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Abstract

We show that a convex body can pass through a triangular hole iff it can do so by a
translation along a line perpendicular to the hole. As an application, we determine the
minimum size of an equilateral triangular hole through which a regular tetrahedron with
unit edge can pass. The minimum edge length of the hole is (1+

√
2)/

√
6 ≈ 0.9856. One

of the key facts for the proof is that no triangular frame can hold a convex body. On the
other hand, we also show that every non-triangular frame can fix some tetrahedron.

Keywords: frame, holding a convex body, fixing a convex body, regular tetrahedron,
minimal embedding

1. Introduction

Let Ω be a compact convex disk in a plane. By a frame we mean the boundary
∂Ω of Ω. Suppose that the frame ∂Ω is attached to a convex body K ⊂ R3, that is,
K ∩Ω 6= ∅ and int(K)∩∂Ω = ∅, where int(K) denotes the interior of K. If the frame ∂Ω
can be removed away from K by a continuous rigid motion of ∂Ω (or K) with keeping
int(K) ∩ ∂Ω = ∅, then we say ∂Ω can slip out of K, otherwise, we say ∂Ω holds K. A
unit regular tetrahedron is a regular tetrahedron with unit edges. For example, a circular
frame of diameter 1/

√
2 + ε can hold a unit regular tetrahedron if ε is sufficiently small,

see Figure 1.
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Figure 1: A circular frame fixes a tetrahedron.

Zamfirescu [10] proved that most convex bodies can be held by a circular frame.
More precisely, the convex bodies in R3 that cannot be held by any circular frame form
a nowhere dense subset of the space of all convex bodies in R3 with Hausdorff metric.
We first show that a triangular frame is quite different from a circular frame as follows.

Theorem 1. A triangular frame attached to a convex body can always slip out of the
convex body. Thus no triangular frame can hold a convex body.

Regarding a frame as the boundary of a hole in a plane, we may consider whether
a given convex body can pass through the hole. Itoh and Zamfirescu [3] studied the
size of a hole (diameter and width) through which a regular simplex of unit edges can
pass. Itoh, Tanoue, and Zamfirescu [2] determined the smallest circular hole and the
smallest square hole through which a unit regular tetrahedron can pass, see also [6] for
the problem in higher dimensions. Concerning a triangular hole, we have the following.

Theorem 2. A convex body K can pass through a triangular hole ∆ iff K can be con-
gruently embedded in a right triangular prism with base ∆.

Thus, if a convex body can pass through a triangular hole, then it can do so by
a continuous translation of the convex body along a line perpendicular to the plane
containing the hole. Similar assertion is not true for a circular hole. For example, when
a regular tetrahedron passes through a circular hole of the smallest possible size, rotations
are necessary, see [2], and [6] for higher dimensional cases.

It is proved in [7] that an equilateral triangular prism can contain a unit regular
tetrahedron iff the edge length of the base equilateral triangle of the prism is at least
(1 +

√
2)/

√
6. Hence we have the following.

Theorem 3. A unit regular tetrahedron can pass through an equilateral triangular hole
iff the edge length of the hole is at least (1 +

√
2)/

√
6.

Finally we consider a fixing problem for non-triangular frames. We say that Mt is a
rigid motion if Mt : R3 → R3 is an isometry for each 0 ≤ t ≤ 1 starting with the identity
map M0, and Mt is a continuous function of t for 0 ≤ t ≤ 1. Let P be the xy-plane in
R3, and let H ⊂ P be a convex disk. We say that H fixes the convex body K ⊂ R3 if

i. K ∩ P ⊂ H, and
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ii. if a rigid motion Mt satisfies (MtK) ∩ P ⊂ H for all t ∈ [0, 1], then MtP = P for
all t.

This, of course, means that the frame ∂H holds K because then no rigid motion can
move K away from P . In this definition one cannot require that Mt equals the identity.
This is shown by the example in Figure 1: if ε = 0, then the regular tetrahedron is fixed
by the circle but it can clearly be rotated.

