
INTERSECTING FAMILIES — UNIFORM VERSUS WEIGHTED

NORIHIDE TOKUSHIGE

ABSTRACT. What is the maximal size of k-uniform r-wise t-intersecting
families? We show that this problem is essentially equivalent to deter-
mine the maximal weight of non-uniform r-wise t-intersecting families.
Some EKR type examples and their applications are included.

1. INTRODUCTION

Throughout this paper let n,k,r, t denote positive integers with t ≤ k ≤ n,
and let p and q denote positive reals with p + q = 1. A family G ⊂ 2[n] is
called r-wise t-intersecting if |G1∩·· ·∩Gr| ≥ t holds for all G1, . . . ,Gr ∈G .
Let us define n-vertex k-uniform r-wise t-intersecting family Fi(n,k,r, t) as
follows:

Fi(n,k,r, t) = {F ∈
(

[n]
k

)
: |F ∩ [t + ri]| ≥ t +(r−1)i}.

Let m(n,k,r, t) be the maximal size of k-uniform r-wise t-intersecting fam-
ilies on n vertices. Can we extend the Erdős–Ko–Rado Theorem [4] in the
following way?

Conjecture 1. m(n,k,r, t) = maxi |Fi(n,k,r, t)|.

The p-weight of a family G ⊂ 2[n], denoted by wp(G ), is defined as fol-
lows:

wp(G ) = ∑
G∈G

p|G|qn−|G| =
n

∑
i=0

∣∣∣∣G ∩
(

[n]
i

)∣∣∣∣ piqn−i.

Let w(n, p,r, t) be the maximal p-weight of r-wise t-intersecting families on
n vertices. Set Gi(n,r, t) =

∪n
k=0 Fi(n,k,r, t).
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Conjecture 2. w(n, p,r, t) = maxi wp(Gi(n,r, t)).

The aim of this paper is to show that roughly speaking w(n, p,r, t) and
m(n,k,r, t)/

([n]
k

)
are almost the same if p ≈ k

n . Therefore the above two
problems ask essentially the same thing. We list some known results about
the conjectures and related problems in the last two sections.

Our first result says that w(n, p,r, t) can be deduced from m(n,k,r, t) if
k
n ≈ p.

Theorem 1. Let r, t and p be given. Then (M1) implies (W1).
(M1) There exist ε > 0 and n0 such that m(n,k,r, t) =

(n−t
k−t

)
holds for all

n > n0 and k with | k
n − p| < ε .

(W1) w(n, p,r, t) = pt holds for all n ≥ t.

One can slightly generalize the above result as follows.

Theorem 2. Let r, t, p and c be given. Then (M2) implies (W2).
(M2) For all µ > 0 there exists ε > 0 such that m(n,k,r, t) < (c + µ)

(n
k

)
holds for all n > n0(µ,ε) and k with | k

n − p| < ε .
(W2) w(n, p,r, t) ≤ c holds for all n ≥ t.

Moreover if there is an r-wise t-intersecting family G ⊂ 2[n0] with wp(G ) =
c for some n0 then w(n, p,r, t) = c holds for all n ≥ n0.

Assume (M2). We can choose δ ,ε ′ > 0 sufficiently small so that
if |p− p′| < δ and | k

n − p′| < ε ′, then | k
n − p| < ε .

Then by (M2) we have m(n,k,r, t)≤ (c+µ)
(n

k

)
for all n,k with n > n0(µ,ε ′)

and | k
n − p′| < ε ′. Thus by (W2) we have w(n, p′,r, t) ≤ c for all n ≥ t. This

means that we can replace (W2) by
(W2′) There exists δ > 0 such that w(n, p′,r, t) ≤ c holds for all n ≥ t and

p′ with |p− p′| < δ .
The next results are the reverses of Theorem 1 and Theorem 2, which say

that m(n,k,r, t) can be deduced from w(n, p,r, t) if k
n ≈ p.

