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ABSTRACT. A frog jumps along the lattice points on thex-axis. Starting from
x = x0, he jumps` steps to the left with probabilityp, or he jumpsr steps to
the right with probability1− p at each time. What is the probability that he
ever lands on the origin? We answer this question by using a closed formula for
∑k≥0

(ck+s
dk+t

)
zk, which is an extension of the Pólya identity. We also include a

combinatorial proof of the Ṕolya identity.

1. A FROG PROBLEM AND THEPÓLYA IDENTITY

In this paper we consider the following problem (cf. section 10.6 of [3]).

Problem 1. A frog lives on the lineZ. Starting fromx= x0, he jumps̀ steps to the
left (from x to x− `) with probability p, or he jumpsr steps to the right (fromx to
x+ r) with probabilityq = 1− p at each timet = 1,2, . . .. What is the probability
that we can catch him by setting a trap at the origin?

More formally we consider random variablesX1,X2, . . . with Prob(Xi =−`) = p
andProb(Xi = r) = q for all i ≥ 1. Let fk be the probability that the frog lands on
the origin afterk jumps for the first time, i.e.,

fk = Prob(∑k
i=1Xi =−x0 and∑`

i=1Xi 6=−x0 for all ` < k).

Then what is∑∞
i=1 fk? This definition of the probability is valid for all starting

positionx0 ∈ Z, but we exceptionally define the probability for the casex0 = 0 (the
case starting from the origin) to be 1 just for a technical reason.

Another way to state the problem is as follows.

Problem 2. A frog lives inZ2. Starting from the origin, he jumps one unit up with
probability p, or he jumps one unit right with probabilityq = 1− p at each time.
Then what is the probability that the frog ever lands on the linerx− `y+x0 = 0?

An l steps jump to the left (resp.r steps jump to the right) in Problem 1 is corre-
sponding to one unit jump upwards (resp. one unit jump to the right) in Problem 2.

Problem 2 is naturally arisen when one deals with multiply intersecting families
in extremal set theory, which was one of the motivations of this paper. In fact, the
answer to the problem (and its variations) plays an important role in [1] and [8].
Also the problem is related to some interesting identities appeared in enumerative
combinatorics. Among others, we give a closed formula for∑k≥0

(ck+s
dk+t

)
, which is

an extension of the Ṕolya identity.

The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027.
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This paper is organized as follows. In this section, we solve a special case of the
problem and give a heuristic proof of the Pólya identity. In section 2, we extend the
Pólya identity and get some identities which we will use in the later sections. In
section 3, we answer to the problem and show some concrete computations about
the probability. A variation of the problem is considered in section 4.

To warm up let us solve Problem 2 for the casex0 = 1, ` = 1, r = 2. Define
α = α(p) as follows.

α =

{
1
2(

√
1+3p
1−p −1) if 0≤ p≤ 2/3,

1 if 2/3≤ p≤ 1.
(1)

Note thatα is a root of the equationX = p+qX3.

Fact 1. Prob(the frog reachesy = 2x+1) = α.

Proof. Let

ak := Prob(the frog reachesy = 2x+1 at (k,2k+1) for the first time),
bk := Prob(the frog reachesy = 2x+2 at (k,2k+2) for the first time),
ck := Prob(the frog reachesy = 2x+3 at (k,2k+3) for the first time).

(Note thatak = f3k+1, i.e., this is the probability that the frog hits the trap after
3k+ 1 jumps. Similarlybk corresponds tof3k+2 with different starting position
x0 = 2.) LetA(x) := ∑k≥0akxk, B(x) := ∑k≥0bkxk, C(x) := ∑k≥0ckxk be generating
functions. Suppose that the frog reachesy = 2x+2 at (k,2k+2) for the first time.
Then he needs to reachy = 2x+ 1 at some point, say, at(i,2i + 1) for the first
time, which happens with probabilityai . Then during the journey from(i,2i +
1) to (k,2k+ 2), he touchesy = 2x+ 2 only at (k,2k+ 2) and this happens with
probabilityak−i . Therefore we havebk = ∑k

i=0aiak−i , which implies

B(x) = A(x)2.

