REGULAR SIMPLICES PASSING THROUGH HOLES

HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

ABSTRACT. What is the smallest circular or square wall hole that a regular tetrahedron can pass? This problem was solved by Itoh–Tanoue–Zamfirescu [8]. Then, we settled the case of equilateral triangular hole in [1]. Motivated by these results, we consider the corresponding problems in higher dimensions. Among other results, we determine the minimum (n-1)-dimensional ball hole that a unit regular n-simplex can pass. The diameter of the minimum hole goes to $3\sqrt{2}/4$ as n tends to infinity.

1. Introduction

For a given convex body, find a small hole in a wall through which the convex body can pass. This type of problems goes back to Zindler [17] in 1920, who considered a convex polytope which can pass through a fairly small circular holes. A related topic known as Prince Rupert's problem can be found in [4]. Here we concentrate on the case when the convex body is a regular *n*-simplex.

For a compact convex body $K \subset \mathbb{R}^n$, let $\operatorname{diam}(K)$ and $\operatorname{width}(K)$ denote the diameter and width of K, respectively. For d > 0 let dK denote the convex body of diameter $d \times \operatorname{diam}(K)$ and homothetic to K. By S_n, Q_n , and B_n we denote the n-dimensional simplex, hypercube, and ball of unit diameter, respectively. Thus, S_n has side length $1, Q_n$ has side length $1/\sqrt{n}$, and B_n has radius 1/2.

Let Θ be an (n-1)-dimensional convex body with diam $(\Theta)=1$ lying on a hyperplane in \mathbb{R}^n , which we will call a hole-shape. For a d>0, let H be the hyperplane containing $d\Theta$. The hyperplane H divides \mathbb{R}^n into two (open) half spaces H^+ and H^- . We want to push S_n from H^+ to H^- through $d\Theta$. In this situation, we are interested in the following two types of minimum diameters γ and Γ of hole-shape Θ , defined by

$$\gamma(n,\Theta) := \min\{d : S_n \text{ can pass through the hole } d\Theta\},$$

 $\Gamma(n,\Theta) := \min\{d : S_n \subset (d\Theta) \times \mathbb{R}\}.$

Date: April 5, 2010, 02:58pm.

²⁰⁰⁰ Mathematics Subject Classification. 52A20 and 52B11 and 52A40.

Key words and phrases. regular simplex, convex hole, diameter.

The authors were supported by MEXT Grant-in-Aid for Scientific Research (B) 20340022.

Since S_n can pass through a hole $d\Theta$ by translation perpendicular to the hyperplane containing the hole iff $d \ge \Gamma(n, \Theta)$, we have $\gamma(n, \Theta) \le \Gamma(n, \Theta)$.

As we set the diameters of Q_n , B_n equal to 1, we have width $(Q_n) = 1/\sqrt{n}$ and width $(B_n) = 1$. Steinhagen [14] determined the width of S_n as follows.

width
$$(S_n) = \begin{cases} \sqrt{\frac{2}{n+1}} & \text{if } n \text{ is odd,} \\ \sqrt{\frac{2n+2}{n(n+2)}} & \text{if } n \text{ is even.} \end{cases}$$
 (1)

If S_n can pass through a hole $d\Theta$ by translation, then

$$width(d\Theta) \ge width(S_n) = (\sqrt{2} - o(1))/\sqrt{n}.$$
 (2)

Let $n \ge 3$. If S_n can pass through a hole $d\Theta$, then $d \ge \text{width}(S_2) = \sqrt{3}/2$. This gives $\gamma(n,\Theta) \ge \sqrt{3}/2$.

The following result is due to Pukhov [12] and Weißback [15] for n odd, and Brandenberg and Theobald [2, 3] for n even (and odd).

$$\Gamma(n, B_{n-1}) = \begin{cases} \sqrt{\frac{2(n-1)}{n+1}} & \text{if } n \text{ is odd,} \\ \frac{2n-1}{\sqrt{2n(n+1)}} & \text{if } n \text{ is even.} \end{cases}$$
(3)

In the next section, we review some results in \mathbb{R}^3 . Then, in section 3 we consider the problems in higher dimensions. Among other results, we will show that

$$\lim_{n\to\infty} \gamma(n,S_{n-1}) = \lim_{n\to\infty} \Gamma(n,S_{n-1}) = 1,$$

$$\lim_{n\to\infty} \gamma(n,B_{n-1}) = 3\sqrt{2}/4, \quad \lim_{n\to\infty} \Gamma(n,B_{n-1}) = \sqrt{2},$$

and

$$3\sqrt{2}/4 \le \lim_{n\to\infty} \gamma(n,Q_{n-1}) \le 2, \quad \sqrt{2} \le \lim_{n\to\infty} \Gamma(n,Q_{n-1}) \le 2.$$

It would be also interesting to consider problems concerning a general *n*-simplex of diameter 1 passing through holes.

2. IN THE 3-SPACE

Itoh, Tanoue, and Zamfirescu [8] proved

$$\gamma(3, Q_2) = \Gamma(3, Q_2) = 1, \quad \gamma(3, B_2) = 2r = 0.8956...,$$
 (4)

where $r \in (0,1)$ is a unique root of the equation $216x^6 - 9x^4 + 38x^2 - 9 = 0$. We note that $\gamma(3, B_2) < \Gamma(3, B_2) = 1$.

In [1], the following is proved.

$$\gamma(3, S_2) = \Gamma(3, S_2) = \frac{1 + \sqrt{2}}{\sqrt{6}} = 0.9855...$$

Zamfirescu [16] proved that most convex bodies can be held by a circular frame. Using (4), one can show that a square frame of diagonal length d

can hold S_3 iff $1/\sqrt{2} < d < 1$, and a circular frame of diameter d can hold S_3 iff $1/\sqrt{2} < d < \gamma(3, B_2)$, see [8].

On the other hand, it is shown in [1] that

This is a special property for triangular frames, and in fact, every non-triangular frame holds some tetrahedron in \mathbb{R}^3 , see [1].