Theorem 3. Let r, t and p be given. Then (W3) implies (M3).
(W3) limn→∞ w(n, p,r, t) = pt .
(M3) For all µ > 0 and all 0 < ε < p there exists n0 such that m(n,k,r, t) <

(1+ µ)
(n−t

k−t

)
holds for all n > n0 and k with k

n < p− ε .

Theorem 4. Let r, t, p and c be given. Then (W4) implies (M4).
(W4) limn→∞ w(n, p,r, t) ≤ c.
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(M4) For all µ > 0 and all 0 < ε < p there exists n0 such that m(n,k,r, t) <
(c+ µ)

(n
k

)
holds for all n > n0 and k with k

n < p− ε .

To extend the above result let us introduce non-trivial versions of m
and w. An r-wise t-intersecting family G ⊂ 2[n] is called non-trivial if
|
∩

G∈G G|< t. Let m∗(n,k,r, t) be the maximal size of k-uniform non-trivial
r-wise t-intersecting families on n vertices, and let w∗(n, p,r, t) be the max-
imal p-weight of non-trivial r-wise t-intersecting families on n vertices.

Theorem 5. Let r, t and p be given. Then (W5) implies (M5).
(W5) There exists γ > 0 such that limn→∞ w∗(n, p,r, t) < (1− γ)pt .
(M5) For all ε > 0 and all 0 < η < γ there is n0 such that m∗(n,k,r, t) <

(1−η)
(n−t

k−t

)
holds for all n > n0 and k with k

n < p− ε .

Note that (M5) implies that m(n,k,r, t) =
(n−t

k−t

)
. It would be nice to have

the reverse of the above result.

Problem 1. Let r, t and p be given. Then does (M6) imply (W6)?
(M6) There exist η > 0,ε > 0 and n0 such that m∗(n,k,r, t) < (1−η)

(n−t
k−t

)
holds for all n > n0 and k with | k

n − p| < ε .
(W6) There exists γ > 0 such that limn→∞ w∗(n, p,r, t) < (1− γ)pt .

Clearly (M6) implies that m(n,k,r, t) =
(n−t

k−t

)
for all n > n0 and k with

| k
n − p| < ε . On the other hand, by Theorem 5 we know that (W6) implies

m(n,k,r, t) =
(n−t

k−t

)
for all n > n1 and k with k

n < p− ε . Thus if the answer
to the problem is affirmative, then (M6) implies m(n,k,r, t) =

(n−t
k−t

)
for all

n > n2 and k with k
n < p+ ε (not only | k

n − p| < ε).

2. PROOFS

We will use the following lemma.

Lemma 1. Let t ∈ N and ε, p ∈ R be fixed positive constants with ε < p.
For n ∈ N set

Sn = ∑
k∈I

(
n− t
k− t

)
pkqn−k,

where I = ((p− ε)n,(p+ ε)n)∩N. Then we have limn→∞ Sn = pt .

Proof. The upper bound follows from

Sn ≤ ∑
k≥t

(
n− t
k− t

)
pkqn−k = pt

n−t

∑̀
=0

(
n− t

`

)
p`q(n−t)−` = pt .
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Next let 0 < µ < pt be given. For the lower bound, we will show that
Sn > pt − µ for n sufficiently large. Choose a constant c sufficiently large
so that

1√
2π

∫ c

−c
exp(−z2

2
)dz > 1−µ p−t ,

and set J = (pn−c
√

n, pn+c
√

n)∩N. Then we have J ⊂ I for n > n0(ε,c),
and

Sn ≥ ∑
k∈J

(
n− t
k− t

)
pkqn−k ≥ ∑

k∈J

(k− t +1
n− t +1

)t
(

n
k

)
pkqn−k.

Now we note that limn→∞(k− t +1)/(n− t +1) = p for k ∈ J, and

lim
n→∞ ∑

k∈J

(
n
k

)
pkqn−k =

1√
2π

∫ c

−c
exp(−z2

2
)dz,

which is the de Moivre–Laplace limit theorem. Thus we have

lim
n→∞

Sn > pt(1−µ p−t) = pt −µ.