Similarly we haveck = ∑k
i=0aibk−i , which implies

C(x) = A(x)B(x) = A(x)3.

Sincea0 = p andai = qci−1 for i ≥ 1 we have

A(x) = p+qxC(x) = p+qxA(x)3.

Substitutingx = 1 and settingX = A(1) we have

X = p+qX3.

We have to choose the solutionX = y so thaty becomes 0 forp= 0, andy becomes
1 for p = 1. Moreovery has to be a continuous function ofp. Therefore we have
y(p)≡ α(p). ¤

The proof also gives

Prob(the frog reachesy = 2x+2) = B(1) = α2,
Prob(the frog reachesy = 2x+3) = C(1) = α3.
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Then fors∈ N := {0,1,2, . . .} it follows from induction that

Prob(the frog reachesy = 2x+s) = αs. (2)

Let
uk := Prob(the frog arrives at(k,2k)) =

(3k
k

)
p2kqk,

vk := Prob(the frog arrives at(k,2k+1)) =
(3k+1

k

)
p2k+1qk.

Let U(x) := ∑k≥0ukxk, V(x) := ∑k≥0vkxk be generating functions. Sincevk =
∑k

i=0aiuk−i we haveV(x) = A(x)U(x). Substitutingx = 1, we have

∑
k≥0

(
3k+1

k

)
p2k+1qk = αu,

whereu := U(1) = ∑k≥0

(3k
k

)
p2kqk. To generalize the above identity, let

w( j)
k := Prob(the frog arrives at(k,2k+ j)) =

(3k+ j
k

)
p2k+ jqk

for j ∈ Z, and letW( j)(x) := ∑k≥0w( j)
k xk. Sincew( j)

k = ∑k
i=0aiw

( j−1)
k−i we have

W( j)(x) = A(x)W( j−1)(x). Substitutingx = 1 and notingW(0)(1) = U(1) = u, we
haveW(s)(1) = αsu for s∈ Z, namely,

∑
k≥0

(
3k+s

k

)
p2k+sqk = αsu. (3)

Fact 2. u = (1−3qα2)−1.

Proof. First note that

∑
k≥0

(
3k+3
k+1

)
p2k+2qk+1 = ∑

k≥0

(
3(k+1)

k+1

)
p2(k+1)qk+1

= ∑
k≥1

(
3k
k

)
p2kqk

= ∑
k≥0

(
3k
k

)
p2kqk−1 = u−1.

On the other hand, using
(3k+3

k+1

)
= 3k+3

k+1

(3k+2
k

)
= 3

(3k+2
k

)
, we have

∑
k≥0

(
3k+3
k+1

)
p2k+2qk+1 = ∑

k≥0

3

(
3k+2

k

)
p2k+2qk+1

= 3q ∑
k≥0

(
3k+2

k

)
p2k+2qk

= 3qα2u. (by (3))

Thus we haveu−1 = 3qα2u, or equivalently,u = (1−3qα2)−1. ¤
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For example, by settingp = q = 1/2, Fact 2 gives

u = ∑
k≥0

(
3k
k

)(
1
2

)3k

= 1+
3√
5
. (4)

Now we extend Fact 2. By (3) and Fact 2 we have

∑
k≥0

(
3k+s

k

)
p2k+sqk = αs(1−3qα2)−1.

In the same way, by considering the case` = 1 andr = m−1, one can show

∑
k≥0

(
mk+s

k

)
p(m−1)k+sqk = αs(1−mqαm−1)−1

for m∈N−{0} ands∈ Z, whereα is the root of the equationX = p+qXm which
becomes 0 forp= 0 if 0< p< m−1

m , andα = 1 if m−1
m < p< 1. Sinceα = p+qαm,

or 1 = p
α +qαm−1, we can rewrite the identity as

∑
k≥0

(
mk+s

k

)
(pm−1q)k =

(
α
p

)s(
1−m(1− p

α
)
)−1

.

