A FROG’S RANDOM JUMP AND THE P OLYA IDENTITY

NORIHIDE TOKUSHIGE

ABSTRACT. A frog jumps along the lattice points on tlxeaxis. Starting from

X = X, he jumps? steps to the left with probabilitp, or he jumps steps to

the right with probabilityl — p at each time. What is the probability that he
ever lands on the origin? We answer this question by using a closed formula for
Tko0 (56052, which is an extension of thedRa identity. We also include a
combinatorial proof of the #lya identity.

1. A FROG PROBLEM AND THEPOLYA IDENTITY
In this paper we consider the following problem (cf. section 10.6 of [3]).

Problem 1. A frog lives on the linéZ. Starting fronx = Xg, he jumpd steps to the
left (from x to x— £) with probability p, or he jumps steps to the right (from to
X-r) with probabilityq=1— p at each timé = 1,2,.... What is the probability
that we can catch him by setting a trap at the origin?

More formally we consider random variablég X, ... with ProblX; = —¢) = p
andProbX; =r) =qfor alli > 1. Let fx be the probability that the frog lands on
the origin afterk jumps for the first time, i.e.,

fu = Prol(T¥_; X = —xo andy{_; X; # —xo for all £ < k).

Then what isy;> ; fy? This definition of the probability is valid for all starting
positionxg € Z, but we exceptionally define the probability for the cage- O (the
case starting from the origin) to be 1 just for a technical reason.

Another way to state the problem is as follows.

Problem 2. A frog lives inZ?. Starting from the origin, he jumps one unit up with
probability p, or he jumps one unit right with probability—= 1 — p at each time.
Then what is the probability that the frog ever lands on therline fy + xo = 0?

An | steps jump to the left (respsteps jump to the right) in Problem 1 is corre-
sponding to one unit jump upwards (resp. one unit jump to the right) in Problem 2.

Problem 2 is naturally arisen when one deals with multiply intersecting families
in extremal set theory, which was one of the motivations of this paper. In fact, the
answer to the problem (and its variations) plays an important role in [1] and [8].
Also the problem is related to some interesting identities appeared in enumerative
combinatorics. Among others, we give a closed formulasfpr, (gﬁj) which is
an extension of thedtya identity.

The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027.
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This paper is organized as follows. In this section, we solve a special case of the
problem and give a heuristic proof of théla identity. In section 2, we extend the
Pbélya identity and get some identities which we will use in the later sections. In
section 3, we answer to the problem and show some concrete computations about
the probability. A variation of the problem is considered in section 4.

To warm up let us solve Problem 2 for the cage= 1,/ = 1,r = 2. Define
o = a(p) as follows.

1 /143p _ i
a = 2( 1-p 1) If OS pS 2/37 (1)
if 2/3< p<1.

Note thata is a root of the equatioX = p+ gX3.
Fact 1. Prol(the frog reacheg=2x+1) = a.

Proof. Let

a, := Prol(the frog reacheg = 2x+ 1 at (k, 2k + 1) for the first time,
bk := Prol(the frog reacheg = 2x+ 2 at (k, 2k + 2) for the first time,
cx := Prol(the frog reacheg = 2x+ 3 at (k, 2k + 3) for the first timeg.

(Note thatay = fs. 1, i.€., this is the probability that the frog hits the trap after
3k+ 1 jumps. Similarlyby corresponds tds,,» with different starting position
Xo = 2.) LetA(X) := S =0a@Xs, B(X) := 3 k=0 kX<, C(X) := Y =0 CkX< be generating
functions. Suppose that the frog reackhies 2x+ 2 at (k, 2k + 2) for the first time.
Then he needs to reagh= 2x+ 1 at some point, say, di,2i + 1) for the first
time, which happens with probabilitgt. Then during the journey froni,2i +

1) to (k,2k+2), he touchey = 2x+ 2 only at (k,2k+ 2) and this happens with
probabilityay_;j. Therefore we havb, = z}‘zoaiak_i, which implies

B(x) = A(x)2.
Similarly we havecy = Z!‘Zoaibk_i, which implies
C(x) = A(X)B(x) = A(x)3.
Sinceag = panda = q¢_1 fori > 1 we have
A(X) = p+axC(X) = p+ axA(x)°>.
Substitutingx = 1 and setting = A(1) we have
X =p+gx.