�
By setting t = 0, it follows from the lemma that

∑
k 6∈I

(
n
k

)
pkqn−k = o(1).

For a family G ⊂ 2[n] and a positive integer ` < n, let us define the `-th
shadow of G , denoted by ∆`(G ), as follows.

∆`(G ) = {F ∈
(

[n]
`

)
: F ⊂ ∃G ∈ G }.

The complement family G c is defined by G c = {[n]−G : G ∈ G }.

Proof of Theorem 1. Assume (M1). Since w(n, p,r, t)≥wp(G0(n,r, t)) = pt

it suffices to show w(n, p,r, t)≤ pt . Set an interval I = ((p−ε)n,(p+ε)n)∩
N. Let G ⊂ 2[n] be an r-wise t-intersecting family with w(n, p,r, t) = wp(G ).
Using the lemma and (M1), we have

w(n, p,r, t) ≤ ∑
k∈I

∣∣∣∣G ∩
(

[n]
k

)∣∣∣∣ pkqn−k + ∑
k 6∈I

(
n
k

)
pkqn−k

≤ ∑
k∈I

(
n− t
k− t

)
pkqn−k +o(1) (1)

= pt +o(1).

This proves limn→∞ w(n, p,r, t) ≤ pt .
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Next define G ′ ⊂ 2[n+1] by G ′ = G ∪{G∪{n+1} : G ∈ G }, which is r-
wise t-intersecting, too. Then wp(G ′) = wp(G )(q+ p) = w(n, p,r, t), which
means

w(n+1, p,r, t) ≥ w(n, p,r, t). (2)
Consequently we have w(n, p,r, t) = pt for all n ≥ t. �
Proof of Theorem 2. This is similar to the proof of Theorem 1. In this case
(1) is replaced by

w(n, p,r, t) ≤ ∑
k∈I

(c+ µ)
(

n
k

)
pkqn−k +o(1),

which implies limn→∞ w(n, p,r, t)≤ c+µ . Since µ > 0 is arbitrary we have
w(n, p,r, t) ≤ c using (2). �
Proof of Theorem 3. Assume (W3). Let 0 < µ < q be given. We want
to show that m(n,k,r, t) < (1 + µ)

(n−t
k−t

)
. Suppose, on the contrary, that

there exists 0 < ε < min{p,q} such that for each n0 we can find an r-
wise t-intersecting family F ⊂

([n]
k

)
which satisfies |F | ≥ (1 + µ)

(n−t
k−t

)
for some n,k with n > n0 and k

n = p− ε . Let G = {G : G ⊃ ∃F ∈ F} =∪n−k
`=0(∆`(F c))c. This family is also r-wise t-intersecting (but not nec-

essarily uniform). We will show that G violates (W3). Set an interval
I = ((p− ε)n,(p+ ε)n)∩N and set α = q−ε

q+ε > 0.

Claim 1. |∆n−i(F c)| ≥ (1+αµ)
(n−t

n−i

)
for i ∈ I.

Proof. Choose a real x so that µ
(n−t

k−t

)
=

( x
n−k−1

)
. Since µ < q we have

x < n− t − 1. In fact if x ≥ n− t − 1 then we have µ ≥
(n−t−1

n−k−1

)
/
(n−t

k−t

)
=

1−(k/n)
1−(t/n) > 1− k

n = 1− (p− ε) = q+ ε > q.

Since |F c|= |F | ≥ (1+µ)
(n−t

k−t

)
=

(n−t
n−k

)
+

( x
n−k−1

)
, the Kruskal–Katona

Theorem [18, 17] implies that |∆n−i(F c)| ≥
(n−t

n−i

)
+

( x
n−i−1

)
. Thus it suf-

fices to show that
( x

n−i−1

)
≥ αµ

(n−t
n−i

)
, or equivalently,( x

n−i−1

)( x
n−k−1

) ≥
αµ

(n−t
n−i

)
µ
(n−t

k−t

) .