Theorem 4. Every non-triangular frame fixes some tetrahedron.

2. A convex body through a triangular hole

Proof of Theorem 1. Suppose that the boundary ∂∆ is a triangular frame attached to a
convex body K. Let ∂∆ = a ∪ b ∪ c with three edges a, b, c. The triangle ∆ divides K
into two parts K+ and K−. Let Ha be a supporting plane of K containing the edge a.
Then, a ⊂ Ha and int(K)∩Ha = ∅. Define Hb similarly. Let H be the plane containing
c and parallel to the line ` := Ha ∩ Hb. Then Ha, Hb, H determine a prism P. One
of K+, K− is contained in P. (For otherwise, we can find a point p ∈ K+ and a point
q ∈ K− both lying in the same side of H opposite to the prism P. Then the line segment
pq does not intersects ∆, contradicting that ∆ cuts the convex body K.) If K+ ⊂ P
(resp. K− ⊂ P), then K can slip out of the frame ∂∆ by moving parallel to the line `
towards K− (resp. K+) side.

Let P be the xy-plane in R3. For a convex disk Ω ⊂ P , the right Ω-prism (denoted
by Ω×R) is the set obtained as the union of those lines that intersect Ω perpendicularly.
The set Ω is called the base of Ω × R. If Ω is an equilateral triangle of edge length t,
then the prism is called an equilateral triangular prism of size t.

Lemma 1. Let Ω ⊂ P be a convex disk, and let P = Ω × R. Then, for any convex disk
Ω̃ obtained as a section of P by a plane, Ω can be congruently embedded in Ω̃.

Lemma 1 is a result due to Kovalyov [5] (answering a question of Zalgaller [9]), and
independently, Debrunner and Mani-Levitska [1] (answering a question of Pach [8]), see
also Kós and Törőcsik [4].

Now, let us regard a triangle ∆ ⊂ P as a hole.

Proof of Theorem 2. If K is congruently embedded in ∆ × R, then K can pass through
∆ by a translation parallel to the z-axis.

Suppose that K can pass through the hole ∆. Let ∂∆ = a ∪ b ∪ c. Suppose that K
can go through the hole ∆ from the upper half space [z ≥ 0] into the lower half space
[z ≤ 0]. Let Kt, 0 ≤ t ≤ 1, denote the continuously moving body congruent with K,
passing through the hole ∆ from [z ≥ 0] to [z ≤ 0]; K0 ⊂ [z ≥ 0], K1 ⊂ [z ≤ 0]. For each
t ∈ [0, 1], the plane P divides Kt into two parts, K+

t = K∩ [z ≥ 0] and K−
t = K∩ [z ≤ 0].

Let Ha
t be a supporting plane of Bt containing the edge a. Then this is a continuously

moving plane such that a ⊂ Ha
t and Ha

t ∩ int(Kt) = ∅. Define Hb
t similarly. Let Ht

be the plane containing c and parallel to the line Lt := Ha
t ∩ Hb

t . Then Ha
t , Hb

t , Ht

determine a continuously moving triangular prism Pt. Note that ∅ = K−
0 ⊂ P0, and

∅ = K+
1 ⊂ P1. Furthermore, for each t ∈ [0, 1], one of K+

t , K−
t is contained in Pt as in

the proof of Theorem 1. Let α = sup{t ∈ [0, 1] : K−
t ⊂ Pt}. Then, there is a monotone
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increasing sequence 0, t1, t2, t3, . . . such that K−
tn

⊂ Ptn and limn→∞ tn = α. Hence, by
the continuity, we have K−

α ⊂ Pα. Similarly, since t > α implies K+
t ⊂ Pt, we have

K+
α ⊂ Pα. Therefore, Kα ⊂ Pα.
Thus K can be congruently embedded in a triangular prism Pα with Pα∩P = ∆. By

Lemma 1, Pα is congruently embedded in ∆×R. Hence K can be congruently embedded
in ∆ × R.