By settingz = pm−1q and β = α
p , the above identity is equivalent tothe Pólya

identity [5]

∑
k≥0

(
mk+s

k

)
zk =

β s+1

(1−m)β +m
, (5)

whereβ is the root of the equationX = 1+ zXm which becomes 1 forz= 0. In
fact (5) holds form,s∈ C. This can be checked by using Lagrange inversion with
routine calculation (cf. Problem 216 of [6]). In the same assumptions, it follows
also from Lagrange inversion that

∑
k≥0

s
mk+s

(
mk+s

k

)
zk = β s (6)

(cf. Problem 212 of [6]), which is equivalent to

∑
k≥0

s
mk+s

(
mk+s

k

)
p(m−1)k+sqk = αs. (7)

It is also possible to get (5) by differentiating (6). See [7] 6.2.6 and 6.2.7.
On the other hand, it follows that

Prob(the frog reachesy = (m−1)x+s) = αs (8)

for m,s∈ N−{0} in the same way as we get (2). Comparing (7) and (8) we find
that

ak =
s

mk+s

(
mk+s

k

)
p(m−1)k+sqk

whereak is the probability that the frog reaches the liney= (m−1)x+sat(k,(m−
1)k+s) for the first time. In other words, we have the following.
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Fact 3. Let m,s∈ N−{0} andk ∈ N. Then the number of walks from(0,0) to
(k,(m−1)k+ s) which hit y = (m−1)x+ s only at (k,(m−1)k+ s) is given by

s
mk+s

(mk+s
k

)
.

By counting the number of walks from(0,0) to (n,(m− 1)n+ s) we get the
following identity (cf. (5.62) of [2] or Example 8.1.1 in [4]):

(
mn+s

n

)
=

n

∑
k=0

s
mk+s

(
mk+s

k

)(
m(n−k)

n−k

)
.

2. EXTENDING THE PÓLYA IDENTITY

We extend the Ṕolya identity.

Theorem 1. Form,s∈ C andt ∈ N we have

∑
k≥0

(
mk+s
k+ t

)
zk =

β s+1

(β −1)t((1−m)β +m)
−

t

∑
j=1

(
s−m j
t− j

)
z− j

whereβ is the root of the equationX = 1+zXm which becomes 1 forz= 0.

For example, it gives

∑
k≥0

(
3k+2
k+1

)
(p2q)k =

β 3

(β −1)(3−2β )
− 1

p2q
, (9)

whereq = 1− p,β = α/p andα is defined by (1). In the casep = q = 1
2, the sum

is 16√
5
.

Proof of Theorem 1. We deduce the identity from the Pólya identity. Rewrite the
LHS as

∑
k≥0

(
mk+s
k+ t

)
zk = ∑̀

≥t

(
m(`− t)+s

`

)
z`−t (setting` = k+ t)

= z−t ∑̀
≥0

(
m`−mt+s

`

)
z`−

t−1

∑̀
=0

(
m`−mt+s

`

)
z`−t .

For the first term, we use (5) and then we use the factβ = 1+zβ m andz−tβ−mt =
(zβ m)−t = (β −1)−t . So we have

z−t ∑̀
≥0

(
m`−mt+s

`

)
z` =

z−tβ−mt+s+1

(1−m)β +1
=

β s+1

(β −1)t((1−m)β +1)
.

For the second term, by settingj = t− `, we have

t−1

∑̀
=0

(
m`−mt+s

`

)
z`−t =

t

∑
j=1

(
m(t− j)−mt+s

t− j

)
z− j =

t

∑
j=1

(
s−m j
t− j

)
z− j .

This completes the proof of Theorem 1. ¤
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We continue to extend Theorem 1 and find a closed formula for∑k≥0

(ck+s
dk+t

)
zk.

