
ON CROSSt-INTERSECTING FAMILIES OF SETS

NORIHIDE TOKUSHIGE

ABSTRACT. For all p, t with 0< p< 0.11 and 1≤ t ≤ 1/(2p), there existsn0 such that for
all n,k with n > n0 andk/n = p the following holds: ifA andB arek-uniform families

onn vertices, and|A∩B| ≥ t holds for allA∈ A andB∈ B, then|A ||B| ≤
(n−t

k−t

)2
.

1. INTRODUCTION

Let n,k andt be integers, and let[n] = {1,2, . . . ,n}. Two familiesF ,G ⊂ 2[n] are called
crosst-intersecting if|F ∩G| ≥ t holds for allF ∈ F ,G∈ G . Pyber [11] generalized the
Erdős–Ko–Rado theorem [5] to cross 1-intersecting families, and the result was slightly
refined by Matsumoto and Tokushige [9] and Bey [2] as follows.

Theorem 1. Let n≥ max{2k1,2k2}. If A1 ⊂
([n]

k1

)
andA2 ⊂

([n]
k2

)
are cross1-intersecting

families, then|A1||A2| ≤
( n−1

k1−1

)( n−1
k2−1

)
.

For a realp ∈ (0,1) and a familyG ⊂ 2[n] we define thep-weight of G , denoted by
wp(G ), as follows:

wp(G ) = ∑
G∈G

p|G|(1− p)n−|G|.

Our first result is the followingp-weight version of Theorem1.

Theorem 2. Let p1, p2 ∈ (0,1/2). If G1 ⊂ 2[n] and G2 ⊂ 2[n] are cross1-intersecting
families, then wp1(G1)wp2(G2) ≤ p1p2.

Next we consider thep-weight of crosst-intersecting families fort ≥ 1, cf. [1, 3, 4, 12,
8].

Theorem 3. Let p be a real with0 < p < 0.114, and let t and n be integers with1≤ t ≤
1/(2p), n≥ t. Suppose that two familiesG1 ⊂ 2[n] andG2 ⊂ 2[n] are cross t-intersecting.
Then we have wp(G1)wp(G2)≤ p2t with equality holding iffG1 = G2 = {G⊂ [n] : [t]⊂ G}
(up to isomorphism).

We conjecture that Theorem3 is true for 0< p ≤ 1/2 and 1≤ t ≤ (1/p)−1. If p >
1/2, then we have limn→∞ wp(G1)wp(G2) = 1 for G1 = G2 = {G ⊂ [n] : 2|G| ≥ n+ t}.
For t > (1/p)− 1, we havewp(G1)wp(G2) = ((t + r)pt+r−1q+ pt+r)2 > p2t by taking
G1 = G2 = {G⊂ [n] : |G∩ [t +2]| ≥ t +1}. See [10] for the casep = 1/2 andt ≥ 2.

Finally we will deduce the followingk-uniform version from Theorem3.
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Key words and phrases.Erdős–Ko–Rado Theorem; cross intersecting family; random walk.
Supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027 and (B) 20340022.

1

TEXMFMAIN.cmap#cite.P
����#cite.MT
html:</a>#cite.A�
Annot#cite.T6
����#cite.MT2


2 NORIHIDE TOKUSHIGE

Theorem 4. Let p be a real with0< p< 0.114, and let t be an integer with1≤ t ≤ 1/(2p).
For fixed p and t there exist positive constantsε,n1 such that for all integers n,k with
n > n1 and| k

n − p| < ε, the following is true: if two familiesA1 ⊂
([n]

k

)
andA2 ⊂

([n]
k

)
are

cross t-intersecting, then

|A1||A2| ≤
(n−t

k−t

)2

with equality holding iffF1 = F2 = {F ∈
([n]

k

)
: [t] ⊂ F} (up to isomorphism).

Let A = {A∈
([n]

k

)
: |A∩ [t +2]| ≥ t +1}. ThenA andA are crosst-intersecting and

|A | >
(n−t

k−t

)
iff t +1 > n/(k− t +1). Thus we cannot replace the conditiont ≤ 1/(2p) in

Theorem4 with t ≤ 1/p.
For the proof of our results, we will use the random walk method developed by Frankl

in [6, 7], and a technique translating results aboutp-weight version tok-uniform version,
cf. [13]. We will also include stability type results, see Theorems5 and6 at the ends of
the following sections.