According to Debrunner and Mani-Levitska [5], Janos Pach asked the following: "If a convec body (say, a stone) can be thrust through a convex hole in a wall by a linear motion (without twisting) then can this be done by a movement perpendicular to the wall?" The answer is positive, and it is proved in [5] that any section of a right cylinder by a plane contains a congruent copy of the base, see also [10], [9]. This together with (5) implies the following: if a convex body, not necessarily smooth, can pass through a triangular hole, then the convex body can pass through the hole by translation perpendicular to the wall, see [1].

Itoh and Zamfirescu [7] found a hole Φ on the plane in \mathbb{R}^3 with diam(Φ) = width(S_2) = $\sqrt{3}/2$ and width(Φ) = width(Φ) = width(Φ) = vidth(Φ), such that Φ 0 can pass through Φ 0.

3. HIGHER DIMENSIONS

3.1. **Holes of shape** S_{n-1} . It is known from [5, 9] that any plane section of a right triangular prism contains a congruent copy of a base of the prism. The situation in higher dimension is different. In [5], it is proved that if n > 3, then for any right cylinder with convex polytope base, one can find a hyperplane section which does not contain a congruent copy of the base. Nevertheless, we have the following.

Theorem 1. Let $K \subset \mathbb{R}^n$ be a compact convex body, and let Δ_{n-1} be a general (n-1)-simplex. If K can pass through the hole Δ_{n-1} , then this can be done by translation only.

Proof. First consider the case that K is a smooth convex body, that is, the case that, for every point x on the boundary ∂K of K, there is a unique supporting hyperplane of K tangent to K at x. Let $\Delta_{n-1} = p_1 \dots p_n$ be the hole on the hyperplane H, and H_+, H_- be the half spaces such that $H_+ \cap H_- = H$. Let $f: K \times [0,1] \to \mathbb{R}^n$ be a continuous motion of K such that $f(K,0) \subset H_-$, $f(K,1) \subset H_+$, and $H \cap f(K,t) \subset \Delta_{n-1}$ for all 0 < t < 1. We may further suppose that, for 0 < t < 1, f(K,t) touchs all facets of Δ_{n-1} except the facet opposite to the vertex p_n . Let $f(K,t)_- = f(K,t) \cap H_-$ and $f(K,t)_+ = f(K,t) \cap H_+$.

Now, for 0 < t < 1 and $1 \le i < n$, let H(i,t) denote the supporting hyperplane of f(K,t) containing the facet of Δ_{n-1} opposite to p_i . Then the

intersection $L(t) = H(1,t) \cap H(2,t) \cap \cdots \cap H(n-1,1)$ is a line. Let H(n,t) be the hyperplane parallel to the line L(t) and containing the facet of Δ_{n-1} opposite to p_n . Then the n hyperplanes $H(1,t),\ldots,H(n,t)$ determine a prism P(t) that intersects H at Δ_{n-1} . Note that, for each $1 \leq i < n$ and 0 < t < 1, f(K,t) and P(t) lie in the same side of H(i,t). Furthermore, since f(K,t) is convex, one of $f(K,t)_-$, $f(K,t)_+$ lies in the same side of H(n,t) as P. Therefore, one of $f(K,t)_-$, $f(K,t)_+$ is contained in P(t). We may suppose that $f(K,t)_+ \subset P(t)$ for $t < \delta$, and $f(K,t)_- \subset P(t)$ for $t > 1 - \delta$, where δ is some fixed small positive constant.

Let $t_0 = \max\{t : f(K,t)_+ \subset P(t), \delta \le t \le 1-\delta\}$. Then, for every $\varepsilon > 0$, $f(K,t_0+\varepsilon)_- \subset P(t_0+\varepsilon)$. Since f(K,t) and each hyperplane H(i,t) $(1 \le i \le n)$ move continuously on t, this implies that $f(K,t_0)_- \subset P(t_0)$, and hence $f(K,t_0) \subset P(t_0)$. Thus the prism $P(t_0)$ contains a congruent copy of K, and hence K can pass through Δ_{n-1} by a translation.

Next, let us consider the case that the convex body K is not smooth. We may suppose that K contains the origin 0 of \mathbb{R}^n . For r>0, let B(r) denote the ball with center 0 and radius r. Then, for each integer k>0, K+B(1/k) is a smooth convex body, and if K can pass through Δ_{n-1} , then K+B(1/k) can pass through the hole of $(1+2/k)\Delta_{n-1}$. Hence there is a prism P_k containing K+B(1/k) and $P_k\cap H=(1+2/k)\Delta_{n+1}$, where H is the hyperplane containing Δ . Let $r_0\gg \operatorname{diam}(K)$, and put $X_k=P_k\cap B(r_0)$. Then, in $\{X_k: k=1,2,\ldots\}$, Blaschke selection theorem guarantees the existence of a subsequence $\{X_{k_m}\}$ and a convex set X_∞ such that X_{k_m} converges to X_∞ in the Hausdorff metric. This X_∞ determines a prism P_∞ with $P_\infty\cap H=\Delta_{n-1}$ such that $K\subset P_\infty$. Hence K can pass through Δ_{n-1} by a translation. \square

Problem 1. *Is it possible to take the translation in Theorem 1 perpendicular to the wall? Or equivalently, do* $\gamma(n, S_{n-1})$ *and* $\Gamma(n, S_{n-1})$ *coincide?*

Theorem 2.

$$\gamma(n, S_{n-1}) \ge \begin{cases} \sqrt{1 - \frac{1}{n}} & \text{if n is odd,} \\ \sqrt{1 - \frac{1}{n+2}} & \text{if n is even.} \end{cases}$$

Proof. Suppose that S_n can pass through the hole of dS_{n-1} . By Theorem 1, this can be done by translation only. Thus we can apply (2) with (1), which implies the desired inequality.

