
THE EIGENVALUE METHOD FOR CROSS t-INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

ABSTRACT. We show that the Erdős–Ko–Rado inequality for t-intersecting families of
k-element subsets of an n-element set can be easily extended to an inequality for cross
t-intersecting families by using the eigenvalue method if n is relatively large depending on
k and t. The same method applies to the case of t-intersecting families of k-dimensional
subspaces of an n-dimensional vector space over a finite field.

1. INTRODUCTION

The eigenvalue method is one of the proof techniques to get Erdős–Ko–Rado [5] type
inequalities for t-intersecting families. Such examples include a proof for families of k-
subsets by Wilson [13], a proof for families of k-subspaces by Frankl and Wilson [8],
and a recent seminal proof for families of permutations by Ellis, Friedgut, and Pilpel [4].
The last one contains a stronger inequality for cross t-intersecting families which follows
from a variant of the Hoffman–Delsarte bound. In this note we remark that one can also
get the corresponding cross t-intersecting version of the first two results about k-subsets
(Theorem 1) and k-subspaces (Theorem 2) in the same way quite easily. These results are
new but the tools used in the proof are not new. The point of this note is to show that these
tools have a wider application than previously thought.

Let Xn = {1,2, . . . ,n} be an n-element set. Two families of k-subsets A ,B ⊂
(Xn

k

)
are

called cross t-intersecting if |A∩B| ≥ t holds for all A ∈ A ,B ∈ B.

Theorem 1. Let k ≥ t ≥ 1 and k
n < 1− 1

t√2
. Suppose that two families A ,B ⊂

(Xn
k

)
are

cross t-intersecting. Then we have

|A ||B| ≤
(

n− t
k− t

)2

.

If |A ||B|=
(n−t

k−t

)2, then

A = B = {F ∈
(

Xn

k

)
: T ⊂ F}

for some T ∈
(Xn

t

)
.

We notice that log2
t+1 < 1− 1

t√2
< log2

t and so the conclusion of Theorem 1 holds for n >
(t+1)k
log2 ≈ 1.44(t+1)k. On the other hand, it is known from [13] that if n> (t+1)(k−t+1),
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2 N. TOKUSHIGE

and A is t-intersecting (namely, A and A are cross t-intersecting), then |A | ≤
(n−t

k−t

)
.

Moreover equality holds only if A fixes some t-subset, that is, A = {F ∈
(Xn

k

)
: T ⊂ F}

holds for some t-subset T ⊂ Xn. (In fact this result was first proved by Frankl [6] for the
case t ≥ 15 using a combinatorial method.) If n = (t +1)(k− t +1), then we have another
t-intersecting family A = {A ∈

(Xn
k

)
: |A∩ [t +2]| ≥ t +1} with |A |=

(n−t
k−t

)
. See also [1]

for the case n < (t +1)(k− t +1).

Conjecture 1. Let k ≥ t ≥ 1 and n ≥ (t+1)(k− t+1). Suppose that two families A ,B ⊂(Xn
k

)
are cross t-intersecting. Then we have |A ||B| ≤

(n−t
k−t

)2. If n > (t +1)(k− t +1) and

|A ||B|=
(n−t

k−t

)2, then A = B = {F ∈
(Xn

k

)
: T ⊂ F} for some T ∈

(Xn
t

)
.

Let Vn be an n-dimensional vector space over the q-element field. Let
[Vn

k

]
denote the

set of all k-subspaces (k-dimensional subspaces) of Vn, and let
[n

k

]
= #
[Vn

k

]
= ∏k−1

i=0 (q
n−i −

1)/(qk−i −1). Two families of k-subspaces A ,B ⊂
[Vn

k

]
are called cross t-intersecting if

dim(A∩B)≥ t holds for all A ∈ A ,B ∈ B.

Theorem 2. Let k ≥ t ≥ 1 and n ≥ 2k. Suppose that two families A ,B ⊂
[Vn

k

]
are cross

t-intersecting. Then we have

|A ||B| ≤
[

n− t
k− t

]2

.

If n > 2k and |A ||B|=
[n−t

k−t

]2, then

A = B = {F ∈
[
Vn

k

]
: T ⊂ F}

for some T ∈
[Vn

t

]
.

