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Abstract

We prove that every finite simple graph can be drawn in the plane
so that any two vertices have an integral distance if and only if they
are adjacent. The proof is constructive.

1 Introduction

In 1945, Anning and Erdos|1, 2] showed that for any n we can find n points
in the plane not all on a line such that their distances are all integral, but
it is impossible to find infinitely many points with integral distances (not
all on a line). Then, Graham, Rothschild and Straus[3] showed that there
are d + 2 points in R? whose distances are all odd integers if and only if
d = 14 (mod 16). In particular, four points in the plane with pairwise odd
integral distances do not exist.

Let G be a simple graph. An injection f : V(G) — R? is said to be an
integral (resp. rational) distance representation of G if the following condition

holds:
ry € F(G) if and only if |f(2) — f(y)| € Z (resp. Q).

In problems included in [5], Maechara asked whether there is a finite simple
graph GG which has no integral distance representation. In this paper, we
prove the following.



Theorem 1 Every finite simple graph has an integral distance representa-
tion (in the plane).

Actually, we shall construct an integral distance representation on a circle
with all rational distances.

What can we say about infinite graphs? On a circle, we can construct
rational distance representations of the complete graph K., (see the next
section) and the complete bipartite graph K. ., (see [4]), where oo stands
for |Z|. On the other hand, Maehara[4] showed that K. has no integral
distance representation. The proof is similar to the one in [1]. (K., has an
integral distance representation.)

Problem 1 Is there a (finite or infinite) simple graph G which has no ratio-
nal distance representation?

2 Proof of the theorem

1° Suppose that a quadrilateral ABCD is inscribed in a circle. Then, by
the Ptolemy theorem, we have

AB-CD+ AD - BC = AC - BD.

If five edges among the above six edges have rational lengths, then the length
of the remaining edge is rational, too.

Let § be a semicircle with diameter AB = 1. Choose integers a and b so
that @ > b > 0. Then a point C' on § satisfying AC = agi%’z BC = % is
uniquely determined. (Note that AC? 4+ BC* = 1.) We denote <a + by/—1>
to indicate the point C' on §. Define

Fi={<z>€S8:z€Z[V-1], 0 < arg(z) < 7/4}.
Using the Ptolemy theorem, the distance d between two points in F, <a +
bv/—1> and <s + t\/—1>, is given by
_ 2]ab(s* —1?) — st(a® = b?) |
N (a2 + b2)(s? + 12)

Since any two points in F has rational distance, we can find a rational dis-
tance representation of the complete graph of arbitrary order in F.
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2° Let K, be the complete graph of order n, and set V(K,) = {v;...,v,},
E(K,) ={e1...,en}, m= (g) Let q1,..., ¢, € ZT be mutually prime.
Let f = finig,...qm) b€ @ rational distance representation of K, satisfying
. *
(the length of e in f) = —,
4k
i.e., the denominator of the irreducible fraction of | f(x)— f(y)| where e} = xy
is precisely ¢ for k =1,...,m. Let G = (V, E) be a given graph. Multiplying
f by Il.,er qr, we have an integral distance representation of G. Thus, to

prove the theorem, it suffices to find an f(,.q;.,....4,m)-

3° Suppose that <z;>,<z,> € F, and set z; = a4+ b/—1, 2 = s+ t/—1.
A pair (<z1>,<z>) of two points in F is called “¢g-good” if the following
conditions hold:

(i) a*+0*=s*+t*=0 (mod q).
(ii) ged{2bt,q} = 1.
(iii) at —bs Z0 (mod ¢q).
Then, by using (1), the numerator of distance d of the pair satisfies
ab(32 + 42— 2t2) — 3t(a2 + b5 — 262)
= —2abt’ +2stb* = —2bt(at —bs) # 0 (mod q).
Note that if a ¢-good pair of distance d satisfies (d € Z then ¢*|¢ must hold.

