REGULAR SIMPLICES PASSING THROUGH HOLES
HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

ABSTRACT. What is the smallest circular or square wall hole that a reg-
ular tetrahedron can pass? This problem was solved by Itoh—Tanoue—
Zamfirescul@. Then, we settled the case of equilateral triangular hole in
[. Motivated by these results, we consider the corresponding problems
in higher dimensions. Among other results, we determine the minimum
(n—1)-dimensional ball hole that a unit regulasimplex can pass. The
diameter of the minimum hole goes tg/2/4 asn tends to infinity.

1. INTRODUCTION

For a given convex body, find a small hole in a wall through which the
convex body can pass. This type of problems goes back to Zifdlem
1920, who considered a convex polytope which can pass through a fairly
small circular holes. A related topic known as Prince Rupert’s problem can
be found in[]. Here we concentrate on the case when the convex body is
a regulam-simplex.

For a compact convex body C R", let diam(K) and width(K) denote
the diameter and width dK, respectively. Fod > 0O let dK denote the
convex body of diameted x diam(K) and homothetic t&. By S, Qp,
andB, we denote the-dimensional simplex, hypercube, and ball of unit
diameter, respectively. ThuS, has side length 1Q, has side length 4,/n,
andBy has radius 12.

Let © be an(n— 1)-dimensional convex body with digi®) = 1 lying
on a hyperplane iR", which we will call a hole-shape. Fora> 0, let
H be the hyperplane containird®. The hyperplandd dividesRR" into
two (open) half spaced ™ andH~. We want to pusts, fromH" toH~
throughd®. In this situation, we are interested in the following two types
of minimum diametery andl” of hole-shap®, defined by

y(n,©) :=min{d : §, can pass through the hai®},
M(n,®):=min{d: S, C (dO) x R}.
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2 HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

Since S, can pass through a ho# by translation perpendicular to the

hyperplane containing the hole df> I'(n,®), we havey(n,©) <T'(n,0).
As we set the diameters @, B, equal to 1, we have wid{®Q,) = 1/y/n

and width(B,) = 1. Steinhageril4] determined the width 08, as follows.

—2_ if nis odd

width(S,) = { VL (1)
&) { n%ﬂig) if nis even

If S, can pass through a hati® by translation, then
width(d®) > width(S,) = (vV2—o0(1))/v/n. 2)

Letn> 3. If §, can pass through a hot®, thend > width(S) = /3/2.
This givesy(n,®) > /3/2.

The following result is due to PukholL?] and WeiRbackKIg] for n odd,
and Brandenberg and TheobdRiB] for n even (and odd).

20-1) it nis odd
F(n,Bn-1) = lel if nis even ©
2n(n+1)

In the next section, we review some result®h Then, in sectio@we
consider the problems in higher dimensions. Among other results, we will
show that

r!im y(n,S-1) = r!im rn,S-1) =1,
lim y(n,Bn-1) = 3v'2/4, lim I'(n,Bn-1) = V2,
and
3v2/4< lim y(nQn-1) <2, vV2<limM(n Q1) <2

It would be also interesting to consider problems concerning a general
simplex of diameter 1 passing through holes.

2. IN THE 3-SPACE

Itoh, Tanoue, and Zamfiresdg][proved
y(37 QZ) = r(37 QZ) = 17 V(sa BZ) =2r= 089567 (4)
wherer € (0,1) is a unique root of the equation 266- 9x* +38x> —9=0.

We note thay/(3,B2) < I'(3,B2) =1.
In [, the following is proved.

V3.S) =T(3.5) = ”ff

Zamfirescull§] proved that most convex bodies can be held by a circular
frame. Usingld), one can show that a square frame of diagonal ledgth

=0.9855..
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can holdS; iff 1 /v/2 < d < 1, and a circular frame of diametercan hold

Siff 1/v2 < d < y(3,B), see.
On the other hand, it is shown id][that

no triangular frame can hold a convex body. (5)

This is a special property for triangular frames, and in fact, every non-
triangular frame holds some tetrahedrorRify see]l.