2. PROOF OFTHEOREM 2

For i = 1,2 choose 0< εi < pi such thatpi + εi < 1/2, and letqi = 1− pi , Ii = ((pi −
εi)n,(pi + εi)n)∩N. As the binomial distributionB(n, pi) is concentrated aroundpin, we
have

lim
n→∞ ∑

k∈Ii

(n−1
k−1

)
pk

i q
n−k
i = pi , and lim

n→∞ ∑
k̸∈Ii

(n
k

)
pk

i q
n−k
i = 0.

Thus, considering the casen→ ∞, we have

wp1(G1)wp2(G2) ≤ ∏
1≤i≤2

(∑
k∈Ii

|Gi ∩
([n]

k

)
|pk

i q
n−k
i + ∑

k̸∈Ii

(n
k

)
pk

i q
n−k
i )

= ( ∑
k1∈I1

|G1∩
([n]

k1

)
|pk1

1 qn−k1
1 )( ∑

k2∈I2

|G2∩
([n]

k2

)
|pk2

2 qn−k2
2 )+o(1)

≤
Thm 1

∑
k1∈I1

∑
k2∈I2

( n−1
k1−1

)( n−1
k2−1

)
pk1

1 qn−k1
1 pk2

2 qn−k2
2 +o(1)

= ( ∑
k1∈I1

( n−1
k1−1

)
pk1

1 qn−k1
1 )( ∑

k2∈I2

( n−1
k2−1

)
pk2

2 qn−k2
2 )+o(1)

= p1p2 +o(1). (1)

Now suppose that for somen there exist cross 1-intersecting familiesG1,G2 ⊂ 2[n] with
wp1(G1)wp2(G2) > p1p2. Set G ′

i = Gi ∪ {G∪ {n+ 1} : G ∈ Gi} for i = 1,2 then G ′
1

and G ′
2 are cross 1-intersecting. Sincewpi(G

′
i ) = wpi(Gi)(pi + qi) = wpi(Gi) we have

wp1(G
′
1)wp2(G

′
2) > p1p2, which contradicts (1). ¤

3. PROOF OFTHEOREM 3

Let us recall some basic facts about shifting from [7]. Let p∈ (0,1), andF ,G ⊂ 2[n].
For integers 1≤ i < j ≤ n, we define the(i, j)-shift Si j of F as follows:

Si j (F ) = {Si j (F) : F ∈ F},
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ON CROSSt-INTERSECTING FAMILIES OF SETS 3

where

Si j (F) =

{
(F −{ j})∪{i} if i ̸∈ F , j ∈ F , (F −{ j})∪{i} ̸∈ F ,

F otherwise.

ThenF is called shifted ifSi j (F ) = F for all 1≤ i < j ≤ n. One can easy to show that if
F andG are crosst-intersecting, then so areSi j (F ) andSi j (G ). By repeating this process,
one can eventually get shifted crosst-intersecting familiesF ′ andG ′ on the same vertex
set without changing profile vectors (and thereforewp(F ) = wp(F ′), wp(G ) = wp(G ′)
and|F | = |F ′|, |G | = |G ′|).

For F ⊂ [n] we define the correspondingn-step walk onZ2, denoted by walk(F), as
follows. The walk is from(0,0) to (|F |,n− |F |), and thei-th step is one unit up (↑) if
i ∈ F , or one unit to the right (→) if i ̸∈ F . Let λ (F ) be the maximumu∈ N such that
walk(F) touches the liney = x+u for all F ∈ F . Frankl [7] observed the following.

Lemma 1. If F andG are shifted cross t-intersecting families, thenλ (F )+λ (G ) ≥ 2t.

Consider the infinite random walk inZ2 starting from(x0,y0) ∈ Z2, taking↑ with prob-
ability p, and→ with probabilityq = 1− p at each step independently. The random walk
method is based on the following simple observation.

Lemma 2. Let A ⊂ 2[n] be a set of subsets A such thatwalk(A) satisfies some given
propertyP. Then, the p-weight wp(A ) is bounded from above by the probability that the
(infinite) random walk satisfiesP in the first n steps.

Let us see an important example of Lemma2. Suppose thatF and G are crosst-
intersecting. Ifs∈Z andy0 ≤ x0+s, then the random walk (starting from(x0,y0)) hits the
line y= x+swith probabilityαs+x0−y0, whereα = p/q (see [7, 13]). Applying this to the
case “x0 = y0 = 0 ands= λ (F ),” we havewp(F ) ≤ αλ (F ), becausewp(F ) is bounded
from above by the probability that the random walk (starting from the origin) hits the line
y = x+λ (F ) within the firstn steps. Similarly we havewp(G ) ≤ αλ (G ). Then Lemma1
giveswp(F )wp(G ) ≤ αλ (F )+λ (G ) ≤ α2t . This gives already a good upper bound for the
product ofp-weights, but the boundα2t can be replaced withp2t as we will show below.