In particular, if n > 2k and A ⊂
[Vn

k

]
itself is t-intersecting with |A | =

[n−t
k−t

]
, then A

fixes some t-subspace. This result has been claimed several times, but (except the case
t = 1) it seems that the only correct proof appeared in the literature is due to Tanaka
[14]. His proof heavily relies on the theory of association schemes, and has much wider
application. See also §5.3 of [12] or [3] for historical details. We include an elementary
proof of this result for completeness.

If n ≤ 2k− t then
[Vn

k

]
itself is t-intersecting. Theorem 2 also tells us what happens for

2k− t < n ≤ 2k just by taking the orthogonal complements.

Theorem 3. Let k ≥ t ≥ 1 and 2k− t < n ≤ 2k. Suppose that two families A ,B ⊂
[Vn

k

]
are cross t-intersecting. Then we have

|A ||B| ≤
[

2k− t
k

]2

.

If 2k− t < n < 2k and |A ||B|=
[2k−t

k

]2
, then A = B =

[Y
k

]
for some Y ∈

[ Vn
2k−t

]
.

We can apply both Theorem 2 and Theorem 3 to the case n = 2k, and we see that there
are at least two different extremal configurations satisfying |A ||B| =

[n−t
k−t

]2
=
[2k−t

k

]2
.
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Tanaka [14] proved that if A = B then there are no other configuration having this maxi-
mum product. We extend this result as follows.

Theorem 4. Let k ≥ t ≥ 1, and n = 2k. Suppose that two families A ,B ⊂
[Vn

k

]
are cross

t-intersecting with |A ||B| =
[n−t

k−t

]2
=
[2k−t

k

]2
. Then A = B = {F ∈

[Vn
k

]
: T ⊂ F} for

some T ∈
[Vn

t

]
or A = B =

[Y
k

]
for some Y ∈

[ Vn
2k−t

]
.

Finally we mention some related results and problems. In [11] it is proved that if
n ≥ max{2k,2ℓ} and two families A ⊂

(Xn
k

)
and B ⊂

(Xn
ℓ

)
are cross 1-intersecting, then

|A ||B| ≤
(n−1

k−1

)(n−1
ℓ−1

)
. It would be nice to have an algebraic proof of this result or a result

for cross t-intersecting families with different uniformities.

Conjecture 2. Let k ≥ ℓ ≥ t ≥ 1 and n ≥ (t + 1)(k− t + 1). Suppose that two families
A ⊂

(Xn
k

)
and B ⊂

(Xn
ℓ

)
are cross t-intersecting. Then we have |A ||B| ≤

(n−t
k−t

)(n−t
ℓ−t

)
.

The above conjecture fails if t = 1, ℓ = k−1 and n = 2k−1, see [11] for a counterex-
ample.

In [7] it is proved that if (r−1)n ≥ rk and r families F1, . . . ,Fr ⊂
(Xn

k

)
are r-cross 1-

intersecting, namely, |F1 ∩·· ·∩Fr| ≥ 1 holds for all Fi ∈ Fi (1 ≤ i ≤ r), then ∏r
i=1 |Fi| ≤(n−1

k−1

)r
. Is it possible to give an algebraic proof of this result? How about r-cross t-

intersecting families?

Conjecture 3. Let n ≥ k ≥ t, 0 < p ≤ (r−1)/r and 1 ≤ t ≤ (p1−r − p)/(1− p)− r where
p = k/n. Suppose that r families F1, . . . ,Fr ⊂

(Xn
k

)
are r-cross t-intersecting, namely,

|F1 ∩·· ·∩Fr| ≥ t holds for all Fi ∈ Fi (1 ≤ i ≤ r). Then we have ∏r
i=1 |Fi| ≤

(n−t
k−t

)r.

In [15] some partial results were obtained by using a combinatorial technique with help
of probabilistic methods, which verify the above conjecture for some special cases.

Gromov [10] showed that such inequalities concerning cross intersecting structures can
be equivalently reformulated in terms of monomial subsets in the N-torus, and for example
he obtained a homological separation inequality for pairs of disjoint subsets in N-torus
from an inequality obtained in [11] mentioned above.