Corollary 1. If a convex body can pass through a triangular hole, then a whole process
of passing through the hole can be realized by a translation along a line perpendicular to
the plane having the hole.

Proof of Theorem 3. Let ∆(d) denote an equilateral triangle with edge length d. Two
congruent regular tetrahedra T1, T2 ⊂ ∆(d)×R are said to be equivalent if it is possible
to superpose T1 on T2 by a continuous rigid motion of T1 within the prism. Let ν(d)
denote the maximum number of mutually non-equivalent embeddings of a unit regular
tetrahedron into ∆(d) × R. The following result is proved in [7]:

ν(d) =


0 for d < d0 := 1 +

√
2/

√
6 ≈ 0.9856,

6 for d0 ≤ d < d1 :=
√

3 + 3
√

2/6 ≈ 0.9958,

18 for d1 ≤ d < 1,

1 for 1 ≤ d.

(1)

By (1) we have ν(d) 6= 0 iff d ≥ (1 +
√

2)/
√

6. In other words, a unit regular
tetrahedron can be congruently embedded in ∆(d)× R iff d ≥ (1 +

√
2)/

√
6. Combining

this result with Theorem 2, we get Theorem 3.

Here we recall two important embeddings which are essentially used to show (1) in
[7]. We are going to embed a unit tetrahedron T = ABCD into ∆(d)-prisms. First, let
us consider the case d = d0. Let h = d0/2 = (1 +

√
2)/

√
24, and let ∆0 ⊂ P be the

triangle with vertices (±h, 0, 0), (0,
√

3h, 0). Then ∆0 is an equilateral triangle of edge
length d0. Let P be the ∆(d0)-prism. Let k = (

√
2− 1)/

√
24, ` = 1/

√
2, and define four

points A,B, C,D by

A = (k, `,−h), B = (−h, 0,−k), C = (h, 0, k), D = (−k, `, h).

Then one can check that these four points span a regular tetrahedron of edge length 1,
which is contained in the ∆(d0)-prism P, see Figure 2 left.

Next we consider the case d = d1. Let ∆1 ⊂ P be the triangle with vertices

A′ = (
√

2
3 , 0, 0), B′ = (−

√
3+

√
2

6 , 0, 0), E = (−
√

3−
√

2
12 ,

√
6+1
4 , 0).

A straightforward calculation shows that ∆1 is an equilateral triangle with edge length
d1. Let T = ABCD be the tetrahedron with vertices

A = (
√

2
3 , 0, 1

3 ), B = (−
√

3+
√

2
6 , 0,

√
6−1
6 ), C = (

√
3−

√
2

6 , 0,−
√

6+1
6 ),

D = (0,
√

6
3 , 0).

Then T is a unit regular tetrahedron contained in the ∆1-prism, see Figure 2 right.
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Figure 2: Top views

What is the minimal area of a hole such that a unit regular tetrahedron ABCD can
pass through it? This problem is raised in [3]. Let ABCD be a unit regular tetrahedron
in R3 such that the edge AB lies on the z-axis. Then, by projecting ABCD to P , we get
an isosceles triangle with sides 1,

√
3/2,

√
3/2, whose area is 1/

√
8. Hence ABCD can

pass through a triangular hole of area 1/
√

8. In fact, this is the minimum area hole that
a unit regular tetrahedron can pass through by translation only. So, if we could find a
smaller hole by allowing rotation for escape, then the hole would be of non-triangular
shape.

Problem 1. Is 1/
√

8 the minimal area of a hole through which a unit regular tetrahedron
can pass?

In this paper, we have considered problems in R3. In higher dimensions, the following
is proved in [6]. If a regular n-simplex ∆n in Rn can pass through a hole of a regular
(n − 1)-simplex with side length `n, then

√
1 − (1/n) < `n < 1.