Proof of Theorem3. Let p be given and let 1≤ t ≤ 1
2p. Let F = G1 andG = G2 be cross

t-intersecting families on[n]. We may assume that both families are shifted andp-weight
maximal. (By thep-weight maximality, we notice thatF ∈F andF ⊂ F ′ imply F ′ ∈F .)
Let q = 1− p, α = p/q, u = λ (F ) andv = λ (G ). Then, as mentioned above, we have
wp(F ) ≤ αu, wp(G ) ≤ αv, andu+ v ≥ 2t. We will show thatwp(F )wp(G ) ≤ p2t for
p< 0.114 by case-wise analysis, and we will try to find better condition forp (than 0.114)
in each case.

If u+v≥2t+1, then we havewp(F )wp(G )≤αu+v≤α2t+1. Sincef (t) := α(α/p)2t =
(p/q)q−2t is an increasing function oft, we havef (t)≤ f ( 1

2p). Then a simple computation

showsf ( 1
2p) < 1 for p < 0.241. Namely, we have

wp(F )wp(G ) ≤ α2t+1 = p2t f (t) < p2t (2)

for p < 0.241 andt ≤ 1
2p. Thus we may assume thatu+v = 2t, and 1≤ u≤ t ≤ v.
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rpcxbsl#la.2
uagdo8j#cite.Fshift
Idieresisacute#thm.3


4 NORIHIDE TOKUSHIGE

Let us define familiesH u
0 ,H u

1 ⊂ 2[n] by

H u
0 = {H ⊂ [n] : [u] ⊂ H},

H u
1 = {H ∈ 2[n] \H u

0 : |H ∩ [u+2]| = u+1}.
In other words, ifH ∈ H u

0 then walk(H) hits (0,u), and if H ∈ H u
1 then walk(H) hits

(1,u+ 1) without hitting (0,u). We defineH v
0 andH v

1 similarly. For i ≥ 0 we define
special subsetsAu

i ∈ H u
0 andBu

i ∈ H u
1 as in Figure1 by

Au
i = ([u]∪{u+ i +2 j +1 : j ≥ 1})∩ [n],

Bu
i = ([u−1]∪{u+1,u+2}∪{u+ i +2 j +3 : j ≥ 1})∩ [n].

SetAu = Au
0 = [n]\{u+1,u+2,u+4,u+6, . . .}, Bu = Bu

0 = [n]\{u,u+3,u+4,u+6, . . .}.
Consider a walk which satisfies that

(i) it does not cross the liney = x+u, and
(ii) it hits the line only at(0,u).

Then, walk(Au) is the maximal walk with these properties, namely, if walk(A) satisfies
(i) and (ii), then we can find anA′ ⊂ Au such thatA′ is obtained fromA by shifting. (In
fact, if |A| = u+ ℓ, thenA′ is uniquely determined byA′ = [u]∪{n+2 j +1 : 1≤ j ≤ ℓ}.)
Similarly, walk(Bu) is the maximal walk which does not cross the liney = x+u, and hits
the line only at(1,u+1). We will look at the structure ofF andG usingAu andBu. Let
F u

ℓ = F ∩H u
ℓ andG v

ℓ = G ∩H v
ℓ for ℓ = 1,2.

Case 1.Au ̸∈ F and Bu ̸∈ F .

First letF ∈ F u
0 . ThenF ⊃ [u], and walk(F) must reach(0,u). The next step goes to

(0,u+1) or (1,u). If walk(F) reaches(1,u), then the walk will hit the liney = x+u after
passing(1,u). (OtherwiseA′ = [u]∪{n+2 j +1 : 1≤ j ≤ |F |−u} ⊂ Au can be obtained
from F by shifting, but then it follows from thep-weight maximality thatAu ∈ F , a
contradiction.) In summary, walk(F) has one of the following two possibilities:

walk(F) reaches(0,u+1),
or

walk(F) reaches(1,u) and then it hits the liney = x+u.y = x+ u
walk(Au)

y = x+ u
walk(Bu)

FIGURE 1.