The above result together with $\gamma(n, S_{n-1}) \leq \Gamma(n, S_{n-1}) \leq 1$ gives

$$\lim_{n\to\infty}\gamma(n,S_{n-1})=\lim_{n\to\infty}\Gamma(n,S_{n-1})=1.$$

If the simplex does pass through a hole, then in particular the volume of some central hyperplane section of that simplex is no bigger than the volume of the hole. Jiří Matoušek suggested showing $\gamma(n, S_{n-1}) \to 1$ by using

this simple observation. Then, Matthieu Fradelizi told us that a result in [6] implies that the volume of the smallest central hyperplane section of S_n is more than $\operatorname{vol}(S_{n-1})/(2\sqrt{3})$, and this is enough for proving $\gamma(n, S_{n-1}) \to 1$. It is conjectured that the smallest central hyperplane section of S_n is obtained by a hyperplane parallel to a facet of the simplex.

Since the diameter of circumsphere of S_n is $\sqrt{2(n-1)/n}$, we have

$$\Gamma(n,S_{n-1})\sqrt{\frac{2(n-1)}{n}} \geq \Gamma(n,B_{n-1}).$$

This together with (3) implies

$$\Gamma(n, S_{n-1}) \ge \sqrt{1 - \frac{1}{n+1}}$$

for n odd. (For n even, Theorem 2 gives a better lower bound for $\Gamma(n, S_{n-1})$.) Actually S_n can pass through a hole smaller than its facet.

Theorem 3.
$$\Gamma(n, S_{n-1}) < 1$$
 for all $n \ge 2$.

Before the formal proof, let us try the case n = 3 to get a feel. Let $S_2 = A_0A_1A_2$, $A_0 = (0, 1/2)$, $A_1 = (0, -1/2)$, $A_2 = (\sqrt{3}/2, 0)$, and let \mathscr{P} be the right triangular prism with base $A_0A_1A_2$. We put the unit regular tetrahedron $S_3 = B_0B_1B_2B_3$ in the prism, namely, we set

$$B_0 = (0, 1/2, 0), B_1 = (0, -1/2, 0), B_2 = (1/\sqrt{2}, 0, 1/2), B_3 = (1/\sqrt{2}, 0, -1/2).$$

Now we move the tetrahedron very slightly keeping it inside \mathscr{P} so that all vertices are off the faces of \mathscr{P} . This can be done by rotating the tetrahedron along the *x*-axis, and push it in the direction of *x*-axis. This gives $\Gamma(3, S_2) < 1$.

Proof. For $n \geq 2$, let

$$S_n = A_0 A_1 \cdots A_n \subset \mathbb{R}^n$$

be a unit regular *n*-simplex with vertices A_0, \ldots, A_n . We may assume that

$$A_i = (0, *, ..., *) \in \mathbb{R}^n \text{ for } 0 \le i < n,$$

 $A_n = (h, 0, ..., 0) \in \mathbb{R}^n,$

where $h = \sqrt{(n+1)/(2n)}$ is the height of S_n . Let S_{n-1} be the facet spanned by A_0, \ldots, A_{n-1} . We may assume that the center of S_{n-1} coincides with the origin.

Then we can construct a unit regular (n+1)-simplex

$$S_{n+1} = B_0 B_1 \cdots B_n B_{n+1} \subset \mathbb{R}^{n+1}$$

by setting

$$B_i = (A_i, 0) \in \mathbb{R}^{n+1} \text{ for } 0 \le i < n,$$

 $B_n = (k, 0, \dots, 0, 1/2) \in \mathbb{R}^{n+1},$
 $B_{n+1} = (k, 0, \dots, 0, -1/2) \in \mathbb{R}^{n+1},$

where $k = \sqrt{h^2 - (1/4)}$. Since 0 < k < h we notice that this S_{n+1} is contained in the prism $\mathscr{P} = S_n \times \mathbb{R}$. More precisely, two vertices B_n and B_{n+1} are interior points of \mathscr{P} , while a face $F = B_0 B_1 \cdots B_{n-1}$ is contained in a facet $S_{n-1} \times \mathbb{R}$ of \mathscr{P} .

We will show by induction on n that we can continuously move our S_{n+1} inside the prism \mathscr{P} so that S_{n+1} will be contained in \mathscr{P}° , where \mathscr{P}° denotes the interior of \mathscr{P} . Namely, we will find a continuous function $f_{n+1}:[0,1]\times\mathbb{R}^{n+1}\to\mathbb{R}^{n+1}$ and $t_0\in(0,1)$ with $f_{n+1}(0,S_{n+1})=S_{n+1}$ (the starting position) and $f_{n+1}(t,S_{n+1})\subset\mathscr{P}^{\circ}$ for all $t\in(0,t_0]$.

For the base case, we take

$$f_3(t,x,y,z) = (x+t,y\cos t - z\sin t,y\sin t + z\cos t),$$

namely, we rotate the regular tetrahedron along the *x*-axis and push it in the direction of *x*-axis. Now let $n \ge 3$ and apply the induction hypothesis to the (n-1)-simplex F with the prism $\mathscr{P}' = F \times \mathbb{R}$. Then we can find a continuous function f_n and t'_0 with the required properties, in particular, $f_n(t,F) \subset (\mathscr{P}')^\circ$ for $t \in (0,t'_0]$. We extend f_n to define

$$f_{n+1}(t,x_0,x_1,\ldots,x_n)=(x_0+t,f_n(t,x_1,\ldots,x_n)).$$

Then we have $f_{n+1}(0, S_{n+1}) = S_{n+1}, f_{n+1}(0, \{B_n, B_{n+1}\}) \subset \mathscr{P}^{\circ}$ and

$$f_{n+1}(t,F) \subset (t,0,\ldots,0) + (\mathscr{P}')^{\circ} \text{ for } t \in (0,t'_0].$$

Thus, we can choose $0 < t_0 \ll t_0'$ such that $f_{n+1}(t, S_{n+1}) = f_{n+1}(t, F \cup \{B_n, B_{n+1}\}) \subset \mathscr{P}^{\circ}$ for $t \in (0, t_0]$.

