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ABSTRACT. What is the smallest circular or square wall hole that a reg-
ular tetrahedron can pass? This problem was solved by Itoh–Tanoue–
Zamfirescu [8]. Then, we settled the case of equilateral triangular hole in
[1]. Motivated by these results, we consider the corresponding problems
in higher dimensions. Among other results, we determine the minimum
(n−1)-dimensional ball hole that a unit regularn-simplex can pass. The
diameter of the minimum hole goes to 3

√
2/4 asn tends to infinity.

1. INTRODUCTION

For a given convex body, find a small hole in a wall through which the
convex body can pass. This type of problems goes back to Zindler [17] in
1920, who considered a convex polytope which can pass through a fairly
small circular holes. A related topic known as Prince Rupert’s problem can
be found in [4]. Here we concentrate on the case when the convex body is
a regularn-simplex.

For a compact convex bodyK ⊂ Rn, let diam(K) and width(K) denote
the diameter and width ofK, respectively. Ford > 0 let dK denote the
convex body of diameterd× diam(K) and homothetic toK. By Sn,Qn,
andBn we denote then-dimensional simplex, hypercube, and ball of unit
diameter, respectively. Thus,Sn has side length 1,Qn has side length 1/

√
n,

andBn has radius 1/2.
Let Θ be an(n− 1)-dimensional convex body with diam(Θ) = 1 lying

on a hyperplane inRn, which we will call a hole-shape. For ad > 0, let
H be the hyperplane containingdΘ. The hyperplaneH divides Rn into
two (open) half spacesH+ andH−. We want to pushSn from H+ to H−

throughdΘ. In this situation, we are interested in the following two types
of minimum diametersγ andΓ of hole-shapeΘ, defined by

γ(n,Θ) := min{d : Sn can pass through the holedΘ},
Γ(n,Θ) := min{d : Sn ⊂ (dΘ)×R}.
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2 HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

SinceSn can pass through a holedΘ by translation perpendicular to the
hyperplane containing the hole iffd ≥ Γ(n,Θ), we haveγ(n,Θ) ≤ Γ(n,Θ).

As we set the diameters ofQn, Bn equal to 1, we have width(Qn) = 1/
√

n
and width(Bn) = 1. Steinhagen [14] determined the width ofSn as follows.

width(Sn) =


√

2
n+1 if n is odd,√
2n+2

n(n+2) if n is even.
(1)

If Sn can pass through a holedΘ by translation, then

width(dΘ) ≥ width(Sn) = (
√

2−o(1))/
√

n. (2)

Let n≥ 3. If Sn can pass through a holedΘ, thend ≥ width(S2) =
√

3/2.
This givesγ(n,Θ) ≥

√
3/2.

The following result is due to Pukhov [12] and Weißback [15] for n odd,
and Brandenberg and Theobald [2, 3] for n even (and odd).

Γ(n,Bn−1) =


√

2(n−1)
n+1 if n is odd,

2n−1√
2n(n+1)

if n is even.
(3)

In the next section, we review some results inR3. Then, in section3 we
consider the problems in higher dimensions. Among other results, we will
show that

lim
n→∞

γ(n,Sn−1) = lim
n→∞

Γ(n,Sn−1) = 1,

lim
n→∞

γ(n,Bn−1) = 3
√

2/4, lim
n→∞

Γ(n,Bn−1) =
√

2,

and

3
√

2/4≤ lim
n→∞

γ(n,Qn−1) ≤ 2,
√

2≤ lim
n→∞

Γ(n,Qn−1) ≤ 2.

It would be also interesting to consider problems concerning a generaln-
simplex of diameter 1 passing through holes.

2. IN THE 3-SPACE

Itoh, Tanoue, and Zamfirescu [8] proved

γ(3,Q2) = Γ(3,Q2) = 1, γ(3,B2) = 2r = 0.8956..., (4)

wherer ∈ (0,1) is a unique root of the equation 216x6−9x4+38x2−9= 0.
We note thatγ(3,B2) < Γ(3,B2) = 1.

In [1], the following is proved.

γ(3,S2) = Γ(3,S2) =
1+

√
2√

6
= 0.9855...

Zamfirescu [16] proved that most convex bodies can be held by a circular
frame. Using (4), one can show that a square frame of diagonal lengthd
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can holdS3 iff 1/
√

2 < d < 1, and a circular frame of diameterd can hold
S3 iff 1/

√
2 < d < γ(3,B2), see [8].

On the other hand, it is shown in [1] that

no triangular frame can hold a convex body. (5)

This is a special property for triangular frames, and in fact, every non-
triangular frame holds some tetrahedron inR3, see [1].