According to Debrunner and Mani-Levitskf][ Janos Pach asked the
following: “If a convec body (say, a stone) can be thrust through a convex
hole in a wall by a linear motion (without twisting) then can this be done
by a movement perpendicular to the wall?” The answer is positive, and
it is proved in [f] that any section of a right cylinder by a plane contains
a congruent copy of the base, see ald,[[@]. This together with[{)
implies the following: if a convex body, not necessarily smooth, can pass
through a triangular hole, then the convex body can pass through the hole
by translation perpendicular to the wall, sk [

ltoh and Zamfiresciig] found a holed on the plane ifR3 with diam(®) =
width(S) = v/3/2 and widtf®) = width(S3) = v/2/2, such thatSz can
pass througl®.

3. HIGHER DIMENSIONS

3.1. Holes of shapes, ;. Itis known from [B,[9] that any plane section of

a right triangular prism contains a congruent copy of a base of the prism.
The situation in higher dimension is different. [H][it is proved that if

n > 3, then for any right cylinder with convex polytope base, one can find
a hyperplane section which does not contain a congruent copy of the base.
Nevertheless, we have the following.

Theorem 1. Let K ¢ R" be a compact convex body, and Igt ; be a
general(n— 1)-simplex. If K can pass through the hdlg_1, then this can
be done by translation only.

Proof. First consider the case thitis a smooth convex body, that is, the
case that, for every point on the boundaryK of K, there is a unique
supporting hyperplane df tangent toK atx. LetAy,_1 = p1...pn be the
hole on the hyperplane, andH, ,H_ be the half spaces such thdf N
H_ =H. Let f : Kx[0,1] — R" be a continuous motion df such that
f(K,0) cH_, f(K,1) cHy,andHN f(K,t) CAp_1 forall0<t < 1. We
may further suppose that, forOt < 1, f(K,t) touchs all facets of\,_1
except the facet opposite to the verggx Let f(K,t)_ = f(K,t)nH_ and
f(K,t)+ — f(K,t) ﬂ H+.

Now, for 0<t <1 and 1<i < n, let H(i,t) denote the supporting hy-
perplane off (K,t) containing the facet of\,_; opposite top;. Then the
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4 HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

intersectior.(t) = H(L,t)NH(2,t)N---NH(n—1,1) is aline. LetH(n,t)
be the hyperplane parallel to the lihé) and containig the facet @f,_1 op-
posite topn. Then then hyperplane#d(1,t),...,H(n,t) determine a prism
P(t) that intersect$l atA,_;. Note that, foreach ¥i <nand O<t <1,
f(K,t) andP(t) lie in the same side dfi(i,t). Furthermore, sincé (K,t)
is convex, one off (K,t)_, f(K,t); lies in the same side dfi(n,t) asP.
Therefore, one of (K,t)_, f(K,t) is contained irP(t). We may suppose
that f(K,t). C P(t) fort < 4, andf(K,t)_ C P(t) fort > 1— 9§, whered
is some fixed small positive constant.

Letto=max{t : f(K,t); CP(t),0 <t <1-4}. Then, for eveng > 0,
f(K,to+¢€)— C P(to+ ). Sincef(K,t) and each hyperpland(i,t) (1 <
i <n) move continuously oty this implies thaff (K,tg) - C P(tg), and hence
f(K,to) C P(tp). Thus the prisnP(tp) contains a congruent copy Kf, and
henceK can pass through,_; by a translation.

Next, let us consider the case that the convex biddig not smooth.
We may suppose th& contains the origin 0 oR". Forr > 0, let B(r)
denote the ball with center O and radius Then, for each integédt > 0,
K 4+ B(1/k) is a smooth convex body, andKf can pass through,_1, then
K +B(1/k) can pass through the hole @+ 2/k)An_1. Hence there is a
prismB containingK +B(1/k) andRNH = (1+2/k)An+1, whereH is the
hyperplane containind. Letrg > diam(K), and putXx = RN B(rg). Then,
in {X« : k=1,2,...}, Blaschke selection theorem guarantees the existence
of a subsequencgXy, } and a convex set., such thaiX, converges tXx
in the Hausdorff metric. ThiX., determines a prisi, with P,NH =An_1
such thaK C P,. HenceK can pass through,_1 by a translation. O

Problem 1. Is it possible to take the translation in Theor@perpendicular
to the wall? Or equivalently, dg(n,S,-1) andl"(n,S,-1) coincide?