We have to choose the solutidh=y so thaty becomes 0 fop = 0, andy becomes
1 for p= 1. Moreovery has to be a continuous function pf Therefore we have
y(p) = a(p). O
The proof also gives
Prolythe frog reacheg = 2x+2) = B(1) = a?,
Prokthe frog reacheg = 2x+3) = C(1) = a®.
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Thenforse N:={0,1,2,...} it follows from induction that
Prokthe frog reacheg = 2x+s) = a®. (2)

Let
uy := Prol{the frog arrives atk, 2k)) = (3) p*d,
Vi := Prol{the frog arrives atk, 2k + 1)) = (3*) p<+1gk.

Let U(X) := SreoWXs, V(X) i= S=oVix¥ be generating functions. Sineg =
TK paiuk_i we haveV (x) = A(X)U (). Substitutingx = 1, we have

3 <3k+ 1> gk — qu,
&\ K

whereu:=U(1) = Y0 (¥) p*d¥. To generalize the above identity, let
( )= = Prol(the frog arrives atk,2k+ j)) = (3k+1) p2ktigh

for j € Z, and letw()(x) := zkzowl((”xk. Sincew]) = z}‘zoaiwl((j:il) we have
W) (x) = Ax)WU~D(x). Substitutingk = 1 and notingW© (1) =U(1) = u, we
haveW(® (1) = aSufor s € Z, namely,

3k+S> 2k-+s~K S
> P = au. 3)
K> ( k

Fact2. u=(1—-3qa?)?

Proof. First note that

3 <3k+3> pPer2glrl < k+1) 2(k+1) glerL
S\ k+1 Lo\ k+1

_ 1( >2kk
(b

On the other hand, using'?) = 32 (%2) = 3(*/?), we have

3k+3 3k+2
Z) ( 1 > p2i2gtt — 3< . > p2r2grt
K= K>

3k+2
_ 3qz( . >p2k+2qk

= 3qa_2u. (by (3))

1V

=
1V

Thus we havei— 1 = 3qa®u, or equivalentlyu = (1—3qa?)~1. O
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For example, by setting = q=1/2, Fact 2 gives

3k> (1)3" 3
u= - =14+ = 4
ABIE 75 @
Now we extend Fact 2. By (3) and Fact 2 we have
3k+3> 2k+SK _ S 2y—1
P = a>(1—3ga”) .
% (%

In the same way, by considering the cdse 1 andr = m— 1, one can show

Z <mk+ S> p(mfl)k+sqk _ a5(1_ mmmfl)fl
k>0 k

forme N— {0} ands e Z, wherea is the root of the equatiod = p+ gX™ which
becomes 0fop=0if0< p< mT‘l anda = 1if mT‘l < p< 1. Sincea = p+qa™,
or1=£+qa™*, we can rewrite the identity as

& (mk:s)(pm_lq)k B <g>s<l—m<1— 5

By settingz= p™!qandp = %, the above identity is equivalent tbe Polya

identity [5]
mk+s Bstt
K__ P70
k§0< k ) (1-mpB+m’ ©)

wheref3 is the root of the equatioX = 1+ zX™ which becomes 1 for= 0. In

fact (5) holds fom,s € C. This can be checked by using Lagrange inversion with
routine calculation (cf. Problem 216 of [6]). In the same assumptions, it follows
also from Lagrange inversion that

s (mK+s\ o
k%kars( k )Zk_B (©)
(cf. Problem 212 of [6]), which is equivalent to
S mk+s (m—1)k+s~K __ ~S

It is also possible to get (5) by differentiating (6). See [7] 6.2.6 and 6.2.7.
On the other hand, it follows that

Prok(the frog reacheg= (m—1)x+s) = a® (8)
for m;se€ N — {0} in the same way as we get (2). Comparing (7) and (8) we find

that
_ S (mK+S\ (i o1ykgs K
A= mers(e )P

wherea is the probability that the frog reaches the line (m— 1)x+sat(k, (m—
1)k+ s) for the first time. In other words, we have the following.
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Fact 3. Letm,se N — {0} andk € N. Then the number of walks frot®,0) to
(k,(m—1)k+s) which hity = (m—1)x+s only at(k,(m— 1)k+s) is given by

s (mk+s
mk+s( k )

By counting the number of walks frorf0,0) to (n,(m— 1)n+s) we get the
following identity (cf. (5.62) of [2] or Example 8.1.1 in [4]):

<mnn+ s> _ éo mki . (mkk+ s> <m§1n_—kk)) '

2. EXTENDING THE POLYA IDENTITY

We extend the &lya identity.