According to Debrunner and Mani-Levitska [5], Janos Pach asked the
following: “If a convec body (say, a stone) can be thrust through a convex
hole in a wall by a linear motion (without twisting) then can this be done
by a movement perpendicular to the wall?” The answer is positive, and
it is proved in [5] that any section of a right cylinder by a plane contains
a congruent copy of the base, see also [10], [9]. This together with (5)
implies the following: if a convex body, not necessarily smooth, can pass
through a triangular hole, then the convex body can pass through the hole
by translation perpendicular to the wall, see [1].

Itoh and Zamfirescu [7] found a holeΦ on the plane inR3 with diam(Φ)=
width(S2) =

√
3/2 and width(Φ) = width(S3) =

√
2/2, such thatS3 can

pass throughΦ.

3. HIGHER DIMENSIONS

3.1. Holes of shapeSn−1. It is known from [5, 9] that any plane section of
a right triangular prism contains a congruent copy of a base of the prism.
The situation in higher dimension is different. In [5], it is proved that if
n > 3, then for any right cylinder with convex polytope base, one can find
a hyperplane section which does not contain a congruent copy of the base.
Nevertheless, we have the following.

Theorem 1. Let K ⊂ Rn be a compact convex body, and let∆n−1 be a
general(n−1)-simplex. If K can pass through the hole∆n−1, then this can
be done by translation only.

Proof. First consider the case thatK is a smooth convex body, that is, the
case that, for every pointx on the boundary∂K of K, there is a unique
supporting hyperplane ofK tangent toK at x. Let ∆n−1 = p1 . . . pn be the
hole on the hyperplaneH, andH+,H− be the half spaces such thatH+ ∩
H− = H. Let f : K × [0,1] → Rn be a continuous motion ofK such that
f (K,0) ⊂ H−, f (K,1) ⊂ H+, andH ∩ f (K, t) ⊂ ∆n−1 for all 0 < t < 1. We
may further suppose that, for 0< t < 1, f (K, t) touchs all facets of∆n−1
except the facet opposite to the vertexpn. Let f (K, t)− = f (K, t)∩H− and
f (K, t)+ = f (K, t)∩H+.

Now, for 0< t < 1 and 1≤ i < n, let H(i, t) denote the supporting hy-
perplane off (K, t) containing the facet of∆n−1 opposite topi . Then the
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intersectionL(t) = H(1, t)∩H(2, t)∩·· ·∩H(n−1,1) is a line. LetH(n, t)
be the hyperplane parallel to the lineL(t) and containig the facet of∆n−1 op-
posite topn. Then then hyperplanesH(1, t), . . . ,H(n, t) determine a prism
P(t) that intersectsH at ∆n−1. Note that, for each 1≤ i < n and 0< t < 1,
f (K, t) andP(t) lie in the same side ofH(i, t). Furthermore, sincef (K, t)
is convex, one off (K, t)−, f (K, t)+ lies in the same side ofH(n, t) asP.
Therefore, one off (K, t)−, f (K, t)+ is contained inP(t). We may suppose
that f (K, t)+ ⊂ P(t) for t < δ , and f (K, t)− ⊂ P(t) for t > 1−δ , whereδ
is some fixed small positive constant.

Let t0 = max{t : f (K, t)+ ⊂ P(t),δ ≤ t ≤ 1−δ}. Then, for everyε > 0,
f (K, t0 + ε)− ⊂ P(t0 + ε). Since f (K, t) and each hyperplaneH(i, t) (1 ≤
i ≤ n) move continuously ont, this implies thatf (K, t0)−⊂P(t0), and hence
f (K, t0) ⊂ P(t0). Thus the prismP(t0) contains a congruent copy ofK, and
henceK can pass through∆n−1 by a translation.

Next, let us consider the case that the convex bodyK is not smooth.
We may suppose thatK contains the origin 0 ofRn. For r > 0, let B(r)
denote the ball with center 0 and radiusr. Then, for each integerk > 0,
K +B(1/k) is a smooth convex body, and ifK can pass through∆n−1, then
K + B(1/k) can pass through the hole of(1+ 2/k)∆n−1. Hence there is a
prismPk containingK +B(1/k) andPk∩H = (1+2/k)∆n+1, whereH is the
hyperplane containing∆. Let r0 ≫ diam(K), and putXk = Pk∩B(r0). Then,
in {Xk : k = 1,2, . . .}, Blaschke selection theorem guarantees the existence
of a subsequence{Xkm} and a convex setX∞ such thatXkm converges toX∞
in the Hausdorff metric. ThisX∞ determines a prismP∞ with P∞∩H = ∆n−1
such thatK ⊂ P∞. HenceK can pass through∆n−1 by a translation. ¤

Problem 1. Is it possible to take the translation in Theorem1 perpendicular
to the wall? Or equivalently, doγ(n,Sn−1) andΓ(n,Sn−1) coincide?