VNS, 1) > {w/l - if nis odd

Theorem 2.

1 . .
1—m if nis even

Proof. Suppose thag, can pass through the hole @§, 1. By Theorentl],
this can be done by translation only. Thus we can af@yith (@), which
implies the desired inequality. O

The above result together wifin, S,_1) < T'(n,S,-1) < 1 gives
r!im y(n,S-1) = r!im rnS-1)=1

If the simplex does pass through a hole, then in particular the volume of
some central hyperplane section of that simplex is no bigger than the vol-
ume of the hole. 3i Matousek suggested showingn, S,—1) — 1 by using
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this simple observation. Then, Matthieu Fradelizi told us that a resi@ in [
implies that the volume of the smallest central hyperplane secti& isf
more than vadlS,_1)/(2v/3), and this is enough for provingn, S, 1) — 1.
It is conjectured that the smallest central hyperplane sectid®, @ ob-
tained by a hyperplane parallel to a facet of the simplex.

Since the diameter of circumsphereSjfis /2(n— 1) /n, we have

r(n,S 1)y/2%Y >r(n By 1)

This together with[g) implies

r(nvs“lfl) > \/ 1_%_

fornodd. (Fomeven, Theorei@gives a better lower bound foi(n, S,-1).)
Actually S, can pass through a hole smaller than its facet.

Theorem 3.T(n,S,-1) < 1foralln> 2.

Before the formal proof, let us try the case- 3 to get a feel. Le§, =
AoA1Az, Ag = (0,1/2),A1 = (0,—1/2),A, = (+v/3/2,0), and letZ be the
right triangular prism with bas&A1A,. We put the unit regular tetrahedron
S3 = BpB1B»B3 in the prism, namely, we set

Bo=(0,1/2,0),B1 = (0,—1/2,0),B=(1/v/2,0,1/2),B3 = (1//2,0,—1/2).

Now we move the tetrahedron very slightly keeping it insigfeso that all
vertices are off the faces aP. This can be done by rotating the tetrahedron
along thex-axis, and push it in the direction gfaxis. This gives (3,S) <

1.

Proof. Forn > 2, let
&:%Al...%CRn
be a unit regulan-simplex with verticed\o, . .., A,. We may assume that
A = (0,%,...,x) e R"for0<i < n,
An=(h0,...,0) e R",
whereh=/(n+1)/(2n) is the height 0f5,. LetS,_1 be the facet spanned
by Ao, ...,An_1. We may assume that the centeiSyf ; coincides with the
origin.
Then we can construct a unit regular+ 1)-simplex

Svi1=BoBy - BnByi1 C R
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by setting
Bi = (A,0) e R™for0<i<n,
Bn= (k,0,...,0,1/2) ¢ R™1,
Bni1 = (k,0,...,0,—-1/2) e R"1,

wherek = \/h?—(1/4). Since 0< k < h we notice that this,,; is con-
tained in the prism? = S, x R. More precisely, two verticeB, andB,, 1
are interior points of#?, while a faceF = BoB;1 ---B,_1 is contained in a
facetS,_1 x R of 2.

We will show by induction omn that we can continuously move our
Shi+1 Inside the prism&? so thatS,;; will be contained inZ°, where
Z° denotes the interior o”. Namely, we will find a continuous func-
tion fny1:[0,1] x R — R™1 andty € (0,1) with fn11(0,S11) = Shi1
(the starting position) anéh1(t, S,11) € &2° for all't € (0,to].