3. Tetrahedra fixed by a non-triangular frame

Let P be the xy-plane in R3, and let H ⊂ P be a convex disk. An alternative
description of fixing is the following: H fixes the convex body K ⊂ R3 if K ∩P ⊂ H and
if a rigid motion Mt : R3 → R3 satisfies K ∩ (M−1

t P ) ⊂ M−1
t H for all t ∈ [0, 1], then

MtP = P for all t. We need one more definition. A convex disk C ⊂ R3 fits into H if
H contains a congruent copy of C. It is clear that if C fits into H, then the diameter,
width, area of C is at most as large as that of H.

We will use two easy facts (Lemma 2 and Lemma 3 below) from elementary plane
geometry. Let R be the first quadrant of P . For positive reals p, q and ε, let Dε(p, q) be
the ε-disk centered at (p, q), that is, Dε(p, q) = {(x, y) : (x − p)2 + (y − q)2 < ε2}.

Lemma 2. Let ε > 0 and p1, q1 > 2ε. Then, for all (x1, y1) ∈ Dε(p1, q1) ∩ R, the
maximum

max{(x1 − x)2 + (y1 − y)2 : (x, y) ∈ Dε(0, 0) ∩ R}

is attained only at (x, y) = (0, 0).

In other words, the origin is the unique farthest point in Dε(0, 0)∩R from any point
in Dε(p1, q1) ∩ R, which easily follows from the positions of (x, y), (x1, y1) and (0, 0).
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For a, b, c ∈ R3, we write [a, b] for the line segment from a to b, and dist(c, [a, b]) for
the distance from c to [a, b].

Lemma 3. Let a = (α, 0, 0), b = (β, 0, 0) and c = (γ, h, 0), where h > 0. Suppose that
the triangle abc has a unique longest side [a, b]. Then,

L(c) := {(x, y, 0) : 0 ≤ y < h, x ∈ R} ⊂ P

cannot contain a congruent copy of 4abc.

Proof. The width of 4abc, that is, the shortest height of the triangle, is dist(c, [a, b]) = h.
So, the result follows.

We also need a stronger version of Lemma 1, namely, the embedding obtained in
Lemma 1 is continuous in the sense described below. For an isometry f and a compact
set C, let ‖f‖C := maxz∈C |f(z) − z|.

Lemma 4. Let Ω ⊂ P and Ω̃ be as in Lemma 1. Then, for every ε > 0 there is a δ > 0
such that for any rigid motion Mt with M1(Ω̃) ⊂ P and ‖M1‖Ω < δ, one can find an
isometry g on P with g(Ω) ⊂ M1(Ω̃) and ‖g‖Ω < ε.

This is an easy consequence of a result from [4]. For convenience we include a sketch
of the proof here.

Proof. By choosing a suitable coordinate system on P , we may assume that there exist
a λ ≥ 1 and a map pλ : (x, y) 7→ (x, λy) with pλ(Ω) = Ω̃′, where Ω̃′ ⊂ P is a congruent
copy of Ω̃. It is proved in [4] that there are two points E, F ∈ ∂Ω with the following
property:

Let E′ = pλ(E) and F ′ = pλ(F ) be points on ∂Ω̃′. Choose F ′′ on the line
segment [E′, F ′] so that |E′−F ′′| = |E−F |. Let h be the rotation preserving
isometry on P sending E and F to E′ and F ′′, respectively. Then, h(Ω) ⊂ Ω̃′.

Let Nt be a rigid motion with N1(Ω̃) = Ω̃′. Then g := M1 ◦ N−1
1 ◦ h is the desired

isometry. Indeed, g(Ω) ⊂ M1(Ω̃) follows from the construction. If ‖M1‖Ω is small, then
we see that ‖N1‖Ω, λ − 1, and ‖h‖Ω are small as well. In fact, by choosing δ sufficiently
small, we can guarantee that ‖M1‖Ω < δ implies max{‖M‖Ω, ‖N1‖Ω, ‖h‖Ω} < ε/3. So it
follows that ‖g‖Ω ≤ ‖M1‖Ω + ‖N1‖Ω + ‖h‖Ω < ε.