Theorem 2.

γ(n,Sn−1) ≥


√

1− 1
n if n is odd,√

1− 1
n+2 if n is even.

Proof. Suppose thatSn can pass through the hole ofdSn−1. By Theorem1,
this can be done by translation only. Thus we can apply (2) with (1), which
implies the desired inequality. ¤

The above result together withγ(n,Sn−1) ≤ Γ(n,Sn−1) ≤ 1 gives

lim
n→∞

γ(n,Sn−1) = lim
n→∞

Γ(n,Sn−1) = 1.

If the simplex does pass through a hole, then in particular the volume of
some central hyperplane section of that simplex is no bigger than the vol-
ume of the hole. Jiřı́ Matoǔsek suggested showingγ(n,Sn−1) → 1 by using
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this simple observation. Then, Matthieu Fradelizi told us that a result in [6]
implies that the volume of the smallest central hyperplane section ofSn is
more than vol(Sn−1)/(2

√
3), and this is enough for provingγ(n,Sn−1)→ 1.

It is conjectured that the smallest central hyperplane section ofSn is ob-
tained by a hyperplane parallel to a facet of the simplex.

Since the diameter of circumsphere ofSn is
√

2(n−1)/n, we have

Γ(n,Sn−1)
√

2(n−1)
n ≥ Γ(n,Bn−1).

This together with (3) implies

Γ(n,Sn−1) ≥
√

1− 1
n+1

for nodd. (Forneven, Theorem2gives a better lower bound forΓ(n,Sn−1).)
Actually Sn can pass through a hole smaller than its facet.

Theorem 3. Γ(n,Sn−1) < 1 for all n ≥ 2.

Before the formal proof, let us try the casen = 3 to get a feel. LetS2 =
A0A1A2, A0 = (0,1/2),A1 = (0,−1/2),A2 = (

√
3/2,0), and letP be the

right triangular prism with baseA0A1A2. We put the unit regular tetrahedron
S3 = B0B1B2B3 in the prism, namely, we set

B0 =(0,1/2,0),B1 =(0,−1/2,0),B2 =(1/
√

2,0,1/2),B3 =(1/
√

2,0,−1/2).

Now we move the tetrahedron very slightly keeping it insideP so that all
vertices are off the faces ofP. This can be done by rotating the tetrahedron
along thex-axis, and push it in the direction ofx-axis. This givesΓ(3,S2) <
1.

Proof. Forn≥ 2, let

Sn = A0A1 · · ·An ⊂ Rn

be a unit regularn-simplex with verticesA0, . . . ,An. We may assume that

Ai = (0,∗, . . . ,∗) ∈ Rn for 0≤ i < n,

An = (h,0, . . . ,0) ∈ Rn,

whereh=
√

(n+1)/(2n) is the height ofSn. Let Sn−1 be the facet spanned
by A0, . . . ,An−1. We may assume that the center ofSn−1 coincides with the
origin.

Then we can construct a unit regular(n+1)-simplex

Sn+1 = B0B1 · · ·BnBn+1 ⊂ Rn+1

html#cite.F
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by setting

Bi = (Ai ,0) ∈ Rn+1 for 0≤ i < n,

Bn = (k,0, . . . ,0,1/2) ∈ Rn+1,

Bn+1 = (k,0, . . . ,0,−1/2) ∈ Rn+1,

wherek =
√

h2− (1/4). Since 0< k < h we notice that thisSn+1 is con-
tained in the prismP = Sn×R. More precisely, two verticesBn andBn+1
are interior points ofP, while a faceF = B0B1 · · ·Bn−1 is contained in a
facetSn−1×R of P.

We will show by induction onn that we can continuously move our
Sn+1 inside the prismP so thatSn+1 will be contained inP◦, where
P◦ denotes the interior ofP. Namely, we will find a continuous func-
tion fn+1 : [0,1]×Rn+1 → Rn+1 andt0 ∈ (0,1) with fn+1(0,Sn+1) = Sn+1
(the starting position) andfn+1(t,Sn+1) ⊂ P◦ for all t ∈ (0, t0].