Since i ≥ k this is equivalent to i−t
x−n+i+1 · · ·

k−t+1
x−n+k+2 ≥ α n−k

n−i . The LHS is at
least 1, in fact, i−t

x−n+i+1 > 1 follows from x < n− t −1. On the other hand,

using i ≤ (p + ε)n we have RHS = α 1−(k/n)
1−(i/n) ≤ α 1−(p−ε)

1−(p+ε) = α q+ε
q−ε = 1,

which proves the claim. �
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Let us finish the proof of Theorem 3. Using the claim and the lemma, we
have

wp(G ) > ∑
i∈I

∣∣∣∣G ∩
(

[n]
i

)∣∣∣∣ piqn−i

= ∑
i∈I

|∆n−i(F c)|piqn−i

≥ ∑
i∈I

(1+αµ)
(

n− t
n− i

)
piqn−i

= (1+αµ)(pt −o(1))
> pt ,

which contradicts (M3). �
Proof of Theorem 4. This is similar to the proof of Theorem 3. Suppose that
there exists ε > 0 such that for all n0 we can find an r-wise t-intersecting
family F ⊂

([n]
k

)
which satisfies |F | ≥ (c+µ)

(n
k

)
for n > n0 and k

n = p−ε .
Let G = {G : G⊃∃F ∈F}=

∪n−k
`=0(∆`(F c))c and I = ((p−ε)n,(p+ε)n).

Claim 2. |∆n−i(F c)| ≥ (c+ µ)
(n

i

)
for i ∈ I.

Proof. Choose a real x ≤ n so that (c+µ)
(n

k

)
=

( x
n−k

)
. Since |F c|= |F | ≥( x

n−k

)
the Kruskal–Katona Theorem implies that |∆n−i(F c)| ≥

( x
n−i

)
. Thus

it suffices to show that
( x

n−i

)
≥ (c+ µ)

(n
i

)
, or equivalently,( x

n−i

)( x
n−k

) ≥
(c+ µ)

(n
i

)
(c+ µ)

(n
k

) .

Using i≥ k this is equivalent to i · · ·(i−k+1)≥ (x−n+ i) · · ·(x−n+k+1),
which follows from x ≤ n. �

Using the claim we have

wp(G ) ≥ ∑
i∈I

|∆n−i(F c)|piqn−i ≥ ∑
i∈I

(c+ µ)
(

n
i

)
piqn−i

= (c+ µ)(1−o(1)) > c,

which contradicts (M4). �
Proof of Theorem 5. The proof is almost identical to the proof of Theo-
rem 3. The only difference is that instead of Claim 1 we use the following
fact here:

If |F | ≥ (1−η)
(n−t

k−t

)
then |∆n−i(F c)| ≥ (1−η)

(n−t
n−i

)
holds for i ∈ I.

�
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3. EKR TYPE EXAMPLES

We list some known results about m(n,k,r, t) and w(n, p,r, t) in this sec-
tion.

3.1. The case r = 2. Ahlswede and Khachatrian settled Conjecture 1 for
this case. (The earlier results for the case n ≥ (t +1)(k−t +1) can be found
in [6, 26].)

Example 1 ([1]). m(n,k,r = 2, t) = maxi |Fi(n,k,r = 2, t)| for n > 2k− t.

Using Example 1 and Theorem 2 we will prove the following result,
which confirms Conjecture 2 for the case r = 2.

Example 2. w(n, p,r = 2, t) = maxi wp(Gi(n,r = 2, t)).