Proof of Theorem 4. Let H ⊂ P be a non-triangular convex disk. We construct a tetra-
hedron T fixed by H. Let f(x, y) = |x − y| be the distance function, restricted to
(x, y) ∈ H × H.

Case 1. There is a local maximum of f at (a, b) such that the open segment (a, b) ⊂ intH.

We may assume that |a − b| = 1. So let a = (0, 0, 0) and b = (1, 0, 0). Choose two
points c = (cx, cy, 0) and d = (dx, dy, 0) on ∂H in the opposite side with respect to the
x-axis, that is, cydy < 0. Let Q := conv{a, c, b, d} ⊂ H be the convex hull of {a, b, c, d}.
We construct a tetrahedron T fixed by H so that Q = T ∩ P .

Choose a point A on the z-axis. If the lines ad and bc intersect, then let ` be a line
passing through the intersection and A, else if ad ‖ bc, then let ` be a line passing through
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A and parallel to ad. Let B be the intersection of the line ` and the plane x = |a−b| = 1.
Let D be the intersection of the lines Bd and Aa. Since two lines Ac and Bb intersects
by Desargues’s theorem, let C be the intersection. Then,

ab ⊥ AD, ab ⊥ BC, and two lines AD and BC are skew, (2)

see Figure 3.

x

z

`

a
b

c

d

A B

C

D

Figure 3: Case 1. (a, b) ⊂ int H

Let T = ABCD be our tetrahedron. Now let us verify that the four vertices a, c, b, d
are all on the edges of T . To see this, it is enough to check that A and B sit in the
same half-space according to the plane P , while C and D are in the other half-space.
By direct computation, this is equivalent to the condition that x-coordinates of c and d
are in (0, 1), and y-coordinates of c and d have opposite signs. In fact, this property is
equivalent to our assumption that (a, b) is a local maximum of f . Consequently, we have
Q = T ∩ P .

We fix the tetrahedron T and we try to move the frame ∂H. If we can move the frame
within P only, then, by definition, T is fixed by H. Now suppose that we can move the
frame slightly and it is on the plane P̃ 6= P . More precisely, we consider a rigid motion
Mt such that T ∩ (M−1

t P ) ⊂ M−1
t H for all t ∈ [0, 1] and M−1

1 P = P̃ . Then, by (2), we
have Mta = a and Mtb = b for all t. So Mt is a rotation around the line ab, and thus
P ∩ P̃ coincides with the line ab.

Let Q̃ = conv{a, b, c̃, d̃} be the section of our tetrahedron by the plane P̃ , where c̃
(resp. d̃) is on the edge [A,C], (resp. [B, D]), and let Q′ = conv{a, b, c′, d′} ⊂ P be the
projection of Q̃ to P . Then, c′ is on the line ac, because c̃ is on [A,C]. On the other
hand, c̃ is obtained by rotating c around the line ab, and so c′ is an interior point of
4abc. This contradiction completes the proof of Case 1.

Next we assume that we are not in Case 1, that is, if f has a local maximum at
(a, b) ∈ H ×H, then the open segment (a, b) is on the boundary of H. Let a, b ∈ H and
suppose that [a, b] is a diameter of H. Then [a, b] ⊂ ∂H, otherwise we are in Case 1.
We may assume that H is contained in the first quadrant of P and |a − b| = 1. So
put a = (0, 0, 0) and b = (1, 0, 0) on the x-axis. Define a distance function from b by
fb(x) = |x− b| for x ∈ H0 := ∂H \ (a, b). Then, fb(x) is monotone increasing as x moves
from b to a along H0. To see this, suppose, to the contrary, that there is c ∈ H0 such
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that fb has a local maximum at c ∈ H0. Then [b, c] ⊂ ∂H. Since H is not a triangle,
we have (a, c) ⊂ intH. But, by Lemma 2, f has a local maximum at (a, c). This means
that we are in Case 1, a contradiction. So fb is monotone, and similarly fa(x) := |x− a|
for x ∈ H0 is also monotone.

Case 2. There is a diameter [a, b] ⊂ ∂H of H, and fa is monotone.