For the base case, we take

f3(t,x,y,z) = (x+ t,ycost −zsint,ysint +zcost),

namely, we rotate the regular tetrahedron along thex-axis and push it in
the direction ofx-axis. Now letn ≥ 3 and apply the induction hypothesis
to the (n− 1)-simplexF with the prismP ′ = F ×R. Then we can find
a continuous functionfn andt ′0 with the required properties, in particular,
fn(t,F) ⊂ (P ′)◦ for t ∈ (0, t ′0]. We extendfn to define

fn+1(t,x0,x1, . . . ,xn) = (x0 + t, fn(t,x1, . . . ,xn)).

Then we havefn+1(0,Sn+1) = Sn+1, fn+1(0,{Bn,Bn+1}) ⊂ P◦ and

fn+1(t,F) ⊂ (t,0, . . . ,0)+(P ′)◦ for t ∈ (0, t ′0].

Thus, we can choose 0< t0 ≪ t ′0 such that fn+1(t,Sn+1) = fn+1(t,F ∪
{Bn,Bn+1}) ⊂ P◦ for t ∈ (0, t0]. ¤

3.2. Holes of shapeBn−1. We haveΓ(n,Bn−1)→
√

2 asn→ ∞ by (3). On
the other hand, we will showγ(n,Bn−1) → 3

√
2/4. Namely, rotation does

help for escaping through a round hole.
By a hyperdisk we mean an(n−1)-ball sitting on a hyperplane inRn.

We say that a hyperplaneH cuts a line segmentsxy if H separatesx and
y. A hyperdiskD ⊂ H is said to cut a line segmentxy if H cutsxy andD
intersectsxy. In this case, the intersection of the hyperdiskD and the line
segmentxy is a singleton. The radius of a hyperdiskD is denoted byr(D).

Let Sn ⊂ Rn be a unit regualrn-simplex with vertex setV(Sn). Choose
p ∈ V(Sn). By a proper partition, we mean to partitionV(Sn) into three
nonempty setsV(Sn) = {p}∪X∪Y. Then,X andY are divided by a hyper-
plane. LetbX, bY be the barycenters ofX, Y, respectively. For 0< s< 1,
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let

zs = (1−s)bX +sbY.

This point divides the line segmentbXbY into s : 1− s. Let Hp denote the
hyperplane containingV(Sn) \ {p}, and letI(X,Y,s) ⊂ Hp be the(n−2)-
dimensional flat passing throughzs and perpendicular tobXbY. For each
−1≤ t < 1, let

wt =

{
(1− t)p+ tbY if 0 ≤ t < 1,

(1−|t|)p+ |t|bX if −1≤ t < 0.

Let H(X,Y,s, t) denote the hyperplane obtained by rotatingHp around
I(X,Y,s) so that it comes to the position where it intersectspbX or pbY
at the pointwt . Since dimI(X,Y,s) = n− 2, it is possible to rotateHp
aroundI(X,Y,s). We sometimes use a redundant notationIp(X,Y,s) or
Hp(X,Y,s, t) to emphasize thatp is the chosen vertex.

For x∈ X andy∈Y, we notice thatH(X,Y,s, t) divides the edgexy with
ratio s : 1− s, and it divides the edgepx or py with ratio t : 1− t (resp.
|t| : 1−|t|) if t ≥ 0 (resp. ift < 0). The radius of the smallest hyperdisk on
H(X,Y,s, t) that containsSn∩H(X,Y,s, t) will be denoted by

r(|X|,s, t),

which only depends ons, t and|X|, the cardinality ofX.

Lemma 1. Let V(Sn) = {p}∪X ∪Y be a proper partition. Suppose that
D is a (p,X,Y)-hyperdisk, that is, D contains p, and D cuts all edges xy,
where x∈ X, y∈Y. Then r(|X|,s,0) ≤ r(D) holds for some0 < s< 1.

Proof. For a(p,X,Y)-hyperdiskD, let Dxy denote the point whereD cuts
the edge connectingx∈ X andy∈Y. ForX′ ⊂ X,Y′ ⊂Y, let

d(D,X′,Y′) = {|x−Dxy| : x∈ X′,y∈Y′},
δ (D,X′,Y′) = maxd(D,X′,Y′)−mind(D,X′,Y′).

We define the irregularity ofD by δ (D) := δ (D,X,Y). If δ (D) = 0, namely,
if d(D,X,Y) = {s} for some 0< s< 1, then eachDxy lies onH(X,Y,s,0)
andr(|X|,s,0) ≤ r(D). So we may assume thatδ (D) > 0. Letδ0 be the in-
fimum of the irregularities of(p,X,Y)-hyperdisks with radius at mostr(D).
By applying Blaschke selection theorem, we can find a(p,X,Y)-hyperdisk
D∞ with r(D∞) ≤ r(D) andδ (D∞) = δ0. Then, the following claim implies
thatδ0 = 0, which completes the proof of the lemma.