For the base case, we take

fa(t,X,y,2) = (X+t,ycost — zsint, ysint + zcost),

namely, we rotate the regular tetrahedron alongxtais and push it in
the direction ofx-axis. Now letn > 3 and apply the induction hypothesis
to the (n— 1)-simplexF with the prism&”’ = F x R. Then we can find
a continuous functiorf, andty with the required properties, in particular,
fa(t,F) C (£')° fort € (0,t)]. We extendf, to define

fn+1(t7X07X17 s 7Xn) - (X0+t7 fn<t7X17 e 7Xn))~
Then we havefn1(0,S11) = Sty Tnr1(0,{Bn,Bni1}) € £2° and
fria(t,F) C (t,0,...,0) + (£')° for t € (O,tg).

Thus, we can choose 4 ty < t; such thatfn 1(t,Sy1) = fara(t,FU
{Bn,BrH_l}) C e@o fort € (O,to] |:|

3.2. Holes of shapeB,_1. We havel (n,B,_1) — v/2 asn— « by @). On
the other hand, we will show(n,B,_1) — 3v/2/4. Namely, rotation does
help for escaping through a round hole.

By a hyperdisk we mean am — 1)-ball sitting on a hyperplane iR".
We say that a hyperplarté cuts a line segmentsy if H separates and
y. A hyperdiskD C H is said to cut a line segmenry if H cutsxy andD
intersectxy. In this case, the intersection of the hyperdland the line
segmenky is a singleton. The radius of a hyperdisks denoted by (D).

Let S, C R" be a unit regualn-simplex with vertex se¥(S,). Choose
p €V(S,). By a proper partition, we mean to partiti®(S,) into three
nonempty set¥(S,) = {p} UXUY. Then,X andY are divided by a hyper-
plane. Letby, by be the barycenters of, Y, respectively. For & s< 1,
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let
Zs= (1—s)bx +sby.

This point divides the line segmebgby intos: 1—s. LetH, denote the
hyperplane containing ($,) \ {p}, and letl (X,Y,s) C Hp be the(n—2)-
dimensional flat passing through and perpendicular tbxby. For each
—1<t<1,let

_J@-t)p+tby  ifO<t<1,
) (A-|th)p+]tlbx if —1<t<O.

Let H(X,Y,s,t) denote the hyperplane obtained by rotathig around
[(X,Y,s) so that it comes to the position where it intersegbx or phy
at the pointw;. Since dim (X,Y,s) = n—2, it is possible to rotatéd,
aroundl(X,Y,s). We sometimes use a redundant notatig(X,Y,s) or
Hp(X,Y,s,t) to emphasize that is the chosen vertex.

Forx e X andy € Y, we notice thaH (X, Y,s,t) divides the edgay with
ratios: 1—s, and it divides the edgex or py with ratiot : 1 —t (resp.
|t|: 1—|t|) if t > O (resp. ift < 0). The radius of the smallest hyperdisk on
H(X,Y,st) that contains§, NH (X, Y,s,t) will be denoted by

r(1X],s,1),
which only depends ogt and|X]|, the cardinality ofX.

Lemma 1. Let V(S,) = {p} UXUY be a proper partition. Suppose that
D is a (p,X,Y)-hyperdisk, that is, D contains p, and D cuts all edges xy,
where xe X, ye Y. Then (|X|,s,0) <r(D) holds for somé® < s< 1.

Proof. For a(p,X,Y)-hyperdiskD, let Dyy denote the point wher® cuts
the edge connectinge X andy e Y. ForX’ ¢ X,Y' CY, let

d(D,X",Y") = {|x—Dxy| : xe X",y €Y'},
d(D,X",Y") = maxd(D,X’,Y") —mind(D, X', Y").

We define the irregularity dd by 6(D) := 6(D, X,Y). If (D) =0, namely,
if d(D,X,Y) = {s} for some 0< s< 1, then eaclD,y lies onH(X,Y,s,0)
andr(|X|,s,0) <r(D). So we may assume thatD) > 0. Letd be the in-
fimum of the irregularities ofp, X,Y)-hyperdisks with radius at mostD).
By applying Blaschke selection theorem, we can fir{gp&,Y)-hyperdisk
Do With r(De) < r(D) andd(D«) = &. Then, the following claim implies
thatdg = 0, which completes the proof of the lemma.

