n+k+1), which follows

fromz<n. O

Let % = Uk<j<n(0j(%)) for s= 1,2. By Claim3we have
Wy (s) > ;|Dj<%>|yi<1—y>”—1 > cszj(?)ywl—y)“i. (26)
IS I
Therefore we have

Wy(gl)Wy(gz) d% 0102(%(?)yj(1_y>nj)2
' LX) x (1=3y)/(1-2y) = (1-3y)f(x)

& (1—4y)f(x+&)=(1-w)f(y),

which contradictsZ0) becausg/ € Y = p+ 3—25 =p=x 3%0 C p=£ &. This completes the
proof of Claim2and Theorerfd. O

Similarly to the proof of Theoreifd, we have the following stability type statement.

Theorem 6. Let p be a rational number with < p < 0.114, and let tn,k be integers
with 1 <t < 1/2p, n> ng(t, p), and p= k/n. Suppose that’; C ([E}) and.ab C ([E}) are
shifted cross t-intersecting families. Then, for any (0, p] there existy > 0 such that if

||| > (1—y) ()7 then|ea \ o] |\ 73| < &(74)°, whereaf! = {Ae o4 : [t] C
A} fori=1,2.
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