Claim 1. If δ (D) > 0, then there is a(p,X,Y)-hyperdisk D∗ with r(D∗) ≤
r(D) andδ (D∗) < δ (D).
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Now we prove the claim by introducing an operation which rotatesD to
getD∗. Suppose that

δ (D) = |a−Dac|− |b−Dbd| > 0, (6)

wherea,b∈ X andc,d ∈ Y. Let K be the hyperplane contianingD. Then
the lineabor cd intersectsK. By symmetry, we may assume that the lineab
intersectsK. Let L be the hyperplane that perpendicularly bisects the edge
ab, and letJ = K∩L. Since dimJ = d−2, we can rotateK aroundJ until it
comes to the position where the hyperplane becomes parallel to the lineab.
Let K∗ be the resulting hyperplane. LetD′ be the mirror image ofD with
respect toL, and letB be the minimum ball containingD∪D′. Finally let
D∗ = B∩K∗. Since the distance from the center ofB to J(⊂ K) is greater
than or equal to the distance between the center ofB andK, it follows that
r(D∗) ≤ r(D).

We will show thatD∗ is a (p,X,Y)-hyperdisk withδ (D∗) < δ (D). Let
x ∈ X \ {a,b} andy ∈ Y. SinceV(Sn) \ {a,b} lies onL, we haveDxy ∈
D∩L = D∩K∩L = D∩J ⊂ D∗, andDxy = D∗

xy. This gives

δ (D,X \{a,b},Y) = δ (D∗,X \{a,b},Y).

If x∈ {a,b} andy∈Y, thenK∗ cuts the line segmentDxyD′
xy, because both

D andD′ are (p,X,Y)-hyperdisks. Thus the intersection is insideB and
we can write itD∗

xy. We may assume that the lineab intersectsK at the
extention beyondb. SinceD∗

ayD
∗
by ∥ ab and two edgesD∗

ayD
∗
by andDayDby

meet inside the equilateral△aby, we have|a−Day| > |a−D∗
ay|, and|b−

Dby| < |b−D∗
by|. Thus we have

δ (D,{a,b},Y) > δ (D∗,{a,b},Y).

If δ (D) = δ (D,X \{a,b},Y), then we have succeeded to decrease the num-
ber of pairs{ac,bd} which attain (6) by changing fromD to D∗. So, by re-
peating this operation, we may assume that{ac,bd} is the only pair which
attains (6), or equivalently,δ (D) > δ (D,X\{a,b},Y). In this case, we have
δ (D) > δ (D∗) as desired. ¤

For computation, it is convenient to put ourSn in Rn+1 instead ofRn.
So let Sn = p1p2 · · · pn+1 ⊂ Rn+1 with p j = ej/

√
2, whereej is the j-th

standard base ofRn+1. Fix s, t ∈ (0,1) and 1≤ i < n. Let V(Sn) = {p}∪
X∪Y be a proper partition with|X|= i. To computer(i,s, t), we look at the
hyperplaneH := Hp(X,Y,s, t). Recall thatbX,bY are the barycenters ofX,
Y, respectively. Fix two verticesx∈ X, y∈Y. Let u be the intersection of
xyandH, and letα = |u−zs|, wherezs = (1−s)bX +sbY. Then we have

2α2 = (1−s)2(1− 1
i
)+s2(1− 1

n− i
). (7)
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Let v be the intersection ofpy and H, and letβ = |v−wt |, wherewt =
(1− t)p+ tbY. Then we have

2β 2 = t2(1− 1
n− i

). (8)

Notice that the distancesα,β are independent of the choices ofx,y. Also
one can see that the two linesuzs andvwt are both perpendicular tozswt .
The distanceλ = |zs−wt | satisfies

2λ 2 =
(1−s)2

i
+(1− t)2 +

(s− t)2

n− i
. (9)

Let D be the smallest hyperdisk onH that containsSn∩H, and leto be its
center. Theno is on the line segmentzswt , and|u−o| = |v−o| = r(i,s, t).
Let ζ = |zs− o|. Then, looking at two right triangles△ouzs and△ovwt ,
we haver(i,s, t)2 = α2 + ζ 2 = (λ − ζ )2 + β 2. This givesζ = (α2−β 2−
λ 2)/(2λ ), and

r(i,s, t)2 = α2 +
1

4λ 2(λ 2−α2 +β 2)2. (10)

By substituting (7), (8), (9) into (10), we can rewriter(i,s, t)2 in terms of
s, t, i (andn) only. We record a special case for later use:

2r(i,s,0)2 =
i(n− i)(s2−s+1)2

(1−s)2n+(n+2s−1)i − i2
. (11)

Lemma 2. Let V(Sn) = {p}∪X∪Y be a proper partition with|X| = i, and
let 0 < s< 1. Then we have r(i,s, t) ≤ r(i,s,0) for all t ∈ [s−1,s].