We note that

|Fi(n,k,r = 2, t)| ≥ |Fi−1(n,k,r = 2, t)|

iff k−t+1
n ≥ i

2i+t−1 , and

m(n,k,r = 2, t) = |Fi(n,k,r = 2, t)| =
t+2i

∑
j=t+i

(
t +2i

j

)(
n− t −2i

k− j

)
(3)

for i
2i+t−1 ≤ k−t+1

n ≤ i+1
2i+t+1 where i = 0,1, . . . ,k− t. Similarly we have

wp(Gi(n,r = 2, t)) ≥ wp(Gi−1(n,r = 2, t))

if p ≥ i
2i+t−1 . One can show this fact by calculating wp(Gi − Gi−1) ≥

wp(Gi−1 −Gi). Let imax = bn−t
2 c. Then we have have

w(n, p,r = 2, t) = wp(Gi(n,r = 2, t)) =
t+2i

∑
j=t+i

(
t +2i

j

)
p jqt+2i− j (4)

for i
2i+t−1 ≤ p ≤ i+1

2i+t+1 where i = 0,1, . . . , imax −1, and

w(n, p,r = 2, t) = wp(Gimax(n,r = 2, t))

for p ≥ imax
2imax+t−1 = n−t−ε

2n−2 where ε = n− t − 2imax ∈ {0,1}. In particular,
for the case p = 1/2 we get the Katona Theorem [16], i.e.,

w(n, p = 1/2,r = 2, t) = wp(Gimax(n,r = 2, t)) → 1/2 (n → ∞).

On the other hand, for the case p > 1/2 we have

w(n, p > 1/2,r = 2, t) = wp(Gimax(n,r = 2, t)) → 1 (n → ∞).
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The corresponding non-trivial t-intersecting version is as follows.

w∗(n, p,r = 2, t) = w(n, p,r = 2, t) for p ≥ 1
t+1 ,

lim
n→∞

w∗(n, p,r = 2, t) = pt for p ≤ 1
t+1 .

Proof of Example 2. Write Fi = Fi(n,k,r = 2, t) and Gi = Gi(n,r = 2, t).
We distinguish two cases. The first case is that p satisfies i

2i+t−1 < p <
i+1

2i+t+1 . Let µ > 0 be given and let p be fixed. Then we can choose
ε = ε(µ, p) > 0 and n0 = n0(ε) such that i

2i+t−1 < k−t+1
n < i+1

2i+t+1 and(n−t−2i
k− j

)
< (p jqt+2i− j + µ)

(n
k

)
hold for all n > n0 and k with | k

n − p| < ε .
Then from (3) we have

m(n,k,r = 2, t) = |Fi| < (wp(Gi)+ µ)
(

n
k

)
and the desired result (4) follows from Theorem 2.

The next case is that p = i
2i+t−1 . Set intervals I− = ((p− ε)n, pn + t −

1]∩N and I+ = (pn+ t −1,(p+ ε)n)∩N. Then we have

w(n, p,r = 2, t) ≤ ∑
k∈I−∪I+

∣∣∣∣G ∩
(

[n]
k

)∣∣∣∣ pkqn−k + ∑
k 6∈I−∪I+

(
n
k

)
pkqn−k.

≤ ∑
k∈I−

|Fi−1|pkqn−k + ∑
k∈I+

|Fi|pkqn−k +o(1).

Now set I′− = ((p− ε)n, pn]∩N and I′+ = (pn,(p + ε)n)∩N. Changing
from I−, I+ to I′−, I′+ only causes o(1) effect and we still have

w(n, p,r = 2, t) ≤ ∑
k∈I′−

|Fi−1|pkqn−k + ∑
k∈I′+

|Fi|pkqn−k +o(1).

Noting that |Fi| = wp(Gi)
(n

k

)
+o(1), we have

w(n, p,r = 2, t) ≤ 1
2

wp(Gi−1)+
1
2

wp(Gi)+o(1).

Since wp(Gi−1) = wp(Gi) for p = i
2i+t−1 we have

w(n, p,r = 2, t) ≤ wp(Gi)+o(1),

which actually implies w(n, p,r = 2, t) = wp(Gi) for all n ≥ t by (2). �
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3.2. The case t = 1. In this case both Conjecture 1 and Conjecture 2 are
known to be true.

Example 3 ([5, 9]). We have

m(n,k,r, t = 1)/
(n

k

)
= k

n for p ≤ r−1
r ,

lim
n→∞

m(n,k,r, t = 1)/
(n

k

)
= 1 for p > r−1

r .