3.2. **Holes of shape** B_{n-1} . We have $\Gamma(n, B_{n-1}) \to \sqrt{2}$ as $n \to \infty$ by (3). On the other hand, we will show $\gamma(n, B_{n-1}) \to 3\sqrt{2}/4$. Namely, rotation does help for escaping through a round hole.

By a hyperdisk we mean an (n-1)-ball sitting on a hyperplane in \mathbb{R}^n . We say that a hyperplane H cuts a line segments xy if H separates x and y. A hyperdisk $D \subset H$ is said to cut a line segment xy if H cuts xy and D intersects xy. In this case, the intersection of the hyperdisk D and the line segment xy is a singleton. The radius of a hyperdisk D is denoted by r(D).

Let $S_n \subset \mathbb{R}^n$ be a unit regualr n-simplex with vertex set $V(S_n)$. Choose $p \in V(S_n)$. By a proper partition, we mean to partition $V(S_n)$ into three nonempty sets $V(S_n) = \{p\} \cup X \cup Y$. Then, X and Y are divided by a hyperplane. Let b_X , b_Y be the barycenters of X, Y, respectively. For 0 < s < 1,

let

$$z_s = (1 - s)b_X + sb_Y.$$

This point divides the line segment $b_X b_Y$ into s:1-s. Let H_p denote the hyperplane containing $V(S_n) \setminus \{p\}$, and let $I(X,Y,s) \subset H_p$ be the (n-2)-dimensional flat passing through z_s and perpendicular to $b_X b_Y$. For each $-1 \le t \le 1$, let

$$w_t = \begin{cases} (1-t)p + tb_Y & \text{if } 0 \le t < 1, \\ (1-|t|)p + |t|b_X & \text{if } -1 \le t < 0. \end{cases}$$

Let H(X,Y,s,t) denote the hyperplane obtained by rotating H_p around I(X,Y,s) so that it comes to the position where it intersects pb_X or pb_Y at the point w_t . Since $\dim I(X,Y,s) = n-2$, it is possible to rotate H_p around I(X,Y,s). We sometimes use a redundant notation $I_p(X,Y,s)$ or $H_p(X,Y,s,t)$ to emphasize that p is the chosen vertex.

For $x \in X$ and $y \in Y$, we notice that H(X,Y,s,t) divides the edge xy with ratio s: 1-s, and it divides the edge px or py with ratio t: 1-t (resp. |t|: 1-|t|) if $t \ge 0$ (resp. if t < 0). The radius of the smallest hyperdisk on H(X,Y,s,t) that contains $S_n \cap H(X,Y,s,t)$ will be denoted by

$$r(|X|, s, t)$$
,

which only depends on s,t and |X|, the cardinality of X.

Lemma 1. Let $V(S_n) = \{p\} \cup X \cup Y$ be a proper partition. Suppose that D is a (p,X,Y)-hyperdisk, that is, D contains p, and D cuts all edges xy, where $x \in X$, $y \in Y$. Then $r(|X|, s, 0) \le r(D)$ holds for some 0 < s < 1.

Proof. For a (p,X,Y)-hyperdisk D, let D_{xy} denote the point where D cuts the edge connecting $x \in X$ and $y \in Y$. For $X' \subset X, Y' \subset Y$, let

$$d(D,X',Y') = \{|x - D_{xy}| : x \in X', y \in Y'\},$$

$$\delta(D,X',Y') = \max d(D,X',Y') - \min d(D,X',Y').$$

We define the irregularity of D by $\delta(D):=\delta(D,X,Y)$. If $\delta(D)=0$, namely, if $d(D,X,Y)=\{s\}$ for some 0< s<1, then each D_{xy} lies on H(X,Y,s,0) and $r(|X|,s,0)\leq r(D)$. So we may assume that $\delta(D)>0$. Let δ_0 be the infimum of the irregularities of (p,X,Y)-hyperdisks with radius at most r(D). By applying Blaschke selection theorem, we can find a (p,X,Y)-hyperdisk D_{∞} with $r(D_{\infty})\leq r(D)$ and $\delta(D_{\infty})=\delta_0$. Then, the following claim implies that $\delta_0=0$, which completes the proof of the lemma.

Claim 1. If $\delta(D) > 0$, then there is a (p, X, Y)-hyperdisk D^* with $r(D^*) \le r(D)$ and $\delta(D^*) < \delta(D)$.

Now we prove the claim by introducing an operation which rotates D to get D^* . Suppose that

$$\delta(D) = |a - D_{ac}| - |b - D_{bd}| > 0, \tag{6}$$

where $a,b \in X$ and $c,d \in Y$. Let K be the hyperplane contianing D. Then the line ab or cd intersects K. By symmetry, we may assume that the line ab intersects K. Let L be the hyperplane that perpendicularly bisects the edge ab, and let $J = K \cap L$. Since $\dim J = d - 2$, we can rotate K around J until it comes to the position where the hyperplane becomes parallel to the line ab. Let K^* be the resulting hyperplane. Let D' be the mirror image of D with respect to L, and let B be the minimum ball containing $D \cup D'$. Finally let $D^* = B \cap K^*$. Since the distance from the center of B to $J(\subset K)$ is greater than or equal to the distance between the center of B and K, it follows that $r(D^*) \leq r(D)$.