Proof. First assume that 0< t ≤ s. Let D′ be the hyperdisk with centero′

on H(X,Y,s,0) that is obtained by rotatingD aroundI(X,Y,s) through the
angle∠wtzsp. Notice thato′ is on the line segmentzsp, and{u,zs}⊂D∩D′.
Sincer(i,s, t) = r(D) = |u− o|, to showr(i,s, t) < r(i,s,0) it suffices to
showp ̸∈ D′, or equivalently,|p−o′| > r(D′) = r(D).

Recall thatα = |u−zs|, β = |v−wt |, λ = |zs−wt |, ζ = |zs−o|= |zs−o′|,
and|wt −o| = λ −ζ . Let η = |p−wt |.

In △pbXbY, the edgebXbY is the shortest one. In fact, we have|p−
bX|2 = 1

2(1+ 1
i ), |p− bY|2 = 1

2(1+ 1
n−i ), and |bX − bY|2 = 1

2(1
i + 1

n−i ).
Hence∠bX pbY < π/3. Sincezsws ∥ bX p, we have∠zswt p ≥ ∠zswsp >
2π/3. Looking at△zswt p, we get|p−zs|2 > λ 2+η2+λη . Thus we have

|p−o′| = |p−zs|− |zs−o′| >
√

λ 2 +η2 +λη −ζ . (12)

Using△pvwt ∼△pybY, we have

|v−wt | = t|y−bY| = t
2(1− 1

n−i ) < t
2(1+ 1

n−i ) = t|p−bY| = |p−wt | = η ,
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which implies

r(D)2 = |v−o|2 = |v−wt |2 + |wt −o|2 < η2 +(λ −ζ )2. (13)

Since 0< t ≤ s < 1, it follows from (7) and (8) that |u− zs| = α >
β = |v−wt |. Then looking at two triangles△ouzs and△ovwt having hy-
potenuses of the same length (= r(D)), we get|zs−o| < |wt −o|, that is,

2ζ < λ . (14)

By (12) (13) and (14), we have

|p−o′|2− r(D)2 > (
√

λ 2 +η2 +λη −ζ )2− (η2 +(λ −ζ )2)

= λη −2ζ (
√

λ 2 +η2 +λη −λ )

> λ (λ +η −
√

λ 2 +η2 +λη) > 0,

as desired.
Next assume thats−1≤ t < 0. By comparing two proper partitions{p}∪

X ∪Y and{p}∪X′ ∪Y′, whereX′ = Y andY′ = X, we haver(|X|,s, t) =
r(|X′|,1− s,−t,). Then, using the inequality for 0< −t ≤ 1− s< 1, we
haver(i,s, t) = r(n− i,1− s,−t) ≤ r(n− i,1− s,0) = r(i,s,0), as desired.

¤

Lemma 3. For 0 < s≤ 1/2 and m= ⌊n/2⌋, we have

r(m,s,0) = max{r(i,s,0) : 1≤ i ≤ m}.

Proof. By (11), we have

∂
∂ i

(2r(i,s,0)2) =
N1N2

D
,

where

N1 = (s2−s+1)2,

N2 = (1−2s)i2−2n(1−s)2i +n2(1−s)2,

D = (1−s)2n+
(
(n− i)− (1−2s)

)
i.

We will show thatr(i,s,0) is an increasing function ofi. It is easy to see
thatN1/D > 0. So, it suffices to showN2 ≥ 0. Fix s,n, and let f (i) := N2.
If s= 1/2, then f (i) = n(n−2i)/4 ≥ 0, as desired. Ifs< 1/2, then f (i)
is a quadratic function ofi with positive coefficient fori2. Since f (i) takes
minimum ati = n(1−s)2/(1−2s) > n/2 and f (n/2) = n2(1−2s)/4 > 0,
we can conclude thatf (i) > 0 for 1≤ i ≤ n/2. ¤

Lemma 4. Let n be even and let m= n/2. Then we have

min{r(m,s,0) : s∈ [0,1]} = r(m,1/2,0), (15)

Dest#equation.12�
����#equation.13�
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and

r(m,1/2,0) =
3
8

√
2n

n+1
(16)

Proof. By (11) we have

∂
∂s

(r(n/2,s,0)2) =
−n(1−2s)(s2−s+1)(2s2−2s+n)