2. TOOLS

We introduce our main tools for the proof of the theorems. Let G be an N-vertex graph.
A real symmetric N ×N matrix A = (ai j) is called a pseudo adjacency matrix of G if

• ai j = 0 whenever {i, j} ̸∈ E(G), and
• 1 (all 1 column vector in RN) is an eigenvector of A with a positive eigenvalue.

Let Λ be the set of eigenvalues of A. Let µ1(A) ∈ Λ be the positive eigenvalue correspond-
ing to 1, and let µ2(A) be the eigenvalue having the largest absolute value in Λ\{µ1(A)}.
(In our applications below, µ1 will be the largest eigenvalue and µ2 will be the smallest
eigenvalue.)

Ellis, Friedgut, and Pilpel used the following variant of the Hoffman–Delsarte bound
to get a cross t-intersecting version of an EKR inequality for permutations in [4]. They
attribute one of the origins of this result to [2].
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Lemma 1. Let G be an N-vertex graph with a pseudo adjacency matrix A, and let U1,U2 ⊂
V (G). Suppose that there are no edges between U1 and U2. Then we have√

|U1||U2| ≤
|µ2(A)|

µ1(A)+ |µ2(A)|
N.

As we will see this result is very useful. We recall a quick proof for later use. (We
will need Lemma 2 (b) which follows from the proof of Lemma 1 easily, but this is not
mentioned in [4].) We start with the following simple inequality.

Claim 1. If c,d ∈ [0,1] then
√

1− c
√

1−d ≤ 1−
√

cd.

Proof. We apply the inequality of arithmetic and geometric means twice:
√

1− c
√

1−d ≤ (1− c)+(1−d)
2

= 1− c+d
2

≤ 1−
√

cd.

�

Proof of Lemma 1. Let µi = µi(A) for i = 1,2. Since A = (ai j) is a symmetric matrix we
can choose orthogonal eigenvectors v1 = 1,v2, . . . ,vN ∈ RN corresponding to the eigen-
values µ1,µ2, . . . ,µN so that vT

i v j = Nδi j. Let f = ( f1, . . . , fN) be the characteristic row
vector of U1, that is, fi = 1 if i ∈ U1 and fi = 0 if i ̸∈ U1. We can write it as a linear
combination of eigenvectors as f = ∑N

i=1 civT
i . Also we can write the characteristic row

vector of U2 as g = ∑N
i=1 divT

i . Then we have

|U1|= f 1 = (
N

∑
i=1

civT
i )v1 = c1vT

1 v1 = c1N,

and

|U1|= f f T = (
N

∑
i=1

civT
i )(

N

∑
j=1

c jv j) =
N

∑
i=1

c2
i vT

i vi =
N

∑
i=1

c2
i N.

Thus we have

[0,1] ∋ |U1|/N = c1 =
N

∑
i=1

c2
i .

Similarly, from |U2|= g1 = ggT , we also get

[0,1] ∋ |U2|/N = d1 =
N

∑
i=1

d2
i .

Now we compute f AgT in two ways. On one hand we have

f AgT = ∑
i j∈E(G)

ai j fig j + ∑
i j ̸∈E(G)

ai j fig j = 0,

because fig j = 0 if i j ∈ E(G) and ai j = 0 if i j ̸∈ E(G). On the other hand, we have

f AgT = (
N

∑
i=1

civT
i )A(

N

∑
j=1

d jv j) = (
N

∑
i=1

civT
i )(

N

∑
j=1

d jµ jv j) =
N

∑
i=1

cidiµiN.
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Thus we have 0 = ∑N
i=1 cidiµi and

c1d1µ1 = |
N

∑
i=2

cidiµi| ≤
N

∑
i=2

|cidiµi|
(i)
≤ |µ2|

N

∑
i=2

|cidi|
(ii)
≤ |µ2|

√
N

∑
i=2

c2
i

√
N

∑
i=2

d2
i

= |µ2|
√

c1 − c2
1

√
d1 −d2

1

(iii)
≤ |µ2|

√
c1d1(1−

√
c1d1),

where we used the Cauchy–Schwarz inequality at (ii) and the claim at (iii). This gives
µ1
|µ2| ≤

1√
c1d1

−1, or equivalently,√
|U1|
N

|U2|
N

=
√

c1d1 ≤
(

µ1

|µ2|
+1
)−1

=
|µ2|

µ1 + |µ2|
,

as desired. �
Lemma 2. Suppose that equality holds in Lemma 1. Then we have the following.