We will show that D^* is a (p,X,Y)-hyperdisk with $\delta(D^*) < \delta(D)$. Let $x \in X \setminus \{a,b\}$ and $y \in Y$. Since $V(S_n) \setminus \{a,b\}$ lies on L, we have $D_{xy} \in D \cap L = D \cap K \cap L = D \cap J \subset D^*$, and $D_{xy} = D^*_{xy}$. This gives

$$\delta(D, X \setminus \{a,b\}, Y) = \delta(D^*, X \setminus \{a,b\}, Y).$$

If $x \in \{a,b\}$ and $y \in Y$, then K^* cuts the line segment $D_{xy}D'_{xy}$, because both D and D' are (p,X,Y)-hyperdisks. Thus the intersection is inside B and we can write it D^*_{xy} . We may assume that the line ab intersects K at the extention beyond b. Since $D^*_{ay}D^*_{by} \parallel ab$ and two edges $D^*_{ay}D^*_{by}$ and $D_{ay}D_{by}$ meet inside the equilateral $\triangle aby$, we have $|a-D_{ay}|>|a-D^*_{ay}|$, and $|b-D_{by}|<|b-D^*_{by}|$. Thus we have

$$\delta(D, \{a,b\}, Y) > \delta(D^*, \{a,b\}, Y).$$

If $\delta(D) = \delta(D, X \setminus \{a,b\}, Y)$, then we have succeeded to decrease the number of pairs $\{ac,bd\}$ which attain (6) by changing from D to D^* . So, by repeating this operation, we may assume that $\{ac,bd\}$ is the only pair which attains (6), or equivalently, $\delta(D) > \delta(D, X \setminus \{a,b\}, Y)$. In this case, we have $\delta(D) > \delta(D^*)$ as desired.

For computation, it is convenient to put our S_n in \mathbb{R}^{n+1} instead of \mathbb{R}^n . So let $S_n = p_1 p_2 \cdots p_{n+1} \subset \mathbb{R}^{n+1}$ with $p_j = e_j/\sqrt{2}$, where e_j is the j-th standard base of \mathbb{R}^{n+1} . Fix $s,t \in (0,1)$ and $1 \le i < n$. Let $V(S_n) = \{p\} \cup X \cup Y$ be a proper partition with |X| = i. To compute r(i,s,t), we look at the hyperplane $H := H_p(X,Y,s,t)$. Recall that b_X, b_Y are the barycenters of X, Y, respectively. Fix two vertices $x \in X$, $y \in Y$. Let u be the intersection of xy and y, and let y and y and y and let y and y and let y and y and y are the barycenters of y. Then we have

$$2\alpha^2 = (1-s)^2(1-\frac{1}{i}) + s^2(1-\frac{1}{n-i}). \tag{7}$$

Let v be the intersection of py and H, and let $\beta = |v - w_t|$, where $w_t = (1-t)p + tb_Y$. Then we have

$$2\beta^2 = t^2(1 - \frac{1}{n-i}). \tag{8}$$

Notice that the distances α , β are independent of the choices of x, y. Also one can see that the two lines uz_s and vw_t are both perpendicular to z_sw_t . The distance $\lambda = |z_s - w_t|$ satisfies

$$2\lambda^2 = \frac{(1-s)^2}{i} + (1-t)^2 + \frac{(s-t)^2}{n-i}.$$
 (9)

Let *D* be the smallest hyperdisk on *H* that contains $S_n \cap H$, and let *o* be its center. Then *o* is on the line segment $z_s w_t$, and |u - o| = |v - o| = r(i, s, t). Let $\zeta = |z_s - o|$. Then, looking at two right triangles $\triangle ouz_s$ and $\triangle ovw_t$, we have $r(i, s, t)^2 = \alpha^2 + \zeta^2 = (\lambda - \zeta)^2 + \beta^2$. This gives $\zeta = (\alpha^2 - \beta^2 - \lambda^2)/(2\lambda)$, and

$$r(i, s, t)^2 = \alpha^2 + \frac{1}{4\lambda^2} (\lambda^2 - \alpha^2 + \beta^2)^2.$$
 (10)

By substituting (7), (8), (9) into (10), we can rewrite $r(i, s, t)^2$ in terms of s, t, i (and n) only. We record a special case for later use:

$$2r(i,s,0)^{2} = \frac{i(n-i)(s^{2}-s+1)^{2}}{(1-s)^{2}n + (n+2s-1)i - i^{2}}.$$
 (11)

Lemma 2. Let $V(S_n) = \{p\} \cup X \cup Y$ be a proper partition with |X| = i, and let 0 < s < 1. Then we have $r(i, s, t) \le r(i, s, 0)$ for all $t \in [s - 1, s]$.

Proof. First assume that $0 < t \le s$. Let D' be the hyperdisk with center o' on H(X,Y,s,0) that is obtained by rotating D around I(X,Y,s) through the angle $\angle w_t z_s p$. Notice that o' is on the line segment $z_s p$, and $\{u,z_s\} \subset D \cap D'$. Since r(i,s,t) = r(D) = |u-o|, to show r(i,s,t) < r(i,s,0) it suffices to show $p \notin D'$, or equivalently, |p-o'| > r(D') = r(D).

Recall that $\alpha = |u - z_s|$, $\beta = |v - w_t|$, $\lambda = |z_s - w_t|$, $\zeta = |z_s - o| = |z_s - o'|$, and $|w_t - o| = \lambda - \zeta$. Let $\eta = |p - w_t|$.

In $\triangle pb_Xb_Y$, the edge b_Xb_Y is the shortest one. In fact, we have $|p-b_X|^2=\frac{1}{2}(1+\frac{1}{i}),\ |p-b_Y|^2=\frac{1}{2}(1+\frac{1}{n-i}),\ \text{and}\ |b_X-b_Y|^2=\frac{1}{2}(\frac{1}{i}+\frac{1}{n-i}).$ Hence $\angle b_Xpb_Y<\pi/3$. Since $z_sw_s\parallel b_Xp$, we have $\angle z_sw_tp\geq \angle z_sw_sp>2\pi/3$. Looking at $\triangle z_sw_tp$, we get $|p-z_s|^2>\lambda^2+\eta^2+\lambda\eta$. Thus we have

$$|p - o'| = |p - z_s| - |z_s - o'| > \sqrt{\lambda^2 + \eta^2 + \lambda \eta} - \zeta.$$
 (12)