Let ei := exp(2π i
√−1/d) be ad-th root of unity. Then using the following prop-

erty
1
d

d−1

∑
i=0

ek
i =

{
1 if d | k
0 if d6 | k,

we have

∑
d|k

(
mk+s
k+ t

)
wk = ∑

k≥0

(
1
d

d−1

∑
i=0

ek
i

)(
mk+s
k+ t

)
wk

=
1
d

d−1

∑
i=0

∑
k≥0

(
mk+s
k+ t

)
(eiw)k.

On the other hand, settingm= c
d andwd = zwe have

∑
d|k

(
mk+s
k+ t

)
wk = ∑

k≥0

(
ck+s
dk+ t

)
zk

and then

∑
k≥0

(
ck+s
dk+ t

)
zk =

1
d

d−1

∑
i=0

∑
k≥0

(
mk+s
k+ t

)
(eiw)k.

Let βi be the root of the equationX = 1+(eiw)Xm (i.e., (X−1)d = wdXc) which
becomes 1 forw = 0. Then by Theorem 1 we have

∑
k≥0

(
ck+s
dk+ t

)
zk =

1
d

d−1

∑
i=0

(
β s+1

i

(βi−1)t((1−m)βi +m)
−

t

∑
j=1

(
s−m j
t− j

)
(eiw)− j

)

=
d−1

∑
i=0

β s+1
i

(βi−1)t((d−c)βi +c)
−

t

∑
j=1

(
1
d

d−1

∑
i=0

e− j
i

)(
s−m j
t− j

)
w− j .

The second term can be simplified as

t

∑
j=1

(
1
d

d−1

∑
i=0

e− j
i

)(
s−m j
t− j

)
w− j = ∑

1≤ j≤t, d| j

(
s−m j
t− j

)
w− j

=
bt/dc
∑
u=1

(
s− (c/d)du

t−du

)
w−du (setting j = du)

=
bt/dc
∑
u=1

(
s−cu
t−du

)
z−u.

Finally we have the following.

Theorem 2. Let c,s∈ C, d, t ∈ N and letβ0, . . . ,βd−1 be the roots of the equation
(X−1)d = zXc which become 1 forz= 0. Then we have

∑
k≥0

(
ck+s
dk+ t

)
zk =

d−1

∑
i=0

β s+1
i

(βi−1)t((d−c)βi +c)
−
bt/dc
∑
u=1

(
s−cu
t−du

)
z−u.
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Example 1. Let us see examples for the casec= 3,d = 2, which we will use in the
next section. Letx1,x2 be the roots of the equation(X−1)2 = zX3 which become
1 for z= 0. Then forz= p2q = p2(1− p) we find that

x1 =
{

ξ if 0≤ p≤ 2
3

γ+ if 2
3 ≤ p≤ 1,

(10)

x2 = γ− for 0≤ p≤ 1,

where

ξ :=
1
q
, γ± :=

1+ p±
√

1+2p−3p2

2p2 .

2
����

3

1
p

1

2

3

x1

x2

O

Thus by the above theorem we have

∑
k≥0

(
3k+ i

2k

)
(p2q)k =

xi+1
1

3−x1
+

xi+1
2

3−x2
, (11)

∑
k≥0

(
3k+ i +1

2k+1

)
(p2q)k =

xi+2
1

(x1−1)(3−x1)
+

xi+2
2

(x2−1)(3−x2)
. (12)

Let x3 be the remaining root of the equation(X−1)2 = p2qX3, namely,x3 = γ+
for 0≤ p≤ 2/3 andx3 = ξ for 2/3≤ p≤ 1. Then, since x1

3−x1
+ x2

3−x2
= x3

x3−3, it
follows from (11) that

∑
k≥0

(
3k
2k

)
(p2q)k =

x3

x3−3
. (13)

Noting thatx3 = α
α−p (α is defined by (1)), the above identity confirms Fact 2.¤

As an application of Theorem 2, we have the following identity.

Theorem 3. Fors∈ C andc,d, t ∈ N with c > d, we have

bt/dc
∑

u=u0

(
s−cu
t−du

)
z−u =

c−1

∑
i=0

γs+1
i

(γi−1)s−t(dγi−c)
,
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whereu0 = max{1,b s−t
c−dc}, and γ0, . . . ,γc−1 are the roots of the equation(Y−

1)c−d = zYc.