Theorem 1. Form,se C andt € N we have

mk+s B BS'H' _t s—mj\ __.
é( -t >£(‘ B-(1-mB+m ;(t_,- >Z |

wheref is the root of the equatiod = 1+ zX™ which becomes 1 fa= 0.

For example, it gives
3k+2) 2 Kk B3 1
= — 9
3 (129 = s g ©
whereq=1-p,8 = a/panda is defined by (1). In the cage=q = % the sum

is 16
ISﬁ.

Proof of Theorem 1. We deduce the identity from theédba identity. Rewrite the
LHS as

kZ] (Tllj:s) X — /Z (m(ﬁ —Et) - S) Z'  (settingl =k+t)
= -

: B mé—mt+s 1 /mé—mt+s\ ,_
S e S

For the first term, we use (5) and then we use thefaetl+zB™ andz '™ =
(z8™)~t=(B—1)"'. Sowe have

th mé —mt+s B Z—tB—mt+S+l B BS+1
/;< ¢ ) C(@A-mp+1l (B-DYA-m)B+1)

For the second term, by setting=t — ¢, we have

2 /me-mt+s\,, o m(t—j)—mt+s> o (s—mj) »
At i — i
;)( ¢ > ,Zl< t— | 2= 2 g )?

This completes the proof of Theorem 1. O
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We continue to extend Theorem 1 and find a closed formulg fop (555 2.

Let g := exp(2miy/—1/d) be ad-th root of unity. Then using the following prop-
erty
14t 1 ifd|k
15 e { _
d i;) 0 ifdfk,
mk+ S)Wk B er (mk+s>
(W - 3 (i) (v
19t _ /mk+s ‘
= w)*“.
d Z§k>o< k+t >(a )
On the other hand, setting= g andw? = zwe have

> (o =3 (G
> (Gen) =g (W)

Let B be the root of the equatiod = 1+ (gw)X™ (i.e., (X — 1)9 = wdX®) which
becomes 1 fow = 0. Then by Theorem 1 we have

d-1 B|S+1 t —mi .
5 () - 55 (ot 5 (7))

1
d-1 st+1 t d-1 —mi _
“ Lwwiaaria Alad) (T
2 (B -D((d-0f+c) A\dZ t— |
The second term can be simplified as

S (a3 ) (T = s (e

) e
-3 <S Wd)d”)wdu (settingj = du)
& t—du

t/d) rs—cu
= < >z‘“.
& \t—du

Theorem 2. Letc,se C, d,t € N and letB, ..., By4_1 be the roots of the equation
(X —1)4 = zX® which become 1 for = 0. Then we have

ck+s _d*1 pstt _Lt/dj s—ct\_
kZo<dk+t>Zk_i; (Bi—DH((d-c)Bi+c¢) UZI <t—du>Z '

we have

and then

Finally we have the following.
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Example 1. Let us see examples for the case 3,d = 2, which we will use in the
next section. Lek;,x, be the roots of the equatidX — 1)2 = zX which become
1 forz=0. Then forz= p?q= p?(1— p) we find that

- § ifo<p<}i
o= {w it 2<p<1, (10)
X = y. forO<p<1,

where

1  l+pty/1+2p—3p?
=g V= : :

2p

Thus by the above theorem we have

> <3k+i><p2q>k L. (11)

o\ K 3-x1 3-Xx’

3K+i+1 xi+2 xb+2
k;)< 2%+ 1 ><p2q>k e[y T MG

Let x3 be the remaining root of the equatiod — 1)2 = p?gX®, namely,xs = v,
for0< p<2/3andxz=¢& for2/3< p<1 Then, sincee,f—lXl + 3f2X2 = & it
follows from (11) that

3k> 2 Kk X3

(p°a)" = : (13)
kgo <2k X3 — 3

Noting thatxs = -9 (a is defined by (1)), the above identity confirms Fact 2]

a—p
As an application of Theorem 2, we have the following identity.