@ձ#figure.1
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The former occurs with probabilitypu+1. The latter occurs with probability at mostpuqα,
where puq is the probability that the random walk reaches(1,u) after passing through
(0,u), andα is the upper bound for the probability that the random walk starting from
(1,u) hits the liney = x+u, or equivalently, the random walk starting from the origin hits
the liney = x+1. Thus we have

wp(F u
0 ) ≤ pu+1 + puqα = 2pu+1. (3)

Next letF ∈ F u
1 . SinceBu ̸∈ F , we find that

walk(F) reaches(1,u+2),
or

walk(F) reaches(2,u+1) and then it hits the liney = x+u.

The former occurs with probabilityupu+2q, because there areu ways of walks from
the origin to(1,u+ 2) without hitting (0,u). The latter occurs with probability at most
upu+1q2α, whereupu+1q2 is the probability that the random walk reaches(2,u+1) pass-
ing through(1,u+1) without hitting(0,u), andα is the upper bound for the probability
that the random walk starting from(2,u+1) hits the liney = x+u. Thus we have

wp(F u
1 ) ≤ upu+2q+upu+1q2α = 2upu+2q.

Finally letF ∈F \ (F u
0 ∪F u

1 ). Then walk(F) hits the liney= x+u without hitting(0,u)
nor (1,u+1), and this occurs with probability at mostαu− (pu +upu+1q). Therefore we
have

wp(F ) = wp(F \ (F u
0 ∪F u

1 ))+wp(F u
0 )+wp(F u

1 )

≤ αu− (pu +upu+1q)+2pu+1 +2upu+2q

= pu(q−u− (1−2p)(1+upq)).

ForG we use a trivial upper boundwp(G ) ≤ αv = p2t−uq−2t+u. Consequently we have

wp(F )wp(G ) ≤ p2t(q−u− (1−2p)(1+upq))q−2t+u := p2t f (u, t).

Noting that− logq > p, one can verify that∂∂u f (u, t) > 0 and ∂
∂ t f (t, t) > 0. Thus we have

f (u, t) ≤ f (t, t) ≤ f ( 1
2p, 1

2p). Finally, for p≤ 0.1144, we havef ( 1
2p, 1

2p) < 1, which gives

wp(F )wp(G ) < p2t .

Case 2.Au ̸∈ F and Bu ∈ F .

Using (3), we have

wp(F ) = wp(F \F u
0 )+wp(F u

0 ) ≤ (αu− pu)+2pu+1 = pu(q−u− (1−2p)). (4)

Suppose thatBu
i ∈ F for somei ≥ 0. We will find C with |Bu

i ∩C| < t. Then the cross
t-intersecting property impliesC ̸∈ G , which will give an upper bound forwp(G ).

If u = t −1, then let

C = ([t + i +3]−{t +1})∪{t + i +3+2 j : j ≥ 1}.
Since|Bu

i ∩C| = t −1 we haveC ̸∈ G . Let G∈ G . SinceC ̸∈ G , we find that
walk(G) reaches(0, t +1),

or
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walk(G) does not reach(0, t +1) and it hits the liney = x+ t + i +2.

In the latter case, walk(G) must hit one of( j, t +1− j), where 1≤ j ≤ t +1. The prob-
ability that the random walk starting from( j, t +1− j) hits the liney = x+ t + i +2 is at
mostα i+2 j+1. Thus the latter case occurs with probability at most

t+1

∑
j=1

(t+1
j

)
pt+1− jq jα i+2 j+1 = α t+i+2− pt+1α i+1,

where we used∑t+1
j=0

(t+1
j

)
pt+1− jq jα i+2 j+1 = (p/q)t+i+2∑t+1

j=0

(t+1
j

)
p jqt+t− j = α t+i+2.

Thus we have

wp(G ) ≤ pt+1 +(α t+i+2− pt+1α i+1) = pt+1(1+α i+1(q−t−1−1))

≤ pt+1(1+α(q−t−1−1)). (5)

By (4) and (5), we have

wp(F )wp(G ) ≤ p2t(q−t+1− (1−2p))(1+α(q−t−1−1)) =: p2t f (t).

Then a direct computation showsf (t) ≤ f ( 1
2p) < 1 for p≤ 0.188.

If u < t −1, then let

C = [2t −u+ i]∪{2t −u+ i +2 j : j ≥ 1}.

Since|Bu
i ∩C|< t we haveC ̸∈G . So, forG∈G , walk(G) hits the liney= x+2t−u+ i+1.

Thus we havewp(G ) ≤ α2t−u+i+1 ≤ α2t−u+1. This together with (4) gives

wp(F )wp(G )≤ pu(q−u−(1−2p))α2t−u+1 = p2t(q−u−(1−2p))pq−2t+u−1 := p2t f (u, t).