Proof. First we note that ifβ is a root of the equation(X−1)d = zXc thenγ := β
β−1

is a root of the equation(Y−1)c−d = zYc, and it follows that

γs+1

(γ−1)s−t(dγ−c)
=

β s+1

(β −1)t((d−c)β +c)
.

Moreover if β becomes 1 forz= 0 thenγ does not become 1 forz= 0, and if γ
becomes 1 forz= 0 thenβ does not. Letβ0, . . . ,βc−1 be the roots of(X−1)d = zXc

such thatβ0, . . . ,βd−1 become 1 forz= 0. Then by settingγi := βi
βi−1 we find that

γ0, . . . ,γc−1 are the roots of(Y−1)c−d = zYc such thatγd, . . . ,γc−1 become 1 for
z= 0.

Now we calculate∑
(ck+s

dk+t

)
zk = ∑

( ck+s
(c−d)k+s−t

)
zk separately using Theorem 2.

From the LHS we have

∑
k≥0

(
ck+s
dk+ t

)
zk =

d−1

∑
i=0

β s+1
i

(βi−1)t((d−c)βi +c)
−
bt/dc
∑
u=1

(
s−cu
t−du

)
z−u

=
d−1

∑
i=0

γs+1
i

(γi−1)s−t(dγi−c)
−
bt/dc
∑
u=1

(
s−cu
t−du

)
z−u.

From the RHS we have

∑
k≥0

(
ck+s

(c−d)k+s− t

)
zk

=
c−1

∑
i=d

γs+1
i

(γi−1)s−t(−dγi +c)
−
b s−t

c−d c
∑
v=1

(
s−cv

(s− t)− (c−d)v

)
z−v

= −
c−1

∑
i=d

γs+1
i

(γi−1)s−t(dγi−c)
−
b s−t

c−d c
∑
v=1

(
s−cv
t−dv

)
z−v.

Combining the above two identities we get

bt/dc
∑
u=1

(
s−cu
t−du

)
z−u−

b s−t
c−d c
∑
v=1

(
s−cv
t−dv

)
z−v =

c−1

∑
i=1

γs+1
i

(γi−1)s−t(dγi−c)
,

which is the desired identity. ¤
Settings= t = n, we have the following identity as a special case.

bn/dc
∑
j=1

(
n−c j
n−d j

)
z− j =

c−1

∑
i=0

γn+1
i

dγi−c
,

whereγ0, . . . ,γc−1 are the roots of(Y−1)c−d = zYc. For example, it follows that
n

∑
j=1

(
n−3 j
n− j

)
8 j =

(3+
√

5)n+1
√

5
− (3−√5)n+1

√
5

−2n+1 =
⌊

(3+
√

5)n+1
√

5

⌋
−2n+1.
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3. ANSWER TO THE FROG PROBLEM

Let us return to the Problem 2. We will find the probabilityP that the frog lands
on the linerx− `y+x0 = 0, wherer and` are coprime. Since the frog lands only
on lattice points, we are interested in the set of non-negative lattice points on the
line, that is,L = {(`k+ i, rk+ j) : k∈N}, wherei ∈N is the least number such that
` | (ri +x0) and j := (ri +x0)/`. Let

ak := Prob(the frog lands onL at (`k+ i, rk + j) for the first time),
uk := Prob(the frog lands on(`k, rk)) =

((`+r)k
`k

)
prkq`k,

vk := Prob(the frog lands on(`k+ i, rk + j)) =
((`+r)k+i+ j

`k+i

)
prk+ jq`k+i ,

and letA(x) := ∑k≥0akxk, U(x) := ∑k≥0ukxk, V(x) := ∑k≥0vkxk be generating
functions. Sincevk = ∑k

h=0ahuk−h we haveV(x) = A(x)U(x). Substitutingx = 1
and noting thatP = A(1), we have

P =
V(1)
U(1)

, (14)

where

U(1) = ∑
k≥0

(
(`+ r)k

`k

)
(prq`)k,

V(1) = p jqi ∑
k≥0

(
(`+ r)k+ i + j

`k+ i

)
(prq`)k.