We will choose c, d ∈ H0, and ai, bi, ci, di (i = 1, 2) from P , see Figure 4. We start
with the following construction.

a b

c
d

b1 b2

c1

c2
d1

d2

Figure 4: Case 2. [a, b] = diam H

Lemma 5. There are points c, d ∈ H0 and d1, c1, c2 ∈ P such that c is the midpoint
of [c1, c2] and [c1, c2] ∩ H = {c}, [d1, c1] is parallel with [d, c], [a, d1] ∩ H = [a, d],
dist(c, [a, b]) ≥ dist(d, [a, b]), and the line c1c2 intersects the line ab at z with b ∈ [a, z].

Proof. Let v be the farthest point of H from [a, b]. Suppose [b, v] ⊂ ∂H. Then v would
do for c, we just let z = 2b − a and choose a suitable pair of point c1, c2 on the line
cz. We find d above the chord [a, v] as follows. Let ` be the line parallel with [a, v] and
supporting H between a and v. As H is not a triangle, (a, v) ⊂ intH, and so ` is disjoint
from the chord [a, v]. Let d be the point in ` ∩ H closest to [a, b]. The position of d1 on
the line ad is determined by the condition that [c1, d1] parallel with [d, c].

If both (a, v), (b, v) ⊂ intH, then let d be the same point as before. We find c above
the chord [b, v] just as d was found above [a, v]. We assume (by swapping H with its
mirror image if necessary), that dist(c, [a, b]) ≥ dist(d, [a, b]). It is clear that there is a
supporting line `c to H with H ∩ `c = {c}, and that `c intersects the line ab at a point
z with b ∈ [a, z]. We can choose the points c1, c2 on `c satisfying all the conditions, and
then find d1 on the line ad such that [c1, d1] parallel with [d, c].

Here the segment [c1, c2] can be chosen as small as needed. For i = 1, 2, choose bi on
the line ab so that bici is parallel to bc, and choose d2 on the line ad so that c2d2 is parallel
to cd. By choosing [c1, c2] sufficiently short we can make sure that d2 lies in the interior
of the segment [a, d]. Let a1 = a2 = a. Set Qi = conv{ai, bi, ci, di} for i = 1, 2. Let e be
the unit (upward) normal vector of the plane P . Let T be the tetrahedron delimited by
the planes aff {a, b, a1 + e}, aff {b, c, b1 + e}, aff {c, d, c1 + e}, and aff {d, a, d1 + e}. By
the construction, we have

T ∩ P = Q = conv{a, b, c, d},
T ∩ (P + e) = Q1 + e = conv{a1 + e, b1 + e, c1 + e, d1 + e},
T ∩ (P − e) = Q2 − e = conv{a2 − e, b2 − e, c2 − e, d2 − e}.
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We fix the tetrahedron T and we try to move the frame ∂H. Suppose that we can
move the frame slightly and it is on the plane P̃ . Namely, we consider a rigid motion Mt

such that T ∩ (M−1
t P ) ⊂ M−1

t H for all t ∈ [0, 1] and M−1
1 P = P̃ . Our goal is to show

that Mt is the identity, which means T is fixed by H. The plane P̃ intersects the edge
[a1 + e, a2 − e] in the point ã. Define b̃, c̃ and d̃ similarly. By the construction, we have
T ∩P = Q ⊂ H, and Q̃ := T ∩ P̃ = conv{ã, b̃, c̃, d̃} ⊂ M−1

1 (H) fits into H. Let a′ denote
the orthogonal projection of ã onto the plane P . Define b′, c′ and d′ similarly. Notice
that a′ = a, b′ ∈ [b1, b2], c′ ∈ [c1, c2], d′ ∈ [d1, d2].

Choose ε > 0 so that 6ε < min{cx, cy}, where c = (cx, cy, 0). (We will need this to
apply Lemma 2 later.) We plug this ε into Lemma 4 to get δ. Assume that Q and Q̃
differ only slightly. More precisely, we assume that

|c̃ − c| < ε/3, and ‖M1‖H < δ/3 < ε/3.