Then a computation showsf (u, t) ≤ f (t −2, t) ≤ f ( 1
2p −2, 1

2p) < 1 for p≤ 0.333.
If u = v = t, then let

C = ([t + i +4]\{t +1, t +2})∪{t + i +4+2 j : j ≥ 1}.

Let G∈ G . SinceC ̸∈ G we find that

walk(G) reaches(0, t +1) or (1, t +1),

or

walk(G) hits the liney = x+ t + i +1 in x≥ 2.

Thus we have

wp(G ) ≤ pt+1 +(t +1)pt+1q+α t+i+1 < pt+1(1+(t +1)q+αq−t−1).

This together with (4) implies

wp(F )wp(G ) < p2t(q−t − (1−2p))p(1+(t +1)q+αq−t−1) =: p2t f (t).

Then we havef (t) ≤ f ( 1
2p) < 1 for p < 0.2.

Case 3.Au ∈ F and u< v.

html:</a>#equation.4
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Suppose thatAu
i ∈ F for somei ≥ 0. Let

C = [2t −u+ i]∪{2t −u+ i +2 j : j ≥ 1}.
Then we find|Au

i ∩C| < t andC ̸∈ G . Thus, forG∈ G , walk(G) hits the liney = x+2t −
u+ i +1 and

wp(G ) ≤ α2t−u+i+1 ≤ α2t−u+1.

Thus we havewp(F )wp(G ) ≤ αuα2t−u+1 = α2t+1 < p2t for p < 0.241 by (2).

Case 4.u = v = t and At ∈ F , At ̸∈ G .

SinceAt ̸∈ G , it follows from (3) thatwp(G t
0) ≤ 2pu+1 = pt(2p).

First suppose that[t] ∈ F . Then, the crosst-intersecting property implies that[t] ⊂ G
for all G∈ G , and soG \G t

0 = /0.
Next suppose thatAt

i ∈ F andAt
i+1 ̸∈ F for somei ≥ 0. Let

C = ([t + i +2]\{t})∪{t + i +2+2ℓ : ℓ ≥ 1}.
Then we have|At

i ∩C| < t. SinceAt
i ∈ F we haveC ̸∈ G . Thus, forG∈ G \G t

0, walk(G)
hits the liney = x+ t + i +1 in x≥ 1, and

wp(G \G t
0) ≤ α t+i+1− ptα i+1 = ptα i+1(q−t −1) ≤ ptα(q−t −1).

Thus, in both cases, we havewp(G ) = wp(G t
0)+wp(G \G t

0)≤ pt(2p+α(q−t −1)) and

wp(F )wp(G ) ≤ α t pt(2p+α(q−t −1)) = p2tq−t(2p+α(q−t −1)) =: p2t f (t).

Then a computation showsf (t) ≤ f ( 1
2p) < 1 for p < 0.195.

Case 5.u = v = t and At ∈ F , At ∈ G .

First suppose that[t] ̸∈ F and [t] ̸∈ G . Then we can choosei, j ≥ 0 so thatAt
i ∈ F ,

At
i+1 ̸∈ F , At

j ∈ G andAt
j+1 ̸∈ G . Let F ∈ F t

0. If walk(F) reaches(i + 2, t), then, using
At

i+1 ̸∈ F , we find that this walk hits the liney = x+ t − i−1 in x≥ i +2. This gives

wp(F t
0) ≤ (pt − ptqi+2)+ ptqi+2α = pt(1−qi+1(1−2p)). (6)

Let
C = ([t + j +2]\{t})∪{t + j +2+2ℓ : ℓ ≥ 1}.

Then we have|At
j ∩C|< t. SinceAt

j ∈ G we haveC ̸∈F . Thus, forF ∈F \F t
0, walk(F)

hits the liney = x+ t + j +1 in x≥ 1, and

wp(F \F t
0) ≤ α t+ j+1− ptα j+1 = ptα j+1(q−t −1). (7)

Therefore we have

wp(F ) = wp(F t
0)+wp(F \F t

0) ≤ pt(1−qi+1(1−2p)+α j+1(q−t −1)). (8)

We use
q−t ≤ q1/(2p) ≤ 2 (9)

for 0 ≤ p ≤ 1/2. Then, forp ≤ 1/4, the RHS of (8) is less thanptci, j , whereci, j =
1− qi+1/2+ α j+1. In the same way, we also havewp(G ) ≤ ptc j,i . Now it suffices to
showci, jc j,i < 1, or equivalently, logci, j + logc j,i < 0. Using log(1+ x) < x, we have
logci, j + logc j,i < (ci, j −1)+(c j,i −1) =−qi+1/2+α i+1−q j+1/2+α j+1. By symmetry

srcinp_dvipdfm#e�
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it suffices to show−qi+1/2+ α i+1 < 0, or equivalently, 2< (q2/p)i+1. For p≤ 1/4 we
certainly have 2< q2/p < (q2/p)i+1.