We can calculate these values by using Theorem 2.

Example 2. Let us consider the casè= 2, r = 3,x0 = 2, p = q = 1/2. (In the
language of Problem 1, the frog starts fromx = 2 and he jumps 2 steps to the left
or 3 steps to the right with equal probabilities. ThenP is the probability that we
can catch the frog by the trap at the origin.) The non-negative lattice points on the
line 3x−2y+2 = 0 is

L = {(2k,3k+1) : k∈ N}.
This meansi = 0 and j = 1. Then using (14) and Theorem 2 we have

P =

(
1
2 ∑

k≥0

(
5k+1

2k

)(
1
2

)5k
)

/

(
∑
k≥0

(
5k
2k

)(
1
2

)5k
)

=
3β−β+(β−+β+)−5(β−2 +β+

2)
12β−β+−10(β−+β+)

≈ 0.67783,

whereβ−≈ 1.43948andβ+≈ 0.873822are the selected roots ofX = 1±(X/2)5/2.
One can also check thatP is the only positive root of the equation

151X6−441X5 +2335X4−3465X3 +636X2 +1622X−757= 0. ¤
Example 3. Here we consider the case` = 1, r = 2 again. For0 6= n∈ Z, let P(n)
be the probability that the frog reaches the line2x− y+n = 0. Recall that we set
P(0) = 1. From (2), it follows that

P(n) = αn (15)
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for n∈ N, whereα is defined in (1). We also note that

P(n) = pP(n−1)+qP(n+2) (16)

holds for alln∈ Z−{0}, whereq = 1− p. Therefore if we knowP(−1) then we
get allP(n) for n≤−2 by using (16), or using

P(n) =
1
p

P(n+1)− q
p

P(n+3), (17)

which is valid forn 6=−1.
The valueP(−1) can be computed by (14) and the facti = j = 1 in this case,

i.e., the corresponding lattice points areL = {(k+1,2k+1) : k∈ N}. Then using
(9) and Fact 2 we have

P(−1) =

(
pq∑

k≥0

(
3k+2
k+1

)(
p2q

)k

)
/

(
∑
k≥0

(
3k
k

)
(p2q)k

)

=

(
2α2−5a p+3p2 +α3 pq

) (
1−3α2q

)

p (2α2−5α p+3p2)
. (18)

In the casep = q = 1
2, we haveα = (

√
5−1)/2, andP(−1) = 3−√5 by (18) (or

we can use (4) and (9)). Using this together with (17) and (15), we find that the
sequence{P(−n)}n>0 satisfies the following Fibonacci-like property:

P(−n) =
1
2
(an−

√
5bn)

where
an = an−1 +an−2 +5, a1 = 6, a2 = 13,
bn = bn−1 +bn−2 +3, b1 = 2, b2 = 5.

Alternatively, we can get an explicit formula forP(−n) (n > 0) by using (14)
and Theorem 2. Note that the corresponding lattice points areL = {(k+ i,2k+ j) :
k∈ N} where

i := dn/2e, j :=
{

0 if n is even
1 if n is odd.

So by (14) and (4) and using
(3k+i+ j

k+i

)
=

(3k+i+ j
2k+ j

)
, we have

P(−n) =

(
p jqi ∑

k≥0

(
3k+ i + j

2k+ j

)
(p2q)k

)
/

(
∑
k≥0

(
3k
k

)
(p2q)k

)
. (19)

We already computed the above sums in the previous section. Substituting (11)
(12) (13) into (19), we have

P(−n)=





qi

(
xi+1

1

3−x1
+

xi+1
2

3−x2

)
/

(
x3

x3−3

)
if n = 2i

pqi

(
xi+2

1

(x1−1)(3−x1)
+

xi+2
2

(x2−1)(3−x2)

)
/

(
x3

x3−3

)
if n = 2i−1

(20)
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for n∈ N.
The following picture shows how(n,P(n)) behaves for the casep= q= 1

2. (We
introduce a fake probabilityP(0) = 1, but we can compute the “true” probability
by (P(−1)+P(2))/2 = 3(3−√5)/4 which is also plotted on the figure.)