Example 4 ([9]). We have

w(n, p,r, t = 1) = p for p ≤ r−1
r ,

lim
n→∞

w(n, p,r, t = 1) = 1 for p > r−1
r .

Let G1 = G1(n,r, t = 1) = {G ⊂ [n] : |G∩ [r+1]| ≥ r}. Then this is a non-
trivial r-wise 1-intersecting family with wp(G1) = pr(r + 1− pr). Brace
and Daykin proved that G1 is the optimal family if p = 1/2.

Example 5 ([2]). w∗(n, p = 1/2,r, t = 1) = (1
2)r( r

2 +1).

We can slightly extend the above result as follows.

Example 6 ([25]). There exists ε > 0 such that

w∗(n, p,r, t = 1) = |wp(G1))| = pr(r +1− pr)

holds for all n ≥ t, r ≥ 8 and p with |p− 1
2 | < ε . Moreover G1 is the only

optimal configuration (up to isomorphism).

The above result fails if r ≤ 5 as follows.

Example 7 ([11]). limn→∞ w∗(n, p,r = 5, t = 1) ≥ p3 > p5(6− 5p) holds
for 1/2 < p < 1+

√
21

10 .

Conjecture 3. There exists ε > 0 such that

lim
n→∞

w∗(n, p,r, t = 1) = pr(r +1− pr)

holds for all n ≥ t, r ≥ 6 and |p− 1
2 | < ε .

Example 8 ([25]). Let r ≥ 8. Then there exists εr > 0 and nr such that

m∗(n,k,r, t = 1) = |F1(n,k,r, t = 1)| = (r +1)
(

n− r−1
k− r

)
+

(
n− r−1
k− r−1

)
holds for all n > nr and k with | k

n −
1
2 | < εr. Moreover F1(n,k,r,1) is the

only optimal configuration (up to isomorphism).
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3.3. The case r = 3. Let pt = 2√
4t+9−1

. Then we have wp(G0(n,r = 3, t))≥
wp(G1(n,r = 3, t)) iff p≤ pt . If Conjecture 2 is true then we have w(n, p,r =
3, t) = pt for p ≤ pt .

Example 9 ([8]). w(n, p,r = 3, t = 2) = p2 for p ≤ 0.5018. Moreover
G0(n,r = 3, t = 2) is the only optimal configuration (up to isomorphism).

Comparing p2 = (
√

17 + 1)/8 ≈ 0.64, the bound for p in the above ex-
ample seems to be far from best possible. Theorem 3 and Example 9 with
some additional argument give the following.

Example 10 ([10]). m(n,k,r = 3, t = 2) =
(n−2

k−2

)
for k

n ≤ 0.501 and n > n0.
Moreover F0(n,k,r = 3, t = 2) is the only optimal configuration (up to
isomorphism).

For larger t, we can get the sharp bound for k/n and p.

Example 11 ([22]). m(n,k,r = 3, t) =
(n−t

k−t

)
for t ≥ 26, k

n ≤ pt and n >
n0(t). Moreover F0(n,k,r = 3, t) is the only optimal configuration (up to
isomorphism).

This together with Theorem 1 implies w(n, p,r = 3, t) = pt for t ≥ 26 and
p ≤ pt .

3.4. The case p ≈ 1/2. Let Tr = 2r − r−1. Then we have

w1/2(G0(n,r, t)) ≥ w1/2(G1(n,r, t))

iff t ≤ Tr. Frankl proved Conjecture 2 for the case p = 1/2.

Example 12 ([7]). w(n, p = 1/2,r, t) = w1/2(G0(n,r, t)) = (1/2)t for t ≤ Tr.