Using $\triangle pvw_t \sim \triangle pyb_Y$, we have

$$|v-w_t|=t|y-b_Y|=\frac{t}{2}(1-\frac{1}{n-t})<\frac{t}{2}(1+\frac{1}{n-t})=t|p-b_Y|=|p-w_t|=\eta,$$

which implies

$$r(D)^{2} = |v - o|^{2} = |v - w_{t}|^{2} + |w_{t} - o|^{2} < \eta^{2} + (\lambda - \zeta)^{2}.$$
 (13)

Since $0 < t \le s < 1$, it follows from (7) and (8) that $|u - z_s| = \alpha >$ $\beta = |v - w_t|$. Then looking at two triangles $\triangle ouz_s$ and $\triangle ovw_t$ having hypotenuses of the same length (= r(D)), we get $|z_s - o| < |w_t - o|$, that is,

$$2\zeta < \lambda. \tag{14}$$

By (12) (13) and (14), we have

$$\begin{split} |p-o'|^2 - r(D)^2 &> (\sqrt{\lambda^2 + \eta^2 + \lambda \eta} - \zeta)^2 - (\eta^2 + (\lambda - \zeta)^2) \\ &= \lambda \eta - 2\zeta(\sqrt{\lambda^2 + \eta^2 + \lambda \eta} - \lambda) \\ &> \lambda(\lambda + \eta - \sqrt{\lambda^2 + \eta^2 + \lambda \eta}) > 0, \end{split}$$

as desired.

Next assume that $s-1 \le t < 0$. By comparing two proper partitions $\{p\} \cup$ $X \cup Y$ and $\{p\} \cup X' \cup Y'$, where X' = Y and Y' = X, we have r(|X|, s, t) =r(|X'|, 1-s, -t,). Then, using the inequality for $0 < -t \le 1-s < 1$, we have $r(i, s, t) = r(n - i, 1 - s, -t) \le r(n - i, 1 - s, 0) = r(i, s, 0)$, as desired.

Lemma 3. For 0 < s < 1/2 and $m = \lfloor n/2 \rfloor$, we have

$$r(m, s, 0) = \max\{r(i, s, 0) : 1 < i < m\}.$$

Proof. By (11), we have

$$\frac{\partial}{\partial i}(2r(i,s,0)^2) = \frac{N_1 N_2}{D},$$

where

$$N_1 = (s^2 - s + 1)^2,$$

$$N_2 = (1 - 2s)i^2 - 2n(1 - s)^2i + n^2(1 - s)^2,$$

$$D = (1 - s)^2n + ((n - i) - (1 - 2s))i.$$

We will show that r(i, s, 0) is an increasing function of i. It is easy to see that $N_1/D > 0$. So, it suffices to show $N_2 \ge 0$. Fix s, n, and let $f(i) := N_2$. If s = 1/2, then $f(i) = n(n-2i)/4 \ge 0$, as desired. If s < 1/2, then f(i)is a quadratic function of i with positive coefficient for i^2 . Since f(i) takes minimum at $i = n(1-s)^2/(1-2s) > n/2$ and $f(n/2) = n^2(1-2s)/4 > 0$, we can conclude that f(i) > 0 for $1 \le i \le n/2$.

Lemma 4. Let n be even and let m = n/2. Then we have

$$\min\{r(m,s,0): s \in [0,1]\} = r(m,1/2,0),\tag{15}$$

and

$$r(m, 1/2, 0) = \frac{3}{8} \sqrt{\frac{2n}{n+1}} \tag{16}$$

Proof. By (11) we have

$$\frac{\partial}{\partial s}(r(n/2,s,0)^2) = \frac{-n(1-2s)(s^2-s+1)(2s^2-2s+n)}{(4s^2-4s+n+2)^2},$$

which implies (15). By (11) we have (16).

Lemma 5. Let n be odd and let $m = \lfloor n/2 \rfloor$. Let $s_0 \in (0,1)$ be a unique real root of a the cubic equation

$$4nX^{3} - 6(n+1)X^{2} + 2(n^{2} + n + 2)X - n^{2} + 1 = 0.$$
(17)

Then we have

$$\min\{r(m,s,0): s \in [0,1]\} = r(m,s_0,0),\tag{18}$$

and

$$\max\{r(m,s,s): s \in [s_0,1/2]\} = r(m,s_0,s_0). \tag{19}$$

Moreover, $r(m, s_0, 0)^2$ is a unique real root of the following cubic equation with integral coefficients:

$$2048(n+1)n^3X^3 + a_2X^2 + a_1X + a_0 = 0, (20)$$

where

$$a_0 = -9(n^2 - 1)^2(n^4 - 4n^3 + 2n^2 + 4n + 13),$$

$$a_1 = 16(n^2 - 1)(2n^6 - 6n^5 - 15n^4 + 38n^3 + 42n^2 + 48n - 29),$$

$$a_2 = 64(8n^6 - 8n^5 - 41n^4 - 28n^3 - 10n^2 + 36n + 27).$$

Proof. We start with (11). Then we get (18) by computing $\frac{\partial}{\partial s}(r(m,s,0)^2)$. Moreover, it follows from (17) that $1/2 - 1/n^2 < s_0 < 1/2$ for $n \ge 3$. In fact, we have

$$s_0 = \frac{1}{2} - \frac{3}{4n^2} - \frac{3}{8n^3} + O(n^{-4}). \tag{21}$$

By (10) we have $2r(m, s, s)^2 = (2s^2 - 2s + 1)m/(1+m)$, which implies (19). Finally we outline how to show that $r(m, s_0, 0)^2$ satisfies (20). This can be done by direct computation (with aid of computer). By (11) we have

$$2r(m,s,0)^{2} = \frac{m(1+m)(s^{2}-s+1)^{2}}{m^{2}+(1-s)^{2}+2m(s^{2}-s+1)}.$$
 (22)

The numerator of $r(m, s_0, 0)^2$ is a biquadratic polynomial of s_0 , and one can reduce it to a quadratic polynomial using (17). Substitute the reduced $r(m, s_0, 0)^2$ into (20), and reduce these fractions to a common denominator. Then one can check that the numerator vanishes by reducing it using (17).