Claim 1. If 8(D) > O, then there is g p, X,Y)-hyperdisk D with r(D*) <
r(D) andd(D*) < &(D).
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Now we prove the claim by introducing an operation which rot&i¢e
getD*. Suppose that

0(D) =|a—Dgac| — |b— Dpg| > 0, (6)

wherea,b € X andc,d € Y. LetK be the hyperplane contianirig Then
the lineabor cdintersectK. By symmetry, we may assume that the lake
intersectK. LetL be the hyperplane that perpendicularly bisects the edge
ab, and letJ = KNL. Since dind =d — 2, we can rotat& aroundJ until it
comes to the position where the hyperplane becomes parallel to trebline
Let K* be the resulting hyperplane. LBt be the mirror image ob with
respect td_, and letB be the minimum ball containinp uD’. Finally let
D* = BNK*. Since the distance from the center®fo J(C K) is greater
than or equal to the distance between the cent®& afidK, it follows that
r(D*) <r(D).

We will show thatD* is a(p, X,Y)-hyperdisk withd(D*) < &(D). Let
x e X\ {a,b} andy € Y. SinceV($,)\ {a,b} lies onL, we haveDyy, €
DNL=DNKNL=DNJC D* andDyy = Dy This gives

5(D,X\ {a,b},Y) = 5(D*,X\ {a,b}.Y).

If x € {a,b} andy €Y, thenK* cuts the line segmeiidy,D;,, because both
D andD’ are (p, X,Y)-hyperdisks. Thus the intersection is insiBeand
we can write itDy,. We may assume that the lire intersectsK at the
extention beyond. SinceDz Dy, || aband two edge®3 Dy, andDayDpy
meet inside the equilaterdlaby, we havela— Day| > [a— D3y, and|b—

Dpy| < [b—Dgy|. Thus we have
o(D,{a,b},Y) > 6(D*,{a,b},Y).

If (D) =0(D,X\ {a,b},Y), then we have succeeded to decrease the num-
ber of pairs{ac,bd} which attain[g) by changing fronD to D*. So, by re-
peating this operation, we may assume &t bd} is the only pair which
attains[@), or equivalentlyd(D) > (D, X\ {a,b},Y). In this case, we have
o(D) > &(D*) as desired. O

For computation, it is convenient to put o8 in R"! instead ofR".
So letS, = pipz--- pnyr € R™T with p; = €j/v/2, whereg; is the j-th
standard base @&"*. Fix st € (0,1) and 1<i <n. LetV(S,)) = {p} U
X UY be a proper partition withX| = i. To compute (i, s,t), we look at the
hyperplaneH := Hp(X,Y,s,t). Recall thatox,by are the barycenters o,
Y, respectively. Fix two verticese X,y €Y. Letu be the intersection of
xyandH, and leta = |u— z|, wherezs = (1 — s)bx + sby. Then we have

202 = (1—3)2(1—71)+s2(1—%). (7)



REGULAR SIMPLICES PASSING THROUGH HOLES 9

Let v be the intersection opy andH, and letf3 = |v—w/|, wherew; =
(1—t)p+tby. Then we have
1
Notice that the distances, 3 are independent of the choices»¥. Also
one can see that the two linag andvw are both perpendicular tw.
The distanc@ = |zs— w;| satisfies
1-5)? —t)?

2)\2:@+(1—t)2+%. (9)
Let D be the smallest hyperdisk dth that containss,NH, and leto be its
center. Thero is on the line segmemtw;, andju—o| = |[v—o| =r(i,st).
Let { = |zs—0o|. Then, looking at two right triangle&ouz and Aovw,
we haver (i,s,t)? = a®+{? = (A — {)? + B2. This gives{ = (a? — % —
A?%)/(2A), and

1
: 2_ 2, L 42 2, 22

r(ii,st)*=a +4)\2()\ ac+ ). (10)
By substituting[@), @), @ into ({0J), we can rewrite (i,s,t)? in terms of
s,t,i (andn) only. We record a special case for later use:

i(n—i)(?—s+1)?