Next suppose that[t] ∈ F and [t] ̸∈ G . Choosej ≥ 0 so thatAt
j ∈ G andAt

j+1 ̸∈ G .
Since[t] ∈F , we haveG \G t

0 = /0. Then, using the same reasoning as we get (6), we have

wp(G ) = wp(G t
0)+wp(G \G t

0) = wp(G0) ≤ pt(1−q j+1(1−2p)). (10)

Using a trivial boundwp(F t
0) ≤ pt and (7) with (9), we have

wp(F ) = wp(F t
0)+wp(F \F t

0) ≤ pt(1+α j+1(q−t −1)) ≤ pt(1+α j+1). (11)

We will show wp(F )wp(G ) < p2t , or (1− q j+1(1− 2p))(1+ α j+1) < 1. For this, it
suffices to showα j+1 < q j+1(1−2p), or equivalently, 1/(1−2p) < (q2/p) j+1. For p≤
1/4, we have 1/(1−2p) ≤ 2 < (q2/p) j+1, as desired.

Finally suppose that[t] ∈ F and [t] ∈ G . Then we haveF = F t
0 andG = G t

0. Thus
we havewp(F )wp(G ) ≤ p2t with equality holding iffF = G = {F ⊂ [n] : [t] ⊂ F}. For
later use, we notice that this is the only case we have equality in our target inequality. This
completes the proof of Theorem3. ¤

For the proof of Theorem3 we only needed to showwp(F )wp(G ) ≤ p2t , but actually
we have proved slightly more. Namely, in Cases1–4, our proof shows

wp(F )wp(G ) < (0.999pt)2, (12)

which we will use to prove Theorem4.
On the other hand, in Case5, we see that if[t]∈F thenwp(G \G t

0) = 0; if [t] ̸∈F then
there is somei such thatAt

i ∈ F andAt
i+1 ̸∈ F , which implies

wp(F t
0) ≤ pt(1−qi+1(1−2p)) andwp(G \G t

0) ≤ ptα i+1(q−t −1) < ptα i+1, (13)

cf. (6), (7). So, if wp(F t
0) is large, theni needs to be large, andwp(G \G t

0) is small. In
fact, for everyε > 0 we can find someδ = δ (ε) > ε such that ifwp(F t

0) > (1−δ )pt then
wp(G \G t

0) < ε pt . To see this, letδ = qlogε/logα(1−2p) and suppose, on the contrary,
that ε pt ≤ wp(G \G t

0) < α i+1pt . Then, by (13), we havewp(F t
0) ≤ (1− δ (α i+1))pt <

(1−δ (ε))pt . We can summarize this observation as the following stability type statement.

Theorem 5. Let p be a real with0 < p < 0.114, and let t and n be integers with1≤ t ≤
1/(2p), n≥ t. Suppose thatG1⊂ 2[n] andG2⊂ 2[n] are shifted cross t-intersecting families.
Then, for anyε ∈ (0, p] there existsγ > 0 such that if wp(G1)wp(G2) > (1− γ)p2t , then
wp(G1\G ′

1)wp(G2\G ′
2) < ε p2t , whereG ′

i = {G∈ Gi : [t] ⊂ G} for i = 1,2.

Sketch of proof.Let ε be given. Chooseγ so that 1− γ = maxε≤αβ≤p(1−δ (α)+α)(1−
δ (β )+ β ). Let wp(Gi \G ′

i ) = εi pt for i = 1,2. Suppose, on the contrary, thatε1ε2 ≥ ε.
Then, by the remark after (13), we havewp(Gi)≤ (1−δ (εi)+εi)pt , andwp(G1)wp(G2)≤
(1− γ)p2t . ¤

4. PROOF OFTHEOREM 4

Let A1 andA2 bek-uniform shifted crosst-intersecting families on[n]. Let q = 1− p,
α = p/q, u = λ (A1) andv = λ (A2). We start with the case corresponding to Case5
in the proof of Theorem3 and we borrow notation used there. In this part we will
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Brevesmall#case.5
Tau#equation.6
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superset#thm.4
tildecomb#case.5
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just translate verbatim what we did forp-weight version tok-uniform version. ForA =
{a1,a2, . . . ,ak, . . .} with a1 < a2 < · · · , let first(A) = {a1,a2, . . . ,ak} be consisting of the
first k elements ofA. Let Kt = first(At) andT = first(At

k−t−1), which will play a role ofAt

and[t] in the p-weight version, respectively. We consider the case that

u = v = t andKt ∈ A1, Kt ∈ A2. (14)