(a) Both of the characteristic vectors of U1 and U2 are contained in the subspace
spanned by eigenvectors corresponding to µ1(A) and λ ∈ Λ with |λ |= |µ2(A)|.

(b) If µ2(A) < 0 and −µ2(A) ̸∈ Λ then U1 = U2. Namely, if µ2(A) is the smallest
eigenvalue which has the largest absolute value in Λ\{µ1(A)}, then U1(=U2) is
an independent set itself.

Proof. We reuse the proof of Lemma 1. First we notice that

c1 = d1 and |ci|= |di| for 2 ≤ i ≤ N. (1)

In fact we have equality at (iii), which gives c1 = d1, and we have equality at (ii), which
gives |ci| = |di| for 2 ≤ i ≤ N. We also need equality at (i), so for 2 ≤ i ≤ N we have
ci = di = 0 or |µi|= |µ2|. This gives (a).

Next suppose that µ2(A)< 0 and −µ2(A) ̸∈ Λ. Since we have

c1d1µ1 =−
N

∑
i=2

cidiµi = (−µ2)
N

∑
i=2

cidi = |µ2|
N

∑
i=2

|cidi|,

we get cidi = |cidi| for all 2 ≤ i ≤ N. This together with (1) implies that ci = di for all i.
This means f = g, or equivalently, U1 =U2, which completes the proof of (b). �

3. APPLICATION

For the proof of Theorem 1 we modify a result due to Wilson slightly as follows.

Lemma 3. Let k
n < 1− 1

t√2
. Let G be a graph with V (G) =

(Xn
k

)
and two vertices F,F ′ ∈

V (G) are adjacent iff |F ∩F ′| < t. Then there is a pseudo adjacency matrix A of G with
µ1(A) =

(n
k

)(n−t
k−t

)−1 −1, µ2(A) =−1, and −µ2(A) ̸∈ Λ.

Here we summarize some known facts about the pseudo adjacency matrix used in
Lemma 3 from [13]. (We will need them to state the next lemma precisely.) The ma-
trix A above is defined as follows:

A :=
t−1

∑
i=0

(−1)t−1−i
(

k−1− i
k− t

)(
n− k− t + i

k− t

)−1

Bk−i,



6 N. TOKUSHIGE

where Bk−i is an
(n

k

)
×
(n

k

)
matrix indexed by

(Xn
k

)
×
(Xn

k

)
whose (F,F ′)-entry is given by

#{J ∈
(

Xn

k− i

)
: J∩F = /0 and J ⊂ F ′}=

(
|F ′ \F |

k− i

)
.

Equivalently we can write B j = (W̄jk)
TW jk, where Wjk (resp. W̄ jk) is an

(n
j

)
×
(n

k

)
matrix

whose (J,K)-entry is 1 if J ⊂ K (resp. J∩K = /0) and 0 otherwise. Let U j be the row space
of W jk. Then we have U0 ⊂U1 ⊂ ·· · ⊂Uk and Uk is the entire vector space E spanned by
all characteristic vectors of the k-subsets of Xn. (This follows from Wi jWjk =

(k−i
j−i

)
Wik for

i≤ j ≤ k.) Let V0 =U0 and for j ≥ 1 let V j be the orthogonal complement of U j−1 in U j, so
that U j = Vj ⊕U j−1. Then we have an orthogonal decomposition E = V0 ⊕V1 ⊕·· ·⊕Vk,
and after some computation we have the corresponding eigenvalues θ0,θ1, . . . ,θk of the
matrix A such that Av = θ jv for all v ∈Vj. (Recall that A is real symmetric, and so all these
eigenvalues are real.) Moreover Wilson obtained the following result to prove the EKR
inequality for t-intersecting families of k-subsets in [13].

Lemma 4. Let n > (t+1)(k− t+1). Then θ0 =
(n

k

)(n−t
k−t

)−1−1, θ1 = θ2 = · · ·= θt =−1,
0 < θt+1 < θ0, and 1 > |θt+2|> |θt+3|> · · ·> |θk|.