Theorem 3. Forse C andc,d,t € N with ¢c > d, we have

[t/d] <S— CU> u_ c—1 yis+1 |
t—du i; (y—1)st(dy —c)

U=Uup
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whereup = max{1,| =% |}, andw, ..., .1 are the roots of the equatidi —
1)°-9 = zYe,

Proof. First we note that iB is a root of the equatiofX — 1)4 = zX° theny := %
is a root of the equatiof — 1)¢~9 = zY°, and it follows that
VS+1 Bs+1
(y=1*(dy—c) (B-1((d-c)B+c)
Moreover if 8 becomes 1 for = 0 theny does not become 1 fa= 0, and ify
becomes 1 for=0thenp does not. Lefy, ..., Be_1 be the roots ofX — 1)4 = zX°

such thaff, ..., By4_1 become 1 foz = 0. Then by setting/ := Bﬁ 7 we find that

¥o,-.., Y 1 are the roots ofY — 1)~ = zY® such thatyy,..., y._1 become 1 for
z=0.

Now we calculatey (§5)Z = 5 (1o gk[:s )2 separately using Theorem 2.

From the LHS we have

k d-1 BIS—O-l [t/d] . »
kZo(ccikﬁ)Zk = 2 B-U(d-0h+e & <f_§ﬂ>z

d-1 yis+1 [t/d] _ »
B Zo (-1t dy—-c) & <S CU>Z '

From the RHS we have
Z ( ck+s >z"
o (c—d)k+s—t

c et =y s—cv ,\,
N Z (v—1st(-dy+o) & <(S—t)—(0—d)V>Z

c-1 1 =1

5 yi* <s—cv>zv.

& (v—Dstdy—-c) & \t—dv

Combining the above two identities we get

Lij (a7 Z <S e :Zl <w—1>§<1dw—c>’

which is the desired identity. O

M

—

|
ﬁM

Settings =t = n, we have the following identity as a special case.
n/d] 7 cj _ c-1 \n+1
,Zl <n d J> Z) dy —c’
wherey, ..., y._1 are the roots ofY — 1)~9 = zY®. For example, it follows that

. n-— 3] (3+\@)n+1_(3_\/g)n+1_ n+1 __ (3+\/§)n+1 __on+1
Z( o= N B
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3. ANSWER TO THE FROG PROBLEM

Let us return to the Problem 2. We will find the probabiktyhat the frog lands
on the linerx — ¢y 4 xo = 0, wherer and/ are coprime. Since the frog lands only
on lattice points, we are interested in the set of non-negative lattice points on the
line, thatis,L = {(¢k+i,rk+j) : ke N}, wherei € N is the least number such that
] (ri+xo) andj := (ri +xo)/¢. Let
ax := Prol(the frog lands o at (¢k+i,rk + j) for the first time,
U := Probthe frog lands oritk, rk)) = (‘“71) pkgt,

Vic:= Prolfthe frog lands orfek+i,rk + j)) = (T ) prcrig,

and letA(x) := TioaXs, U(X) i= TieoWXs, V(X) == Ti=oWX< be generating
functions. Sincex = T§_ganUk_n we haveV (x) = A(x)U (x). Substitutingx = 1
and noting thaP = A(1), we have

(14)

where

Nk+i+j
j r ~0\k
- plq %( Kt )(pq) :
We can calculate these values by using Theorem 2.
Example 2. Let us consider the cage=2,r =3, =2,p=q=1/2. (In the
language of Problem 1, the frog starts fram:- 2 and he jumps 2 steps to the left
or 3 steps to the right with equal probabilities. THeis the probability that we
can catch the frog by the trap at the origin.) The non-negative lattice points on the
line3x—2y+2=0is

L={(2k,3k+1): ke N}.
This means = 0 andj = 1. Then using (14) and Theorem 2 we have

- (32050 ) (560
3B (B-+B1)—5(B*+B:%)

12B-B+ —10(B- +B+)
~ 0.67783

whereB_ ~ 1.43948and,; ~ 0.873822are the selected roots ¥f= 1+ (X /2)%2.
One can also check thatis the only positive root of the equation

151X® — 4415 + 2335¢* — 34653 + 636X% + 162X — 757=0. O

Example 3. Here we consider the cage-= 1,r = 2 again. Foil0 # n € Z, let P(n)
be the probability that the frog reaches the Itxe- y+ n = 0. Recall that we set
P(0) = 1. From (2), it follows that

P(n) =a" (15)
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for n e N, wherea is defined in (1). We also note that

P(n) = pP(n—1)+qgP(n+2) (16)
holds for alln € Z — {0}, whereq = 1— p. Therefore if we knowP(—1) then we
get allP(n) for n < —2 by using (16), or using

P(n) = ;P(n+ 1)?)P(n+3), 17)

which is valid forn £ —1.