(1-9s)?n+ (n+2s—1)i —i?’

Lemma 2. LetV(S,) = {p} UXUY be a proper partition withX| =i, and
let0 < s< 1. Then we have(f,s;t) <r(i,s0) forallt € [s—1,5].

2r(i,s,0)%2 = (11)

Proof. First assume that & t <s. Let D’ be the hyperdisk with center
onH(X,Y,s,0) that is obtained by rotatin® aroundi (X,Y,s) through the
angle/wizsp. Notice thao' is on the line segmentp, and{u,zs} c DND".
Sincer(i,s,t) =r(D) = Ju— 0|, to showr(i,s;t) < r(i,s,0) it suffices to
showp ¢ D/, or equivalently|p—o'| > r(D’) =r(D).

Recall thatr = ju—z|, B=|v—W|, A = |zs— W], { = |z—0| =|z5— 0|,
andjwg —o| =A — (. Letn = |p—w|.

In Apbxby, the edgebxby is the shortest one. In fact, we hajye—
bx|? = 3(1+ §), [p—bv|? = 5(1+ ), and |bx — by[? = 3(7 + 7).
HenceZbxpby < /3. Sincezws || bx p, we haveZzowip > ZLzgwsp >
211/3. Looking atAzsw p, we get|p — zg|> > A2 +n?+An. Thus we have

p—0|=|p—2z|—|zs— 0| > VA%2+n?+An—¢. (12)

Using A pvw ~ A pyby, we have
V—w| =tly—by|=5(1—- %) < 5(1+55) =tlp—by| = [p—w| =1,
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which implies
r(D)?=v—o*=v—w/>+|w—of <n®+(A-7)>  (13)

Since 0<t < s< 1, it follows from (@) and @) thatju—z| =a >
B = |v—w|. Then looking at two trianglea\ouz and Aovw having hy-
potenuses of the same length (D)), we get|zs— o] < |w; — 0|, that is,

20 <A. (14)
By (12 (13 and [L4), we have
[p—0?=r(D)?> (VA2+n2+An—0)* = (n*+ (A —{)?)
=An—20(VA2+n2+An—A)
>AA+n—vA2+n2+4An) >0,

as desired.

Next assume that—1 <t < 0. By comparing two proper partitiod$} U
XUY and{p} UX'UY’, whereX' =Y andY’ = X, we haver (|X|,s,t) =
r(|X’|,1—s,—t,). Then, using the inequality for& -t <1-s< 1, we
haver(i,s,t) =r(n—i,1—s,—t) <r(n—i,1—s,0) =r(i,s,0), as desired.

O
Lemma 3. For 0 < s<1/2and m= |n/2|, we have
r(m,s,0) = max{r(i,s,0) : 1 <i <m}.
Proof. By (I1), we have

0 . N1 N2
Z (2 2y _ =2 %2
where
Ny = (£ —s+1)2,
Ny = (1—2s)i%—2n(1—5)% +n?(1—9)?,
D=(1-9°%n+((n—i) - (1—29))i.
We will show thatr(i,s,0) is an increasing function af It is easy to see
thatN; /D > 0. So, it suffices to shom, > 0. Fixs,n, and letf(i) := Na.
If s=1/2, thenf(i) =n(n—2i)/4> 0, as desired. 1§< 1/2, thenf(i)
is a quadratic function dfwith positive coefficient foi?. Sincef (i) takes
minimum ati = n(1—s)?/(1—2s) > n/2 andf(n/2) = n?(1—2s)/4 > 0,
we can conclude thdt(i) > 0 for 1<i <n/2. O

Lemma 4. Let n be even and let m n/2. Then we have
min{r(m,s,0) :s€ [0,1]} =r(m,1/2,0), (15)
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and

3/ 2n
r(m1/2,0) =g ] (16)