4° Let m = (Z) and qo,q1,---,q¢n € ZT be mutually prime. Associate gy
to the edge e, € E(K,) for k =1,...,m. Suppose that there are <z;> € F,

1 =1,...,n, such that
1zilP =q0 [] o (2)
vi€ek
and
for each ey = vv;, (<z;>,<z;>) is gr-good. (3)
Then we can define a rational distance representation f of K, by f(v;) =
<z;>, and multiplying f by ¢2q1 - - - ¢, we get a rational distance represen-

tation fngr,...qm)- 1hus, to prove the theorem, it suffices to find ¢;s and z;s
satisfying (2) and (3).



5° Here let us recall some elementary properties of Z[\/—1]. Define
Zh:={z € Z[V/—1] : 0 < arg(z) < #/4},
Py :={z € Z; : z is a Gaussian prime}.

Lemma 1 Let z € 7y, and ¢, 6 be reals with 0 < ¢ < 27, 6 > 0. Then we
can choose [ € 7+ such that |¢ — arg(z")| < 6.

Proof. Set § = arg(z) in degree measure. Since tan § is rational and 6 # 45°,

it is known that # is irrational. Thus we can choose a desired (. |
Lemma 2 Let oy,...,a be distinct elements in Py, and {1,....{;, € Z™T.
Set ot - - oszh =a+by/—1. Then |ai*,..., |an|?, a, b are mutually prime.

Proof. Let p; = |oy|?. Suppose that p; divides a. Since pi' - -pfbh = a® +
b*, we must have p;|b. Then p; = o;a; divides @ + by/—1. Thus we have

a|(aft --- i) and @;|a;. This implies |os]* = 1, a contradiction. |
6° Letm = (;) and ag, aq,..., a, be distinct elements in P;. By Lemma 1,

we can choose 3 to be a power of ag with arg(/) ~ 7/8. In the same reason,
for k =1,...,m, we can choose 3 to be a power of oy with 0 < arg(/;) < e,
where ne < 7/8. Set ¢ := |B|* for k = 0,1,...,m. Then qq,...,q are
mutually prime, prime powers.

Let T}, be a tournament of order n, and set V(7,,) = {vy..., v}, E(T,) =
{€...,€n}. Associate f; to the directed edge € for k = 1,...,m. For
v; € €, define

zii=bo [ e (4)
v €8
where

] B if & is outedge at v;,
ik = B, if € is inedge at v;.

By the choice of arg(/3;), we have 0 < arg(z;) < 7 /4, i.e., <z> € F for each
i. By the construction, z;s and pys satisfy (2).

Next let us check the condition (3). Let & = v;v.. By (2), we have
zi|* = |z = 0 (mod ¢;), and (i) in 3° is satisfied. Set 8 = u + vy/—1,
2 = Br(x + yv/—1), z; = B(X + Y/=1). Then we have

zi = (u+ v\/jl)(x + y\/jl) = (ux —vy) + (uy + v:z;)\/:,
z; = (u— v\/jl)(X + Y\/:) = (uX + oY)+ (uY — vX)\/jl.
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By (4) and Lemma 2, (uy+va)(uY —vX) and ¢ are mutually prime. Hence
(ii) is satisfied.

Finally we check (iii). Set M := (ux—vy)(uY —vX)—(uX+0Y)(uy+va).
We shall prove M # 0 (mod ¢;). Suppose, on the contrary, that M = 0. By
Lemma 2, u, v and ¢ = |3;]* = u* + v* are mutually prime. Thus we have

0 = (u?—0*)(2Y —yX) — 2uv(z X +yY)
= —20%(aY —yX) —2uv(x X +yY)
= oY —yX) —u(zX +yY)

in module g. This implies v*(2Y —yX)? = v*(2 X +yY)?. Using u* = —0v?,
it follows that

o
Il

u{(zY —yX)* 4 (2 X 4+ yY)*}
(22 +9y°) (X2 4+ Y?)

= |z’ |z 4k

in modulo ¢, which is a contradiction. This completes the proof of the
theorem.
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