The valueP(—1) can be computed by (14) and the faet j = 1 in this case,
i.e., the corresponding lattice points dre= {(k+ 1,2k+1) : k € N}. Then using
(9) and Fact 2 we have

P(-1) = (qu;)(ikjlz) (pzq)k>/<kzo (3kk>(p2®k>

(2a2—5ap+3p*+a3pq) (1-3a?q)
p(2a2—5ap+3p?)
In the casep = q= 3, we havea = (v5—1)/2, andP(—1) = 3— /5 by (18) (or
we can use (4) and (9)). Using this together with (17) and (15), we find that the
sequencéP(—n) }n- satisfies the following Fibonacci-like property:
_1
2

. (18)

P(—n) = 5 (an — v/Bbn)

where
ah=an-1+an2+5 a=6a =13
bh=bn1+bn2+3, by=2by=05.
Alternatively, we can get an explicit formula f&(—n) (n > 0) by using (14)
and Theorem 2. Note that the corresponding lattice pointk aré (k+i,2k+ j) :
k e N} where

. .. | 0 ifniseven
= [n/2], J'—{ 1 if nis odd.
So by (14) and (4) and usind/[!) = (%/11)), we have

P(—n) = (qu‘ kZO <3i;ﬂ+jj)(p2q)k> / <k; (?l’(k>(p2t1>k> . (19)

We already computed the above sums in the previous section. Substituting (11)
(12) (13) into (19), we have

( i+1 i+1
i % X X3 PR
q <3—x1+3—x2>/<x3—3> if n=2i
i+2

i X Xi+2 Xa . |
pd<(X1_1;(3_X1)+(X2—1§(3—X2)>/<X3—3> ifn=2 -1
| (20)

P(—n)=
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forne N.

The following picture shows hown, P(n)) behaves for the cage=q= % (We
introduce a fake probabilit?(0) = 1, but we can compute the “true” probability
by (P(—1)+P(2))/2 = 3(3—+/5)/4 which is also plotted on the figure.)

1le

The picture suggests the existencdiofP(n). Let us find the limits. In the
language of Problem 1, this is the situation that we release the frog far away from
the trap. From (20) we have

é(yy—3)  —(1+3p)+3y/1+2p—3p? it0<p

<2
lim P(n) = (3_E)V+ 2(2—3p) =3
n— —oo
0 if 2<p<1,
and from (15) we have
0 ifo<p<?2
lim P(n)=
N—--00 1 |f % g p < 1’
For the cas® = q = 3, it follows that
nI|m P(n) = 3\[ > ~ 0.854 n”T P(n) =0,

which of course match the above picture. We considered the/cader = 2, and
the result can be generalized as follows:

1
im Py = ¢ Hr—(+np}

N— —oo

if 0< p<Hr

0 if <p<l,

£+r
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0 ifO<p<;
lim P(n)= 1
n—--o0 . L <
W{(errp-ry "orsPsh
whereu = 30 (“507%) (). O

4. A VARIATION OF THE FROG PROBLEM

In Example 2, we considered the probability that the frog “lands on” the line
3x—2y+2=0. Now we consider a variation of the problem. We say that the
frog “attains” the line if he lands on the line or jumps over the line. Then what is
the probabilityP* that the frog “attains” the lin8x — 2y + 2 = 0 assuming that he
starts from the origin and he jumps one unit up with probabpitgr he jumps one
unit right with probabilityg = 1 — p. Since the frog lands only on lattice poinks,
is the probability that he lands on a pointlin= {s : i € N}, where

| (2,31+1) if i is even
| (2+1,3i+3) ifiisodd.

In the language of Problem 1, the situation is the following. The frog starts from
x = 2 and he jumps 2 steps to the left with probabilityor 3 steps to the right with
probabilityg = 1— p. Then what is the probabilitP* that we can catch him by
setting the traps at= 0 andx = —17? Let us solve the problem in this version here.
For{i,j} = {—1,0} let R(n) be the probability that the frog starts fraxr= n
and ends up with landing an= i without landing ornx = j in his journey. Then
we can divideP* = Py(2) + P-1(2) according to his last landing position. Let
P(n — m) be the probability that the frog ever landsx#a: m starting fromx = n,
and setP(n) := P(n — 0). As we saw in the previous section, we can compute
P(n) by using (14) and Theorem 2.