First suppose thatT ̸∈ A1 andT ̸∈ A2. Let A ′
1 = {A ∈ A1 : [t] ⊂ A}. Then in this

k-uniform version, (6) reads as follows:

|A ′
1| ≤

(n−t
k−t

)
−

(n−t−i−2
k−t

)
+

(n−t−i−2
k−t−1

)
, (15)

where we used the reflection principle to count the number of walks touching the line.
Also, (7) reads

|A1\A ′
1| ≤

( n
k−t− j−1

)
−

( n−t
k−t− j−1

)
≤

( n
k−t− j−1

)
. (16)

By (15) and (16) we have

|A1|/
(n−t

k−t

)
≤ 1+{−

(n−t−i−2
k−t

)
+

(n−t−i−2
k−t−1

)
+

( n
k−t− j−1

)
}/

(n−t
k−t

)
=: 1+ci, j .

In the same way, we have|A2|/
(n−t

k−t

)
≤ 1+c j,i . We need to show(1+ci, j)(1+c j,i) ≤ 1,

or log(1+ci, j)+ log(1+c j,i) ≤ 0. Using log(1+x) < x, it suffices to showci, j +c j,i ≤ 0,
and by symmetry this follows from( n

k−t−i−1

)
≤

(n−t−i−2
k−t

)
−

(n−t−i−2
k−t−1

)
, (17)

which can be verified forp = k/n≤ 0.17 andt ≤ 1/(2p) by standard calculation. Frankl
proved (17) in [7].

Next suppose thatT ∈ A1 andT ̸∈ A2. Notice thatT ∈ A1 impliesA2 = A ′
2. In this

subcase, (10) and (11) read as

|A2| = |A ′
2|+ |A2\A ′

2| = |A ′
2| ≤

(n−t
k−t

)
−

(n−t− j−2
k−t

)
+

(n−t− j−2
k−t−1

)
,

|A1| = |A ′
1|+ |A1\A ′

1| ≤
(n−t

k−t

)
+

( n
k−t− j−1

)
.

Then,|A1||A2| <
(n−t

k−t

)2
follows from (17).

Finally suppose thatT ∈ A1 andT ∈ A2. Then we haveA1 = A ′
1 andA2 = A ′

2. Thus

we have|A1||A2| ≤
(n−t

k−t

)2
with equality holding iffA1 = A2 = {A∈

([n]
k

)
: [t] ⊂ A}. So

far, this is the only case we have equality in our target inequality, and we will see that
equality never holds in the remaining cases below.

Now we consider the situation corresponding to Cases1–4. Namely we assume the
negation of (14). For s = 1,2 let Gs be the collection of all upper shadows ofAs, that
is, Gs =

∪
k≤ j≤n(∇ j(As)), where∇ j(As) = {H ∈

([n]
j

)
: H ⊃ ∃F ∈ As}. ThenG1 andG2

satisfy one of Cases1–4, and we get (12). We only use the following weaker claim.

Claim 1. Let 0 < p < 0.114and1≤ t ≤ 1/(2p) be fixed. Let n≥ t and letG1,G2 ⊂ 2[n]

be cross t-intersecting families corresponding to Cases 1–4. Then there existγ,ε > 0 such
that wx(G1)wx(G2) < (1− γ)x2t holds for all x with|x− p| < ε.

To complete the proof of Theorem4, it suffices to show the following.
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Claim 2. Let0 < p < 0.114and1≤ t ≤ 1/(2p) be fixed. Then there existγ,ε > 0 and n0

such that the following holds for all n,k∈N with n> n0 and| k
n− p|< ε: If A1 ⊂

([n]
k

)
and

A2 ⊂
([n]

k

)
are cross t-intersecting families corresponding to Cases 1–4, then|A1||A2| <

(1− γ)
(n−t

k−t

)2
.