Using Theorem 3 we have

m(n,k,r, t) = (1+o(1))
(

n− t
k− t

)
for t ≤ Tr, k

n < 1
2 and n sufficiently large. Conjecture 1 suggests that the

o(1) term could be removed. In fact this was confirmed for 4 ≤ r ≤ 10 and
smaller t in [24]. Let us define tr for 4 ≤ r ≤ 10 as in the following table.

r 4 5 6 7 8 9 10
tr 7 18 41 89 184 377 762
Tr 11 26 57 120 247 502 1013
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Example 13 ([24]). For 4 ≤ r ≤ 10 there exists ε > 0 and n0 = n0(ε) such
that m(n,k,r, t) =

(n−t
k−t

)
holds for t ≤ tr, n > n0 and | k

n −
1
2 | < ε . Moreover

there exists γ = γ(ε) > 0 such that m∗(n,k,r, t) < (1− γ)
(n−t

k−t

)
holds for

n > n1(γ).

Thus it follows from Theorem 1 that for 4 ≤ r ≤ 10 there exists ε > 0 such
that w(n, p,r, t) = pt holds for all n ≥ t, t ≤ tr, |p− 1

2 | < ε .

3.5. General case.

Example 14 ([21]). We have m(n,k,r, t) =
(n−t

k−t

)
if p = k

n satisfies p < r−2
r ,

q p
t

t+1 (r−1)− p
t

t+1 + p < 0 (5)

and n > n0(r, t, p).

For d ∈ N let fd(x) = qxd − x + p and let αd ∈ (p,1) be the root of the
equation fd(x) = 0. Then αd satisfies the following identity for s ∈ C:

αs
d = ∑

j≥0

s
d j + s

(
d j + s

j

)
p(d−1) j+sq j,

and if 0 < p≤ 1
2 then pd+1 < αd − p < pd (see [20]). We note that fd(x) > 0

for 0 < x < αd and fd(x) < 0 for αd < x < 1. Thus we have the following
equivalent conditions.

(5) ⇐⇒ fr−1(p
t

t+1 ) < 0 ⇐⇒ αr−1 < p
t

t+1 ⇐⇒ t ≤ b − logαr−1
logαr−1−log pc. (6)

Example 14 and Theorem 1 give w(n, p,r, t) = pt if (5) holds. On the
other hand we have wp(G0(n,r, t)) ≥ wp(G1(n,r, t)) iff

(t + r)pr−1 − (t + r−1)pr −1 ≤ 0, (7)

or equivalently, t ≤ ∑r−1
i=0 (p−i−1). Thus if Conjecture 2 is true then we can

replace (5) by (7).

4. APPLICATIONS

4.1. Intersecting Sperner families. A family G ⊂ 2[n] is called a Sperner
family if G 6⊂G′ holds for all distinct G,G′ ∈G . Let s(n,r, t) be the maximal
size of r-wise t-intersecting Sperner families on n vertices.

Problem 2. Determine s(n,r, t).

Milner settled the case r = 2.

Example 15 ([19]). s(n,r = 2, t) =
( n
d n+t

2 e
)
.
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Frankl and Gronau settled the case r = 3 and t = 1.

Example 16 ([5, 13, 14]). s(n = 2`,r = 3, t = 1) =
(n−1

`

)
+1 for ` > `0 and

s(n = 2`+1,r = 3, t = 1) =
(n−1

`

)
for ` > `1.

Gronau also settled the case r ≥ 4 and t = 1 completely.

Example 17 ([13]). s(n,r ≥ 4, t = 1) =
( n−1
d n−1

2 e
)
.

Based on Example 11, the case r = 3 and t = 2 was settled for large n as
follows.

Example 18 ([10]). s(n = 2`,r = 3, t = 2) =
(n−2
`−1

)
for ` > `0 and s(n = 2`+

1,r = 3, t = 2) =
(n−2

`

)
+2 for ` > `1. Moreover F0(n = 2`,k = `+1,r =

3, t = 2) and F0(n = 2`+1,k = `,r = 3, t = 2)∪{[n]−{1}}∪{[n]−{2}}
are the only optimal configurations (up to isomorphism).

Problem 3. Does s(n,r, t) =
( n−t
d n−t

2 e
)

hold for r ≥ 4, t ≤ 2r − r−1 and n >

n0(r, t)?