(21)

Noting that
P(n) =Ry(n) +P-1(n)P(-1— 0)
and
P(n+1) =P(n— —1) =P_1(n) + R(n)P(0 — —1) = P_1(n) + Ry(n)P(1 — 0),
we have
( P(I:I(Jr:)l) ) = ( (1) Y ) ( Ppol((nr:) > : (22)

Moreover by (21) and (14) we have

[ f(0,5) ifiiseven
P(”)_{ £(1,13) i i is odd,

e Bkt ] 5k
f(i, ) = (p’qk>o< Kt i )(p:”qz)k>/(k;)(Zk)(p:*qz)k).

where
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We can computd (i, j) using Theorem 2. Therefore setting= 2 in (22) we get
Py (2) andP-1(2) by solving
f(0,1) =R(2) +P-1(2)f(1,1),
f(1,3) =P-1(2) + R(2)f(1,2).
If p=q= 3 then we havé®(2) ~ 0.595882andP_1(2)
P* =Py (2) + P-1(2) ~ 0.70096
Itis also possible to compute” without usingf (i, j) as follows. LetR, ;(n) be
the probability that the frog starts fromi= n and ends up with landing oxn=i
without landing orx = j. For {i, j} = {0,1}, we haveR ;(n) = B_; ;=1(n—1).
Since '
Po—1(n) = Ryz(n) + P 5(NPy—1(1) =P_15(n— 1) + Ry —z(n— )Ry —(1),
it follows that

Q

0.105078 which give

Po(n) =P-1(n—1) + Py(n—1)Py(1).
Also, since

it follows that

Therefore we have

( Po(N) ) _ ( P(1) 1)( Po(n—1) )
P_l(n) P_]_(l) 0 P_]_(n— 1)
n—1
_ Po(l) 1 PO(l) ) (23)
P.1(1) O P-1(2)
On the other hand, if the frog starts from= 1 then the next jump brings him to
x = —1 with probability p or tox = 4 with probabilityg. So we have

Po(1) =aR(4), P-1(1) =p+qP-1(4).
Thus we gek = Py(1) andy = P_1(1) by solving

()=o) (o) (5) e
P_1(4) (Yy=p)/d y 0 y

(We choose the solutions so that> 0 andy — 0asp — 0, andx — O andy — 1
asp — 1.) Substitutingx andy into (23), we can compute* = Py(2) + P_1(2).
If p=qg= 3 then we getx ~ 0.187382 y ~ 0.560769 and we can verify that
P* = x? +xy-+y ~ 0.70096is the unique root if0, 1) of the following equation:

X8 —2X5 4+ 13X* — 44x3 4+ 51X2 - 24X +4=0.

Finally let us state the identities corresponding 28) (and (24) for a general
case. Namely we consider the following problem.

Problem 3. Starting from the origin, a frog jumps one unit up with probabifity
or he jumps one unit right with probability=1— p at each time. Then what is
the probabilityP* that he ever “attain” the linex —ly +n=0?
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This problem is equivalent to the following.

Problem 4. Starting from thex=n, a frog jumpd steps to the left with probability
p, or he jumpg steps to the right with probability= 1 — p at each time. What is
the probabilityP* that he ever lands on< 0?

Let P(n) be the probability that the frog (of Problem 4) ever landsxoa 0
starting fromx = n. DefineP(0) = 1. Setl ={0,—-1,...,—¢+ 1} and letR(n) be
the probability that the frog starts frox= n and ends up with landirng= i without
landing any point il — {i}. Then we havé* = Py(n) +P-1(n) + -+ P_y1(n).
Similar to (22) we can compuf@(n)’s from

P(n) P(O) P(=1) P(=2) ---P(=(+1) Po(n
P(n+1) P(1) P(O) P(-1) ---P(—(+2) P_1(n)
P(n+2) = P(2) P(1) PO) ---P(—¢+3) P_2(n)
P(n4.—‘l2—1) P(E—l)P(E—Z)P(£—3)::: P(0) P_g‘+.1‘(n)

On the other hand, the equation corresponding to (24) is the following.
P(1)/q PRI 10 - 0\ [/ R
P1(1)/q Pi(1) 01 - 0 P_1(1)

Prol/a | | Pea® 0 0 o 1| | P

(P-¢+1(1) —p)/a P1(1) O 0 -+ 0O P_r1(1)
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