If |θt+1| < 1 then Lemma 3 follows from Lemma 4 by setting µ1 = θ0 and µ2 = θ1.
Namely, it suffices to show the following claim for the proof of Lemma 3.

Claim 2. Let k
n < 1− 1

t√2
. Then 0 < θt+1 < 1.

Proof. We start with the expression θt+1 = tδt−1(k−1,n−k+1; t,1) using (4.4) and (4.5)
of [13], which reads as follows:

θt+1 = t
t−1

∑
i=0

1
i+1

(
t −1

i

)(
(k−1)− (t −1)

t − (t −1)+ i

)(
(n− k− t)+ i

i+1

)−1

.

Rewriting this, we get

θt+1 =
t−1

∑
i=0

(
t

i+1

)
(k− t) · · ·(k− t − i)

(n− k− t + i) · · ·(n− k− t)

≤
t−1

∑
i=0

(
t

i+1

)(
k− t

n− k− t

)i+1

<
t−1

∑
i=0

(
t

i+1

)(
k

n− k

)i+1

=
t

∑
j=1

(
t
j

)(
k

n− k

) j

=
t

∑
j=0

((
t
j

)(
k

n− k

) j

1t− j

)
−1

=

(
k

n− k
+1
)t

−1 =

(
1− k

n

)−t

−1 < 1.

We used k−t
n−k−t <

k
n−k in the second inequality, which follows from k

n < 1− 1
t√2

≤ 1
2 . We

also needed k
n < 1− 1

t√2
for the last inequality. �

Proof of Theorem 1. We construct a graph G and a pseudo adjacency matrix A with µ1 =(n
k

)(n−t
k−t

)−1−1 and µ2 =−1 as above. Then A ,B⊂V (G), and there are no edges between



THE EIGENVALUE METHOD FOR CROSS t-INTERSECTING FAMILIES 7

A and B because of the cross t-intersecting property. By applying Lemma 1 with N =
(n

k

)
we get √

|A ||B| ≤ |µ2|
µ1 + |µ2|

N =
1

(
(n

k

)(n−t
k−t

)−1 −1)+1

(
n
k

)
=

(
n− t
k− t

)
.

It is known from [13] that a t-intersecting family F ⊂
(Xn

k

)
with |F |=

(n−t
k−t

)
fixes some

t-subset. Thus we get the desired extremal configuration by Lemma 2 (b). We can also
obtain a simpler proof of this part by following the proof of Theorem 2 below, because the
subspace proof can be modified to apply to subsets as well. �

For the proof of Theorem 2 we need the following result due to Frankl and Wilson [8].

Lemma 5. Let n ≥ 2k. Let G be a graph with V (G) =
[Vn

k

]
and two vertices F,F ′ ∈V (G)

are adjacent iff dim(F ∩F ′) < t. Then there is a pseudo adjacency matrix A of G with
µ1(A) =

[n
k

][n−t
k−t

]−1 −1, µ2(A) =−1, and −µ2(A) ̸∈ Λ.

The pseudo adjacency matrix used in Lemma 5 is as follows:

A := q−k2+k+(t
2)

t−1

∑
i=0

(−1)t−1−i
[

k−1− i
k− t

][
n− k− t + i

k− t

]−1

Bk−i,

where Bk−i is an
[n

k

]
×
[n

k

]
matrix indexed by

[Vn
k

]
×
[Vn

k

]
whose (F,F ′)-entry is given by

#{J ∈
[

Vn

k− i

]
: J∩F = {0} and J ⊂ F ′}.

Proof of Theorem 2. We construct a graph G and a pseudo adjacency matrix A with µ1 =[n
k

][n−t
k−t

]−1 −1 and µ2 =−1 as in Lemma 5. Then A ,B ⊂V (G), and there are no edges
between A and B because of the cross t-intersecting property. By applying Lemma 1
with N =

[n
k

]
we get√
|A ||B| ≤ |µ2|

µ1 + |µ2|
N =

1

(
[n

k

][n−t
k−t

]−1 −1)+1

[
n
k

]
=

[
n− t
k− t

]
.