Example 19 ([24]). Let r and t be fixed positive integers. Suppose that there
exists γ = γ(r, t) > 0 and ε = ε(γ) > 0 such that m∗(n,k,r, t) = (1−γ)

(n−t
k−t

)
holds for n > n0(ε) and | k

n −
1
2 | < ε . Then we have s(n,r, t) =

( n−t
d n−t

2 e
)

for
n > n0(ε).

This together with Example 13 gives the following.

Example 20 ([24]). For 4 ≤ r ≤ 10 we have s(n,r, t) =
( n−t
d n−t

2 e
)

for t ≤ tr
and n > n0. Moreover F0(n,k,r, t) is the only optimal configuration (up to
isomorphism), where k = t + dn−t

2 e or k = t + bn−t
2 c.

The proof of Example 14 given in [21] can be extended without much
changes to prove the following.

Example 21. Let r, t, p be given with p < r−2
r and (5). Then there exist

γ = γ(r, t, p) > 0 and ε = ε(γ) > 0 such that m∗(n,k,r, t) < (1− γ)
(n−t

k−t

)
holds for all n > n0(ε) and k with | k

n − p| < ε .

Example 21 for p = 1/2 and Example 19 give the following.

Example 22. Let r ≥ 5 and let αr−1 ∈ (1/2,1) be the root of the equation
2x = 1+ xr−1. Suppose that t ≤ − logαr−1

logαr−1+log2 (or one of (6)). Then we have
s(n,r, t) =

( n−t
d n−t

2 e
)

for n > n0.
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In this case p = 1/2 we note that t ≤ 2r−2 log2− 1, i.e., exp( t+1
2r−2 ) ≤ 2

implies (6). To see this fact we use αr−1 < p+ pr−1. Then we have

α t+1
r−1 < pt+1(1+ pr−2)t+1 < pt+1 exp(pr−2(t +1)) ≤ pt .

4.2. Intersecting and union families. A family G ⊂ 2[n] is called q-wise
t-union if |G1∪·· ·∪Gr| ≤ n− t holds for all G1, . . . ,Gr ∈ G . This is equiv-
alent to the property that G c = {[n]−G : G ∈ G } is q-wise t-intersecting.
Let f (n,k,(r,s),(q, t)) be the maximal size of n-vertex k-uniform r-wise
s-intersecting and q-wise t-union families.

Problem 4. Determine f (n,k,(r,s),(q, t)).

The case (r,s) = (q, t) = (2,1) is easy. In fact, it follows from the EKR
theorem [4] that

f (n,k,(2,1),(2,1)) =


(n−1

k

)
if n < 2k(n−1

k

)
=

(n−1
k−1

)
if n = 2k(n−1

k−1

)
if n > 2k.

But the case r ≥ 3 or q ≥ 3 is not so easy even if s = t = 1. Engel and
Gronau settled the case r ≥ 4, q ≥ 4 and s = t = 1 as follows.

Example 23 ([15, 3]). Let r ≥ 4, q ≥ 4 and n−1
q +1 ≤ k ≤ r−1

r (n−1). Then
we have

f (n,k,(r,1),(q,1)) =
(

n−2
k−1

)
.

The case (r,s) = (q, t) = (3,1) is more difficult and still open. As a spe-
cial case the following is known.

Example 24 ([12]). We have f (2n,n,(3,1),(3,1)) =
(2n−2

n−1

)
. Moreover

{F ∈
([2n−1]

n

)
: 1 ∈ F} is the only optimal configuration (up to isomor-

phism).

The following result is based on the result of 4-wise intersecting case of
Example 13.

Example 25 ([23, 24]). Let t be an integer with 1 ≤ t ≤ 4. Then we have

f (2n,n,(4, t),(4, t)) =
(

2n−2t
n− t

)
for n > n0. Moreover {F ∈

([2n−t]
n

)
: [t] ⊂ F} is the only optimal configura-

tion (up to isomorphism).
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