By Lemma 1, a′b′c′d′ also fits into H, and moreover, by Lemma 4, we can find an
embedding close to the original position, that is, there is an isometry g : P → P satisfying
a′′b′′c′′d′′ := g(a′b′c′d′) ⊂ H and ‖g‖H < ε/3. Then we have |c′′ − c′| = |g(c′) − c′| ≤
‖g‖H < ε/3, |c′− c̃| ≤ ‖M1‖H < ε/3, and |c̃− c| < ε/3. Thus we get |c′′− c| ≤ |c′′− c′|+
|c′− c̃|+|c̃−c| < ε. Similarly, we get |M1c̃−c| ≤ |M1c̃− c̃|+|c̃−c| ≤ ‖M1‖H +ε/3 < 2ε/3.
In summary, we have

{c′′,M1c̃} ⊂ Dε(c). (3)

Since c′′ ∈ Dε(c) by (3), we can apply Lemma 2 to get

|c′′ − a′′| ≤ |c′′ − a′|.

By Lemma 3, 4a′b′c′ does not fit into L(c′). The same is true for 4a′′b′′c′′(≡ 4a′b′c′).
So we have c′′ ∈ H \ L(c′). Let c′H (resp. c′′H) be the intersection of ∂H and the line ac′

(resp. ac′′), see Figure 5.

c′H

c′

c′′H
c′′

Figure 5: c′H , c′′H ∈ ∂H

Since c′′ ∈ H \ L(c′), using the monotonicity of fa, we have

|c′′H − a′| ≤ |c′H − a′|.

Therefore we have

|c′′ − a′′| ≤ |c′′ − a′| ≤ |c′′H − a′| ≤ |c′H − a′| ≤ |c′ − a′| = |c′′ − a′′|,

and thus |c′′ − a′′| = |c′′ − a′| = |c′ − a′|. Then, by Lemma 2, |c′′ − a′′| = |c′′ − a′| gives
(a =) a′ = a′′. Also c′′ ∈ H \ L(c′) and |c′′ − a′| = |c′ − a′| give c′ = c′′, which is only
possible if c′ = c′′ = c = c̃.
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We will show that a = ã. Observe that M1(Q̃) ⊂ H and

dist(M1c̃,M1[ã, b̃]) = dist(c̃, [ã, b̃]) = dist(c, [ã, b̃]) ≥ dist(c, [a, b]),

where the last inequality follows from the fact that [ã, b̃] is contained in the plane y = 0,
namely, the plane whose distance to c equals dist(c, [a, b]). So, by Lemma 3, the triangle
M1(4ãb̃c̃) does not fit into L(c), and thus M1c̃ ∈ H \ L(c). Then we have

|M1ã − M1c̃| ≤ |a − M1c̃| ≤ |a − c|,

where we use M1c̃ ∈ Dε(c) from (3) to apply Lemma 2 for the first inequality, and we
use the monotonicity of fa for the second inequality. On the other hand |M1ã− M1c̃| =
|ã − c̃| = |ã − c| ≥ |a − c| where the last inequality follows from the construction. Thus
|M1ã − M1c̃| = |ã − c| = |a − c| and then ã = a follows.

Now it follows from ã = a and c̃ = c that Mt is a rotation around the line ac. Thus
b̃ is obtained by rotating b around ac. In this case, b 6= b̃ is impossible because bb′ 6⊥ ac.
Therefore we have ã = a, b̃ = b and c̃ = c. Thus P̃ = P and Mt is the identity. This
completes the proof of Case 2 and also of the theorem.

Similarly to the proof of Theorem 4, one can show the following: for every convex
quadrilateral H ⊂ P , there is a tetrahedron T such that T is fixed by H and H = T ∩P .
Conversely, if we are given a tetrahedron first, then can we find such a quadrilateral
frame?

Problem 2. Let T be a tetrahedron. Is it true that there is a plane P such that H := T∩P
fixes T?
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