-10 -5 5 10

0.2

0.4

0.6

0.8

1

The picture suggests the existence oflim P(n). Let us find the limits. In the
language of Problem 1, this is the situation that we release the frog far away from
the trap. From (20) we have

lim
n→−∞

P(n) =





ξ (γ+−3)
(3−ξ )γ+

=
−(1+3p)+3

√
1+2p−3p2

2(2−3p)
if 0 < p≤ 2

3

0 if 2
3 < p≤ 1,

and from (15) we have

lim
n→+∞

P(n) =





0 if 0≤ p < 2
3

1 if 2
3 ≤ p≤ 1,

For the casep = q = 1
2, it follows that

lim
n→−∞

P(n) =
3
√

5−5
2

≈ 0.854, lim
n→+∞

P(n) = 0,

which of course match the above picture. We considered the case` = 1, r = 2, and
the result can be generalized as follows:

lim
n→−∞

P(n) =





1
u{r− (`+ r)p} if 0 < p≤ r

`+r

0 if r
`+r < p≤ 1,
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lim
n→+∞

P(n) =





0 if 0≤ p < r
`+r

1
u{(`+ r)p− r} if r

`+r ≤ p < 1,

whereu = ∑k≥0

((`+r)k
`k

)
(prq`)k. ¤

4. A VARIATION OF THE FROG PROBLEM

In Example 2, we considered the probability that the frog “lands on” the line
3x− 2y+ 2 = 0. Now we consider a variation of the problem. We say that the
frog “attains” the line if he lands on the line or jumps over the line. Then what is
the probabilityP∗ that the frog “attains” the line3x−2y+2 = 0 assuming that he
starts from the origin and he jumps one unit up with probabilityp, or he jumps one
unit right with probabilityq= 1− p. Since the frog lands only on lattice points,P∗
is the probability that he lands on a point inL = {si : i ∈ N}, where

si =
{

(2i,3i +1) if i is even
(2i +1,3i +3) if i is odd.

(21)

In the language of Problem 1, the situation is the following. The frog starts from
x= 2 and he jumps 2 steps to the left with probabilityp, or 3 steps to the right with
probability q = 1− p. Then what is the probabilityP∗ that we can catch him by
setting the traps atx= 0 andx=−1? Let us solve the problem in this version here.

For {i, j} = {−1,0} let Pi(n) be the probability that the frog starts fromx = n
and ends up with landing onx = i without landing onx = j in his journey. Then
we can divideP∗ = P0(2) + P−1(2) according to his last landing position. Let
P(n→m) be the probability that the frog ever lands onx = m starting fromx = n,
and setP(n) := P(n→ 0). As we saw in the previous section, we can compute
P(n) by using (14) and Theorem 2.

Noting that

P(n) = P0(n)+P−1(n)P(−1→ 0)

and

P(n+1) = P(n→−1) = P−1(n)+P0(n)P(0→−1) = P−1(n)+P0(n)P(1→ 0),

we have (
P(n)

P(n+1)

)
=

(
1 P(−1)

P(1) 1

)(
P0(n)

P−1(n)

)
. (22)

Moreover by (21) and (14) we have

P(n) =
{

f (0, n
2) if i is even

f (1, n+3
2 ) if i is odd,

where

f (i, j) =

(
p jqi ∑

k≥0

(
5k+ i + j

2k+ i

)
(p3q2)k

)
/

(
∑
k≥0

(
5k
2k

)
(p3q2)k

)
.
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We can computef (i, j) using Theorem 2. Therefore settingn = 2 in (22) we get
P0(2) andP−1(2) by solving

f (0,1) = P0(2)+P−1(2) f (1,1),

f (1,3) = P−1(2)+P0(2) f (1,2).
If p = q = 1

2 then we haveP0(2) ≈ 0.595882andP−1(2) ≈ 0.105078, which give
P∗ = P0(2)+P−1(2)≈ 0.70096.