Define

$$s^* = \begin{cases} 1/2 & \text{if } n \text{ is even,} \\ s_0 & \text{if } n \text{ is odd.} \end{cases}$$
 (23)

Lemma 6. Let $m = \lfloor n/2 \rfloor$, and let $V(S_n) = \{p\} \cup X \cup Y$ be a proper partition with $i = |X| \le m$. Then $S_n \cap H_p(X,Y,s^*,t)$ is contained in a hyperdisk of radius $r(m,s^*,0)$ for all $t \in [s^*-1,s^*]$.

Proof. We have $r(i, s^*, t) \le r(i, s^*, 0) \le r(m, s^*, 0)$, where the first inequality follows from Lemma 2, and the second one from Lemma 3.

Theorem 4. Let $m = \lfloor n/2 \rfloor$, and define s^* by (23). Then we have $\gamma(n, B_{n-1}) = r(m, s^*, 0)$.

For n = 2m, it follows from (16) that

$$r(m, 1/2, 0) = \frac{3}{4\sqrt{2}} \left(1 - \frac{1}{2n} + \frac{3}{8n^2} - \frac{5}{16n^3} + O(n^{-4}) \right). \tag{24}$$

On the other hand, for n = 2m + 1, it follows from (20) that

$$r(m, s_0, 0) = \frac{3}{4\sqrt{2}} \left(1 - \frac{1}{2n} + \frac{3}{8n^2} - \frac{13}{16n^3} + O(n^{-4}) \right).$$
 (25)

One can also get (25) by substituting (21) directly into (22). By Theorem 4 with (16), (24) and (25), we have the following.

Corollary 5.

$$\gamma(n, B_{n-1}) = \begin{cases} \frac{3}{4} \sqrt{\frac{2n}{n+1}} & \text{if n is even,} \\ \frac{3}{4} \sqrt{\frac{2n}{n+1}} - \frac{3\sqrt{2}}{8n^3} + O(n^{-4}) & \text{if n is odd,} \end{cases}$$

and

$$\lim_{n\to\infty}\gamma(n,B_{n-1})=\frac{3\sqrt{2}}{4}.$$

Proof of Theorem 4. Let D be a hyperdisk on a hyperplane in \mathbb{R}^n through which S_n can pass. We may suppose that the vertices $p_1, p_2, \ldots, p_{n+1}$ can pass through D one by one in this order. (If this seems to be impossible, then by replacing D with a hyperdisk of radius $r(D) + \varepsilon$, this would become possible, where $\varepsilon > 0$ can be chosen arbitrarily small.) Consider the moment when p_{m+1} passes through D. By Lemma 1, $r(D) + \varepsilon$ is at least r(m,s,0) for some 0 < s < 1, which is at least $r(m,s^*,0)$ by (15) and (18). Thus $r(D) + \varepsilon \ge r(m,s^*,0)$. Since ε can be chosen arbitrarily small, we have $r(D) \ge r(m,s^*,0)$, and hence $\gamma(n,B_{n-1}) \ge 2r(m,s^*,0)$.

Next we show $\gamma(n, B_{n-1}) \leq 2r(m, s^*, 0)$. Instead of pushing S_n through the hole, we fix our S_n and move the hyperplane containing the hole. Let D be the hyperdisk of radius $r(m, s^*, 0)$ in the moving wall hyperplane. Let

 $V(S_n) = \{p_1, \dots, p_{n+1}\}, X_i = \{p_1, \dots, p_i\}, \text{ and } Y_i = \{p_{i+2}, \dots, p_{n+1}\}.$ Since $\{p_{i+2}\} \cup X_{i+1} \cup Y_{i+1}$ is also a proper partition, we have $H_{p_{i+1}}(X_i, Y_i, s^*, s^*) = H_{p_{i+2}}(X_{i+1}, Y_{i+1}, s^*, s^* - 1).$

Let $H_i = H(X_i, Y_i, s^*, s^* - 1)$. Suppose that our hole D sits in H_i for some $1 \le i \le m$. By rotating this wall hyperplane around $I(X_i, Y_i, s^*)$, we get $H(X_i, Y_i, s^*, s^*) = H_{i+1}$. By Lemma 6, we may assume that, in this rotation process, the intersection of the fixed S_n and the wall hyperplane is always contained in D. Namely, we can move the wall hyperplane from H_i to H_{i+1} so that the intersection of S_n and the wall is always contained in the hole.

Therefore, starting from H_1 , we can send the wall hyperplane to the position of H_{m+1} . If n is even, then in the process from H_m to H_{m+1} , we get $H(X_m, Y_m, 1/2, 0)$. This hyperplane divides S_n into two parts that are mutually congruent, and we are done (by repeating the same procedure in the reverse order). If n is odd, then by translating $H_{m+1} = H(X_m, Y_m, s^*, s^*)$, we get $H(X_m, Y_m, 1/2, 1/2)$, which divides S_n into mutually congruent parts. Moreover, by (19), the intersection of S_n and the hyperplane is always contained in D in the process of this translation. This completes the proof. \square

3.3. **Holes of shape** Q_{n-1} . In [11] the following is proved: for every $\varepsilon > 0$ there is an N such that for every n > N one has

$$S_n \subset (2+\varepsilon)Q_n$$
.

This gives

$$\lim_{n\to\infty}\Gamma(n,Q_{n-1})\leq 2.$$

Since $Q_{n-1} \subset B_{n-1}$, we get lower bounds for $\gamma(n, Q_{n-1})$ and $\Gamma(n, Q_{n-1})$ from $\gamma(n, B_{n-1})$ and $\Gamma(n, B_{n-1})$, respectively. Here we include a simple proof of the following slightly weaker bound for $\Gamma(n, Q_{n-1})$.

Theorem 6. We have

$$\Gamma(n, Q_{n-1}) \ge \sqrt{\frac{2(n-1)}{n+1}},$$
(26)

with equality holding iff there exists an Hadamard matrix of order n + 1.