(4s2−4s+n+2)2 ,

which implies (15). By (11) we have (16). ¤
Lemma 5. Let n be odd and let m= ⌊n/2⌋. Let s0 ∈ (0,1) be a unique real
root of a the cubic equation

4nX3−6(n+1)X2 +2(n2 +n+2)X−n2 +1 = 0. (17)

Then we have

min{r(m,s,0) : s∈ [0,1]} = r(m,s0,0), (18)

and
max{r(m,s,s) : s∈ [s0,1/2]} = r(m,s0,s0). (19)

Moreover, r(m,s0,0)2 is a unique real root of the following cubic equation
with integral coefficients:

2048(n+1)n3X3 +a2X2 +a1X +a0 = 0, (20)

where

a0 = −9(n2−1)2(n4−4n3 +2n2 +4n+13),

a1 = 16(n2−1)(2n6−6n5−15n4 +38n3 +42n2 +48n−29),

a2 = 64(8n6−8n5−41n4−28n3−10n2 +36n+27).

Proof. We start with (11). Then we get (18) by computing ∂
∂s(r(m,s,0)2).

Moreover, it follows from (17) that 1/2− 1/n2 < s0 < 1/2 for n ≥ 3. In
fact, we have

s0 =
1
2
− 3

4n2 −
3

8n3 +O(n−4). (21)

By (10) we have 2r(m,s,s)2 = (2s2−2s+1)m/(1+m), which implies (19).
Finally we outline how to show thatr(m,s0,0)2 satisfies (20). This can

be done by direct computation (with aid of computer). By (11) we have

2r(m,s,0)2 =
m(1+m)(s2−s+1)2

m2 +(1−s)2 +2m(s2−s+1)
. (22)

The numerator ofr(m,s0,0)2 is a biquadratic polynomial ofs0, and one
can reduce it to a quadratic polynomial using (17). Substitute the reduced
r(m,s0,0)2 into (20), and reduce these fractions to a common denominator.
Then one can check that the numerator vanishes by reducing it using (17).

¤
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Define

s∗ =

{
1/2 if n is even,

s0 if n is odd.
(23)

Lemma 6. Let m= ⌊n/2⌋, and let V(Sn) = {p}∪X∪Y be a proper parti-
tion with i = |X| ≤ m. Then Sn∩Hp(X,Y,s∗, t) is contained in a hyperdisk
of radius r(m,s∗,0) for all t ∈ [s∗−1,s∗].

Proof. We haver(i,s∗, t)≤ r(i,s∗,0)≤ r(m,s∗,0), where the first inequality
follows from Lemma2, and the second one from Lemma3. ¤
Theorem 4.Let m= ⌊n/2⌋, and define s∗ by(23). Then we haveγ(n,Bn−1)=
r(m,s∗,0).

Forn = 2m, it follows from (16) that

r(m,1/2,0) =
3

4
√

2

(
1− 1

2n
+

3
8n2 −

5
16n3 +O(n−4)

)
. (24)

On the other hand, forn = 2m+1, it follows from (20) that

r(m,s0,0) =
3

4
√

2

(
1− 1

2n
+

3
8n2 −

13
16n3 +O(n−4)

)
. (25)

One can also get (25) by substituting (21) directly into (22). By Theorem4
with (16), (24) and (25), we have the following.

Corollary 5.

γ(n,Bn−1) =


3
4

√
2n

n+1 if n is even,

3
4

√
2n

n+1 −
3
√

2
8n3 +O(n−4) if n is odd,

and

lim
n→∞

γ(n,Bn−1) =
3
√

2
4

.

Proof of Theorem4. Let D be a hyperdisk on a hyperplane inRn through
which Sn can pass. We may suppose that the verticesp1, p2, . . . , pn+1 can
pass throughD one by one in this order. (If this seems to be impossible,
then by replacingD with a hyperdisk of radiusr(D) + ε, this would be-
come possible, whereε > 0 can be chosen arbitrarily small.) Consider the
moment whenpm+1 passes throughD. By Lemma1, r(D)+ ε is at least
r(m,s,0) for some 0< s< 1, which is at leastr(m,s∗,0) by (15) and (18).
Thus r(D) + ε ≥ r(m,s∗,0). Sinceε can be chosen arbitrarily small, we
haver(D) ≥ r(m,s∗,0), and henceγ(n,Bn−1) ≥ 2r(m,s∗,0).