Now suppose that n > 2k and we will determine the extremal configurations. The proof
below is based on ideas due to Wilson [13] and Godsil and Newman [9]. We can apply
Lemma 2 (b). So it suffices to show that if F ⊂

[Vn
k

]
is t-intersecting with |F | =

[n−t
k−t

]
,

then F fixes some t-subspace.
Let f ∈ {0,1}[

n
k] be the characteristic row vector of F . Let Wtk(n) be an

[n
t

]
×
[n

k

]
matrix

indexed by
[Vn

t

]
×
[Vn

k

]
, whose (T,F)-entry is 1 if T ⊂ F , and 0 if T ̸⊂ F . In this case it is

known from [8] that f is contained in the row space of Wtk(n). Thus there is a row vector
h ∈ R[

n
t ] such that f = hWtk(n). Fix F0 ∈ F . Let d = n− k+(t −1) and choose C ∈

[Vn
d

]
such that dim(F0 ∩C) = t − 1 arbitrarily. Let WC be the

[n
t

]
×
[d

k

]
submatrix of Wtk(n)

consisting of columns indexed by
[C

k

]
. Let fC be the subvector of f consisting of entries

indexed by
[C

k

]
. Then fC = hWC. By the t-intersecting property of F , none of k-subspaces

in
[C

k

]
belong to F , that is, fC = 0. Thus we have 0 = fC = hWC.
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We further divide WC into two parts W̃ and O, where W̃ is a
[d

t

]
×
[d

k

]
matrix whose

rows are indexed by
[C

t

]
. Then O is a zero matrix because each row of O is indexed by a

t-subspace not contained by C while each columns is indexed by a k-subspace contained
by C. On the other hand, it is known that Wtk(m) has full row rank if m ≥ t + k, see,
e.g. [8]. Noting that W̃ and Wtk(d) have the same rank and d = n− k+ t − 1 ≥ t + k (we
need n > 2k here), it follows that W̃ has full row rank.

By rearranging the rows of WC we may assume that W̃ is the first
[d

t

]
rows of WC (and

the remaining rows of WC are all 0). We write h = (hC,h′) accordingly, namely hC is the
first

[d
t

]
entries corresponding to

[C
t

]
. Then it follows that

0 = hWC = (hC,h′)
(

W̃
O

)
= hCW̃ +h′O = hCW̃ .

Since W̃ has full row rank, we have hC = 0.
For every T ∈

[Vn
t

]
such that T ̸⊂F0 we can find some C′ ∈

[Vn
d

]
with dim(F0∩C′) = t−1

and T ⊂C′. Then hC′ = 0, in particular, the entry of h corresponding to T is 0. Therefore
if there is a nonzero entry of h, then the corresponding t-subspace is contained in all
F ∈ F . Since |F | =

[n−t
k−t

]
the only possibility is that h is a {0,1}-vector having 1 at

only one position. Then f = hWtk(n) coincides with one of the rows of Wtk(n), say, a row
corresponding to T0 ∈

[Vn
t

]
, which means F = {F ∈

[Vn
k

]
: T0 ⊂ F}. �

Proof of Theorem 3. This follows from a well-known technique, and we only give a sketch
here (see e.g., [8] for details). Consider any non-degenerate bilinear form (say, the standard
inner product) f : Vn ×Vn → Fq, and for a subspace U in Vn let U⊥ := {v ∈Vn : f (u,v) =
0 for all u ∈U} be the orthogonal complement. For F ⊂

[Vn
k

]
let F⊥ := {F⊥ : F ∈ F}.

Then we have F ⊂
[ Vn

n−k

]
and |F⊥|= |F |.

Suppose that 2k − t < n ≤ 2k, and let ℓ = n− k and s = n− 2k + t. We notice that
n ≥ 2ℓ ≥ 2s ≥ 2. Moreover it is not difficult to verify that A ,B ⊂

[Vn
k

]
are cross t-

intersecting if and only if A ⊥,B⊥ ⊂
[Vn
ℓ

]
are cross s-intersecting. By applying Theorem 2

to A ⊥ and B⊥, we get the desired conclusion. �
Proof of Theorem 4. This is a direct consequence of Lemma 2 (b) and Lemma 5. �
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