Proof. By (1) we have

i(r(n/z,s, 0)2) = —n(1—2s)(® —s+1)(28* — 25+ n) |
Js (452 —4s+n+2)2
which implies [[5). By (11) we have[L§). O
Lemma 5. Let n be odd and let i |n/2]. Let $ € (0,1) be a unique real
root of a the cubic equation
a3 —6(n+1)X2+2(n>+n+2)X —n?>+1=0. (17)
Then we have
min{r(m,s,0) : s€ [0,1]} =r(m,sp,0), (18)
and
max{r(m,s,s) : s€ [s,1/2]} =r(m,sp,o)- (19)
Moreover, (m,so,0)? is a unique real root of the following cubic equation
with integral coefficients:
2048 n+1)n3X3 + apX? + a;X +ag = 0, (20)
where
ag = —9(n’ —1)?(n* — 4n®+ 2n + 4n+ 13),
a; = 16(n? — 1)(2n® — 6n° — 15n* + 38n° 4 42n? + 48n — 29),
ap = 64(8n° — 8n° — 41n* — 28n% — 10n? + 360+ 27).

Proof. We start with[[1). Then we get[18) by computing%(r(m, s,0)?).
Moreover, it follows from [[7) that 1/2—1/n® < sp < 1/2 forn > 3. In

fact, we have . 3 3
—4
== = . 21
By (I0) we have 2(m,s,s)? = (28% — 2s+1)m/(1+m), which implies [9.
Finally we outline how to show thatm, sg,0)? satisfies[20). This can
be done by direct computation (with aid of computer). Bf)(we have

B m(1+m)(s?> —s+1)?
2r(m,s,0)2 = m+ (1—s2+2m(—s+1)

The numerator of (m,sp,0)? is a biquadratic polynomial of, and one

can reduce it to a quadratic polynomial usifig)( Substitute the reduced

r(m,sp,0)? into 20), and reduce these fractions to a common denominator.

Then one can check that the numerator vanishes by reducing it dsihg (
O

(22)
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Define

(23)

¢ 1/2 ifniseven
" |sy ifnisodd

Lemma 6. Let m= |n/2|, and letS,) = {p} UXUY be a proper parti-
tion with i = |X| <m. Then $NHp(X,Y,s",t) is contained in a hyperdisk
of radius (m,s*,0) for all t € [s" —1,s'].

Proof. We haver (i,s*,t) <r(i,s",0) <r(m,s*,0), where the first inequality
follows from Lemmd2, and the second one from Lem{8a O
Theorem 4.Let m= |n/2|, and define’sby (3. Then we havg(n,B,_1) =
r(m,s*,0).
Forn = 2m, it follows from (18) that
3 1 3 5 4
r(m,1/2,0)—4—\/§(1—%+w—r6r]3+0(n )) (24)

On the other hand, far = 2m+ 1, it follows from £0) that
3 1 3 13 _a
r(m,So,O)—m(l—%+W—rW+O(n )) (25)
One can also gePB) by substituting[21) directly into 22). By Theoreni
with (16), 24 and 9, we have the following.

Corollary 5.
3 /[ 2n ifni
3. /2n if nis even,
VnBn1) =133V L, o
/i -2+ 0(n ) ifnis odd,
and N
_ 3v2
i, V(M Bn-1) = =4

Proof of Theorerdl Let D be a hyperdisk on a hyperplaneli# through
which S, can pass. We may suppose that the vertigego, ..., pnr1 Can
pass througtD one by one in this order. (If this seems to be impossible,
then by replacind® with a hyperdisk of radius(D) + €, this would be-
come possible, where > 0 can be chosen arbitrarily small.) Consider the
moment wherpn,, 1 passes through. By Lemmad, r(D) + ¢ is at least
r(m,s,0) for some O< s < 1, which is at least(m,s*,0) by (I5) and [L9).
Thusr(D) + & > r(m,s*,0). Sincee can be chosen arbitrarily small, we
haver(D) > r(m,s*,0), and hence/(n,B,_1) > 2r(m,s",0).