It is also possible to computeP∗ without usingf (i, j) as follows. LetPi, j(n) be
the probability that the frog starts fromx = n and ends up with landing onx = i
without landing onx = j. For {i, j} = {0,1}, we havePi, j(n) = Pi−1, j−1(n−1).
Since

P0,−1(n) = P0,1(n)+P1,0(n)P0,−1(1) = P−1,0(n−1)+P0,−1(n−1)P0,−1(1),

it follows that
P0(n) = P−1(n−1)+P0(n−1)P0(1).

Also, since

P−1,0(n) = P1,0(n)P−1,0(1) = P0,−1(n−1)P−1,0(1),

it follows that
P−1(n) = P0(n−1)P−1(1).

Therefore we have(
P0(n)

P−1(n)

)
=

(
P0(1) 1

P−1(1) 0

)(
P0(n−1)

P−1(n−1)

)

=
(

P0(1) 1
P−1(1) 0

)n−1(
P0(1)

P−1(1)

)
. (23)

On the other hand, if the frog starts fromx = 1 then the next jump brings him to
x =−1 with probability p or tox = 4 with probabilityq. So we have

P0(1) = qP0(4), P−1(1) = p+qP−1(4).

Thus we getx = P0(1) andy = P−1(1) by solving
(

P0(4)
P−1(4)

)
=

(
x/q

(y− p)/q

)
=

(
x 1
y 0

)3(
x
y

)
. (24)

(We choose the solutions so thatx→ 0 andy→ 0 asp→ 0, andx→ 0 andy→ 1
as p→ 1.) Substitutingx andy into (23), we can computeP∗ = P0(2)+ P−1(2).
If p = q = 1

2 then we getx ≈ 0.187382, y ≈ 0.560769, and we can verify that
P∗ = x2 +xy+y≈ 0.70096is the unique root in(0,1) of the following equation:

X6−2X5 +13X4−44X3 +51X2−24X +4 = 0.

Finally let us state the identities corresponding to (22) and (24) for a general
case. Namely we consider the following problem.

Problem 3. Starting from the origin, a frog jumps one unit up with probabilityp,
or he jumps one unit right with probabilityq = 1− p at each time. Then what is
the probabilityP∗ that he ever “attain” the linerx− ly+n = 0?
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This problem is equivalent to the following.

Problem 4. Starting from thex= n, a frog jumps̀ steps to the left with probability
p, or he jumpsr steps to the right with probabilityq = 1− p at each time. What is
the probabilityP∗ that he ever lands onx≤ 0?

Let P(n) be the probability that the frog (of Problem 4) ever lands onx = 0
starting fromx = n. DefineP(0) = 1. SetI = {0,−1, . . . ,−`+1} and letPi(n) be
the probability that the frog starts fromx= n and ends up with landingx= i without
landing any point inI −{i}. Then we haveP∗ = P0(n)+P−1(n)+ · · ·+P−`+1(n).
Similar to (22) we can computePi(n)’s from


P(n)
P(n+1)
P(n+2)
· · ·

P(n+ `−1)




=




P(0) P(−1) P(−2) · · · P(−`+1)
P(1) P(0) P(−1) · · · P(−`+2)
P(2) P(1) P(0) · · · P(−`+3)

· · ·
P(`−1)P(`−2)P(`−3) · · · P(0)







P0(n)
P−1(n)
P−2(n)
· · ·

P−`+1(n)




.

On the other hand, the equation corresponding to (24) is the following.


P0(1)/q
P−1(1)/q
· · ·

P−`+2(1)/q
(P−`+1(1)− p)/q




=




P0(1) 1 0 · · · 0
P−1(1) 0 1 · · · 0

· · ·
P−`+2(1) 0 0 · · · 1
P−`+1(1) 0 0 · · · 0




r 


P0(1)
P−1(1)
· · ·

P−`+2(1)
P−`+1(1)




.
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