Proof of Claim2. Assume the negation of Claim2. Then the statement starts with

∃p∃t ∀γ ∀ε ∀n0 ∃n∃k · · · , (18)

where the underlines will indicate the choice of parameters described below. We will
construct a counterexample to Claim1 using (18). Recall that Claim1 starts with

∀p∀t ∃γ ∃ε · · · . (19)

First, assuming the negation of Claim2, there exists somep andt (corresponding to the
first and second underlines in (18)) such that the rest of Claim2 does not hold. For this
p andt, Claim1 provides someγ0 = γ0(p, t) andε0 = ε0(p, t) (corresponding to the third
and fourth underlines in (19)) such that

wx(G1)wx(G2) < (1− γ0)x2t (20)

holds for allx with |x− p| < ε0.
For reals 0< ε ≪ p we write p± ε to mean the open interval(p− ε, p+ ε). Since we

have fixedp and t, we note thatf (x) := x2t is a uniformly continuous function ofx on
p± ε0. Let ε = ε0/2, γ = γ0/4, andX = p± ε. Now we are going to definen0. Choose
ε1 ≪ ε so that

(1−3γ) f (x) > (1−4γ) f (x+δ ) (21)

holds for allx∈ X and all 0< δ ≤ ε1. As the binomial distributionB(n, p) is concentrated
aroundpn, we can choosen1 so that

∑
j∈J

(n
j

)
y j(1−y)n− j >

√
(1−3γ)/(1−2γ) (22)

holds for alln > n1 and ally∈Y := p± 3ε
2 , whereJ = ((y− ε1)n,(y+ ε1)n)∩N. A little

computation shows that we can choosen2 so that

(1− γ)
(n−t

k−t

)2
> (1−2γ) f ( k

n)
(n

k

)2
(23)

holds for alln > n2 and allk with k/n∈ X. Finally setn0 = max{n1,n2}.
We plug theseγ,ε andn0 into (18). Then the negation of Claim2 gives us somen,k

and crosst-intersecting familiesA1,A2 ⊂
([n]

k

)
with

|A1||A2| ≥ (1− γ)
(n−t

k−t

)2
, (24)

wheren > n0 andk/n∈ X. We fix thesen,k and{A1,A2}, and setx = k/n. By (23) and

(24) we have|A1||A2| > (1−2γ) f (x)
(n

k

)2
, or equivalently,

c1c2 > (1−2γ) f (x) (25)

wherecs = |As|/
(n

k

)
for s= 1,2. Fix y := x+ ε1 ∈Y.

Claim 3. |∇ j(As)| ≥ cs
(n

j

)
for j ∈ J.
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Proof of Claim3. Choose a realz≤ n so thatcs
(n

k

)
=

( z
n−k

)
. Since|As| = cs

(n
k

)
=

( z
n−k

)
the Kruskal–Katona theorem implies that|∇ j(As)| ≥

( z
n− j

)
. Thus it suffices to show that( z

n− j

)
≥ cs

(n
j

)
, or equivalently, ( z

n− j

)( z
n−k

) ≥
cs

(n
j

)
cs

(n
k

) .

Using j ≥ k this is equivalent toj · · ·(k+1)≥ (z−n+ j) · · ·(z−n+k+1), which follows
from z≤ n. ¤

Let Gs =
∪

k≤ j≤n(∇ j(As)) for s= 1,2. By Claim3 we have

wy(Gs) ≥ ∑
j∈J

|∇ j(As)|y j(1−y)n− j ≥ cs ∑
j∈J

(n
j

)
y j(1−y)n− j . (26)

Therefore we have

wy(G1)wy(G2) >
(26)

c1c2
(
∑
j∈J

(n
j

)
y j(1−y)n− j

)2

>
(25),(22)

(1−2γ) f (x)× (1−3γ)/(1−2γ) = (1−3γ) f (x)

>
(21)

(1−4γ) f (x+ ε1) = (1− γ0) f (y),

which contradicts (20) becausey ∈ Y = p± 3ε
2 = p± 3ε0

4 ⊂ p± ε0. This completes the
proof of Claim2 and Theorem4. ¤

Similarly to the proof of Theorem5, we have the following stability type statement.

Theorem 6. Let p be a rational number with0 < p < 0.114, and let t,n,k be integers
with 1≤ t ≤ 1/2p, n≥ n0(t, p), and p= k/n. Suppose thatA1 ⊂

([n]
k

)
andA2 ⊂

([n]
k

)
are

shifted cross t-intersecting families. Then, for anyε ∈ (0, p] there existsγ > 0 such that if

|A1||A2| > (1− γ)
(n−t

k−t

)2
, then|A1\A ′

1||A2\A ′
2| < ε

(n−t
k−t

)2
, whereA ′

i = {A∈ Ai : [t] ⊂
A} for i = 1,2.
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