Next we showy(n,Bn_1) < 2r(m,s*,0). Instead of pushin, through
the hole, we fix oulS, and move the hyperplane containing the hole. Let
D be the hyperdisk of radiugm,s*,0) in the moving wall hyperplane. Let
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V(S’I) = {plv R pn+l}1 X = {plv SRR pi}! anin = {pi+27 sy pn+1}' Since
{pPi+2} UXi11UYi;1 is also a proper partition, we haitfy, , (X,Y;,s",s") =
Hpi+2(xi+17Yi+1; 8*7 s — 1)
LetHi = H(X,Y;,s",s" — 1). Suppose that our ho[® sits inH; for some
1 <i <m. By rotating this wall hyperplane aroundX;,Y;,s*), we get
H(X,Yi,s*,s*) = Hi+1. By Lemmdg, we may assume that, in this rotation
process, the intersection of the fix&dand the wall hyperplane is always
contained irD. Namely, we can move the wall hyperplane frétnto Hi 1
so that the intersection &, and the wall is always contained in the hole.
Therefore, starting frortl1, we can send the wall hyperplane to the po-
sition of Hp. 1. If nis even, then in the process frafy, to Hy. 1, we get
H (Xm, Ym, 1/2,0). This hyperplane divide§, into two parts that are mu-
tually congruent, and we are done (by repeating the same procedure in the
reverse order). Ifis odd, then by translatingm. 1 = H(Xm, Ym, S",S*), we
get H(Xm, Ym,1/2,1/2), which dividesS, into mutually congruent parts.
Moreover, by[[9), the intersection 0§, and the hyperplane is always con-
tained inD in the process of this translation. This completes the proiof.

3.3. Holes of shapeQ,,_1. In [[I]] the following is proved: for everg > 0
there is arN such that for every > N one has

SiC(2+€)Qn.
This gives
rlimoor(n, Qn-1) <2

SinceQp_1 C Bn_1, we get lower bounds foy(n,Qn—1) andl" (n,Qn-_1)
from y(n,Bn_1) andl"(n,B,_1), respectively. Here we include a simple
proof of the following slightly weaker bound fér(n, Qn_1).

Theorem 6. We have

2(n—1)
r(”?anl) Z n-l—l 9

with equality holding iff there exists an Hadamard matrix of ordef h

(26)

Proof. Letd =T'(n,Qn_1). Then$S, can pass through a hole df),_; by
translation. SdZ) and ) imply

4 width(s) > /—2-

width(dQy_1) = =7

=

n J—
which gives[28). Moreover, ifS, C /Qy, then we have

/N /[ 2n
> mr(naQn—l)Z m
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It is known that? = /(2n)/(n+ 1) iff there exists an Hadamard matrix of
ordern+1, see e.g.[13. O
Problem 2. Do we havey(n,Q_1) =I(n,Qn_1) = vV2—0(1)?

3.4. Holes having minimum volumes. In [, the following problem is
posed.

Problem 3. Find the minimum(n — 1)-dimensional volume of a compact
hole in a hyperplane dR" such that § can pass through it.

The following variation seems to be easier.

Problem 4. Find the minimum(n — 1)-dimensional volume of a compact
hole in a hyperplane dR" such that § can pass through it by translation
perpendicular to the hyperplane.

We list possible candidates. Pyf2S, in R"1 so that the vertices are
€1, ...,ens1, Whereg is thei-th standard base &,
Project they/2S, in the direction of
n—1
—
(1,-1,0,...,0).
Then the hole created by the shadow has volume

1 [n¥1
(n—nrV 2

Next suppose that is odd and writen = 2k+ 1. Project the/2S, in the
direction of

(27)

k+1 k+1
(1,...,1,-1,...,-1).
Then the corresponding hole has volume
2
—_— 28
(n—1)! (28)

Finally suppose that is even and writen = 2k. Project they/2S, in the

direction of
K k+1

(k+1,... k+1,~k,...,—K).
In this case, the volume of the hole is
2 n
(n—1)'Y n+2
Among the above examples, the smallest onEB for n < 5. Forn=7,

(27 and B8 coincide. For the other caseBg and P9 give the smallest
one.

(29)
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