Proof. Let $d = \Gamma(n, Q_{n-1})$. Then S_n can pass through a hole of dQ_{n-1} by translation. So (2) and (1) imply

$$\operatorname{width}(dQ_{n-1}) = \frac{d}{\sqrt{n-1}} \ge \operatorname{width}(S_n) \ge \sqrt{\frac{2}{n+1}},$$

which gives (26). Moreover, if $S_n \subset \ell Q_n$, then we have

$$\ell \geq \frac{\sqrt{n}}{\sqrt{n-1}}\Gamma(n,Q_{n-1}) \geq \sqrt{\frac{2n}{n+1}}.$$

It is known that $\ell = \sqrt{(2n)/(n+1)}$ iff there exists an Hadamard matrix of order n+1, see e.g., [13].

Problem 2. *Do we have* $\gamma(n, Q_{n-1}) = \Gamma(n, Q_{n-1}) = \sqrt{2} - o(1)$?

3.4. **Holes having minimum volumes.** In [7], the following problem is posed.

Problem 3. Find the minimum (n-1)-dimensional volume of a compact hole in a hyperplane of \mathbb{R}^n such that S_n can pass through it.

The following variation seems to be easier.

Problem 4. Find the minimum (n-1)-dimensional volume of a compact hole in a hyperplane of \mathbb{R}^n such that S_n can pass through it by translation perpendicular to the hyperplane.

We list possible candidates. Put $\sqrt{2}S_n$ in \mathbb{R}^{n+1} so that the vertices are e_1, \dots, e_{n+1} , where e_i is the *i*-th standard base of \mathbb{R}^{n+1} .

Project the $\sqrt{2}S_n$ in the direction of

$$(1,-1,\overbrace{0,\ldots,0}^{n-1}).$$

Then the hole created by the shadow has volume

$$\frac{1}{(n-1)!}\sqrt{\frac{n+1}{2}}. (27)$$

Next suppose that *n* is odd and write n = 2k + 1. Project the $\sqrt{2}S_n$ in the direction of

$$(\overbrace{1,\ldots,1}^{k+1},\overbrace{-1,\ldots,-1}^{k+1}).$$

Then the corresponding hole has volume

$$\frac{2}{(n-1)!}. (28)$$

Finally suppose that *n* is even and write n = 2k. Project the $\sqrt{2}S_n$ in the direction of

$$(\underbrace{k+1,\ldots,k+1}^{k},\underbrace{-k,\ldots,-k}^{k+1}).$$

In this case, the volume of the hole is

$$\frac{2}{(n-1)!}\sqrt{\frac{n}{n+2}}. (29)$$

Among the above examples, the smallest one is (27) for $n \le 5$. For n = 7, (27) and (28) coincide. For the other cases, (28) and (29) give the smallest one.

ACKNOWLEDGMENT

We thank Keith Ball, Matthieu Fradelizi, and Jiří Matoušek for their valuable comments.

REFERENCES

- [1] I. Bárány, H. Maehara, N. Tokushige. Tetrahedra passing through a triangular hole. *submitted*.
- [2] R. Brandenberg, T. Theobald. Radii of simplices and some applications to geometric inequalities. *Beiträge Algebra Geom.* 45 (2004) 581–594.
- [3] R. Brandenberg, T. Theobald. Radii minimal projections of polytopes and constrained optimization of symmetric polynomials. *Adv. Geom.* 6 (2006) 71–83.
- [4] H. T. Croft, K. J. Falconer, R. K. Guy. Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
- [5] H. E. Debrunner, P. Mani-Levitska. Can you cover your shadows? *Discrete Comput. Geom.* 1 (1986) 45–58.
- [6] M. Fradelizi. Hyperplane sections of convex bodies in isotropic position. *Beiträge Algebra Geom.* 40 (1999) 163–183.
- [7] J. Itoh, T. Zamfirescu. Simplices passing through a hole, J. Geom. 83 (2005) 65–70.
- [8] J. Itoh, Y. Tanoue, T. Zamfirescu. Tetrahedra passing through a circular or square hole, *Rend. Circ. Mat. Palermo* (2) *Suppl. No.* 77 (2006) 349–354.
- [9] G. Kós, J. Törőcsik. Convex disks can cover their shadow. *Discrete Comput. Geom.* 5 (1990) 529–531.
- [10] M.D. Kovalyov, *Covering a convex figure by its images under dilataion*, Ukrainskiy Mat. Sbornik, 27/84 (1984), 57–68. (in Russian)
- [11] H. Maehara, I. Ruzsa, N. Tokushige. Large regular simplices contained in a hypercube. *Period. Math. Hungarica*, 58 (2009) 121–126.
- [12] S. V. Pukhov. Kolmogorov diameters of a regular simplex. *Mosc. Univ. Math. Bull.* 35 (1980) 38–41.
- [13] I. J. Schoenberg. Regular simplices and quadratic forms. *Journal of the London Mathematical Society* 12 (1937) 48-55.
- [14] P. Steinhagen. Über die grösste Kugel in einer konvexen Punktmenge. *Abh. Math. Sem. Hamburg*, 1 (1921) 15–26.
- [15] B. Weißbach. Über die senkrechten Projektionen regulär Simplexe. *Beitr. Algebra Geom.* 15 (1983) 35–41.
- [16] T. Zamfirescu. How to hold a convex body, Geometrae Dedicata 54 (1995) 313–316.
- [17] K. Zindler. Über konvexe Gebilde, Monatsh. Math. Physik 30 (1920) 87–102.

Research Institute of Educational Development, Tokai University, 2-28-4 Tomigaya, Shibuya-ku, Tokyo, 151-8677, Japan

E-mail address: maehara@tokai-u.jp

COLLEGE OF EDUCATION, RYUKYU UNIVERSITY, NISHIHARA, OKINAWA, 903-0213 JAPAN

E-mail address: hide@edu.u-ryukyu.ac.jp