Next we showγ(n,Bn−1) ≤ 2r(m,s∗,0). Instead of pushingSn through
the hole, we fix ourSn and move the hyperplane containing the hole. Let
D be the hyperdisk of radiusr(m,s∗,0) in the moving wall hyperplane. Let

html:<a href="#l�
����#equation.25
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V(Sn) = {p1, . . . , pn+1}, Xi = {p1, . . . , pi}, andYi = {pi+2, . . . , pn+1}. Since
{pi+2}∪Xi+1∪Yi+1 is also a proper partition, we haveHpi+1(Xi ,Yi ,s∗,s∗) =
Hpi+2(Xi+1,Yi+1,s∗,s∗−1).

Let Hi = H(Xi ,Yi ,s∗,s∗−1). Suppose that our holeD sits inHi for some
1 ≤ i ≤ m. By rotating this wall hyperplane aroundI(Xi ,Yi ,s∗), we get
H(Xi ,Yi ,s∗,s∗) = Hi+1. By Lemma6, we may assume that, in this rotation
process, the intersection of the fixedSn and the wall hyperplane is always
contained inD. Namely, we can move the wall hyperplane fromHi to Hi+1
so that the intersection ofSn and the wall is always contained in the hole.

Therefore, starting fromH1, we can send the wall hyperplane to the po-
sition of Hm+1. If n is even, then in the process fromHm to Hm+1, we get
H(Xm,Ym,1/2,0). This hyperplane dividesSn into two parts that are mu-
tually congruent, and we are done (by repeating the same procedure in the
reverse order). Ifn is odd, then by translatingHm+1 = H(Xm,Ym,s∗,s∗), we
get H(Xm,Ym,1/2,1/2), which dividesSn into mutually congruent parts.
Moreover, by (19), the intersection ofSn and the hyperplane is always con-
tained inD in the process of this translation. This completes the proof.¤

3.3. Holes of shapeQn−1. In [11] the following is proved: for everyε > 0
there is anN such that for everyn > N one has

Sn ⊂ (2+ ε)Qn.

This gives
lim
n→∞

Γ(n,Qn−1) ≤ 2.

SinceQn−1 ⊂ Bn−1, we get lower bounds forγ(n,Qn−1) andΓ(n,Qn−1)
from γ(n,Bn−1) and Γ(n,Bn−1), respectively. Here we include a simple
proof of the following slightly weaker bound forΓ(n,Qn−1).

Theorem 6. We have

Γ(n,Qn−1) ≥
√

2(n−1)
n+1

, (26)

with equality holding iff there exists an Hadamard matrix of order n+1.

Proof. Let d = Γ(n,Qn−1). ThenSn can pass through a hole ofdQn−1 by
translation. So (2) and (1) imply

width(dQn−1) =
d√

n−1
≥ width(Sn) ≥

√
2

n+1
,

which gives (26). Moreover, ifSn ⊂ ℓQn, then we have

ℓ ≥
√

n√
n−1

Γ(n,Qn−1) ≥
√

2n
n+1

.

html:</a>korean#equation.1
����#equation.26
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It is known thatℓ =
√

(2n)/(n+1) iff there exists an Hadamard matrix of
ordern+1, see e.g., [13]. ¤
Problem 2. Do we haveγ(n,Qn−1) = Γ(n,Qn−1) =

√
2−o(1)?

3.4. Holes having minimum volumes. In [7], the following problem is
posed.

Problem 3. Find the minimum(n− 1)-dimensional volume of a compact
hole in a hyperplane ofRn such that Sn can pass through it.

The following variation seems to be easier.

Problem 4. Find the minimum(n− 1)-dimensional volume of a compact
hole in a hyperplane ofRn such that Sn can pass through it by translation
perpendicular to the hyperplane.

We list possible candidates. Put
√

2Sn in Rn+1 so that the vertices are
e1, . . . ,en+1, whereei is thei-th standard base ofRn+1.

Project the
√

2Sn in the direction of

(1,−1,

n−1︷ ︸︸ ︷
0, . . . ,0).

Then the hole created by the shadow has volume

1
(n−1)!

√
n+1

2
. (27)

Next suppose thatn is odd and writen = 2k+1. Project the
√

2Sn in the
direction of

(
k+1︷ ︸︸ ︷

1, . . . ,1,

k+1︷ ︸︸ ︷
−1, . . . ,−1).

Then the corresponding hole has volume
2

(n−1)!
. (28)

Finally suppose thatn is even and writen = 2k. Project the
√

2Sn in the
direction of

(
k︷ ︸︸ ︷

k+1, . . . ,k+1,

k+1︷ ︸︸ ︷
−k, . . . ,−k).

In this case, the volume of the hole is

2
(n−1)!

√
n

n+2
. (29)

Among the above examples, the smallest one is (27) for n≤ 5. Forn = 7,
(27) and (28) coincide. For the other cases, (28) and (29) give the smallest
one.

.#cite.Sc
����#cite.IZ
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