
On a special arrangement of spheres

Hiroshi Maehara and Norihide Tokushige
Ryukyu University, Nishihara, Okinawa, Japan

April 28, 2003

Abstract
A sphere-system in Rn is a family of n + 2 spheres in Rn in which

each n+1 spheres have a unique common point but all n+2 have empty
intersection. A unit-sphere-system is a sphere-system consisting of all
unit spheres. We prove that for every 2 ≤ n 6= 3, there is a unit-sphere-
system in Rn. The case n = 3 is open. We also prove that if there
is a unit-sphere-system in R3, then there is a tetrahedron in R3 one
of whose “escribed” spheres lies completely inside the circumscribed
sphere.

1 Introduction

By a sphere-system in the n-dimensional Euclidean space Rn, we mean a
family of n+2 (hollow) spheres in Rn such that (i) each n+1 spheres have a
unique common point, and (ii) the intersection of all n + 2 spheres is empty.
Figure 1 shows a sphere-system (a circle-system) in R2.
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Figure 1: A circle-system

Concerning a circle-system, the following result is known.
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Theorem 1. If some three circles in a circle-system are unit circles, then
the remaining circle is also a unit circle.

This theorem was first discovered by Roger Johnson in 1916, see [6]. A
proof is given in Pólya [5] (Chapter 10) to show how a useful idea occurs to
us in a process of problem-solving. See also Davis and Hersh [3] Chapter 6.

A sphere-system consisting of all unit spheres is called a unit-sphere-
system. The circle-system in Figure 1 is a unit-sphere-system (unit-circle-
system) in R2. Theorem 1 implies that if some three circles in a circle-system
are unit circles, then it is a unit-circle-system. Thus, there are many unit-
circle-systems in R2. It is obvious that no unit-sphere-system exists in R1.

In a sphere-system in Rn, n > 2, we cannot expect a result similar to
Theorem 1. For example, if a sphere-system in R3 has four unit spheres
whose centers span a regular tetrahedron, then the radius of the fifth sphere
is 2/3. In n ≥ 3, even the existence of a unit-sphere-system in Rn seems
doubtful. The first author conjectured [4] that for n ≥ 3, no unit-sphere-
system in Rn would exist. This was wrong.

A sphere-system in Rn is called a right-bipyramid-type (RB-type) if the
spheres have centers p0, p1, . . . , pn+1 such that (i) p1, p2, . . . , pn span an (n−
1)-dimensional regular simplex ∆n−1 in Rn, and (ii) the line segment p0pn+1

intersects ∆n−1 orthogonally at their barycenters.

Theorem 2. There is a unit-sphere-system of RB-type in Rn if and only if
n ≥ 4.

Thus, there are unit-sphere-systems in Rn for all n 6= 1, 3. At present,
we do not know whether there is a unit-sphere-system in R3 or not. Several
attempts lead us to the following conjecture.

Conjecture 1. There is no unit-sphere-system in R3.

For an n-dimensional simplex σ in Rn, n ≥ 2, its circumscribed sphere
is the sphere passing through the n + 1 vertices of the simplex. A sphere
that is tangent to all n + 1 facets (or extended hyperplanes) of σ is called a
tangent sphere of σ. The one that is contained in σ is the inscribed sphere of
σ, and other tangent spheres are called escribed spheres of σ. Every triangle
has exactly four tangent circles. For n ≥ 3, the number of distinct tangent
spheres of an n-simplex depends on the shape of the simplex. The number of
tangent spheres of a tetrahedron in R3 can vary from 4 to 8, see, e.g. Berger
[2] p.296.
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Figure 2: The circumscribed circle and an escribed circle of a triangle

It is obvious that in the plane case, the circumscribed circle of a triangle
always cuts all escribed circles of the triangle, see Figure 2. Then, for n ≥ 3, is
there an n-simplex that has an escribed sphere disjoint from its circumscribed
sphere?

Conjecture 2. In any tetrahedron in R3, each escribed sphere intersects the
circumscribed sphere.

Theorem 3. Let n ≥ 3. If there is a unit-sphere-system in Rn, then there is
an n-dimensional simplex one of whose escribed spheres lies completely inside
the circumscribed sphere.

The case n = 3 of this theorem implies that Conjecture 1 follows from
Conjecture 2. It also follows from Theorems 2 and 3 that for n ≥ 4, there is
an n-simplex in Rn one of whose escribed spheres lies completely inside the
circumscribed sphere.

In the final section (Section 5), we consider unit-sphere-systems from the
view point of unit-distance representations of the graph Kd+2,d+2−“1-factor.”

2 Proof of Theorem 2

In a sphere-system in Rn, the unique common point of each n + 1 spheres is
called the junction of the n + 1 spheres.

First recall here that the radius of the circumscribed sphere of a k-
dimensional regular simplex of unit side-length is equal to√

k

2(k + 1)
. (1)

We prove that there is an RB-type sphere-system consisting of the spheres
of the same size in Rn if and only if n ≥ 4. Suppose that there is an RB-type
sphere-system {S0, S1, . . . , Sn+1} in Rn consisting of n+2 spheres of the same
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radius r. Let pi denote the center of Si. Since the sphere-system is RB-type,
we may suppose that p1, . . . , pn are the vertices of a regular (n−1)-simplex of
unit side-length centered at the origin o = (0, . . . , 0), lying on the hyperplane
H defined by setting the last coordinate to be zero. Moreover, we may put

p0 = (0, . . . , 0, x), pn+1 = (0, . . . , 0,−x), x > 0. (2)

For each i = 0, 1, . . . , n+1, let qi denote the junction determined by the n+1
spheres other than Si. Since S0 ∩ Sn+1 ⊂ H, the junctions q1, . . . , qn lie on
H. Since piq0 = piqn+1 = r for i = 1, . . . , n, we may put

q0 = (0, . . . , 0, y), qn+1 = (0, . . . , 0,−y). (3)

Since r = p0qn+1 = p0q1 > p0o, it follows that y > 0 and

r = p0qn+1 = x + y. (4)

Since = opi =
√

(n− 1)/(2n) by (1), we have

r = p1q0 =
√

y2 + (n− 1)/(2n). (5)

Since, for each 1 ≤ i ≤ n, the line opi is the locus of those points on H that
are equidistant from the n− 1 points pk (k = 1, . . . , n; k 6= i), the junction qi

lies on the line opi. Hence we may put

qi = tpi, i = 1, 2, . . . , n. (6)

For each 1 ≤ i ≤ n, let zi denote the center of the (n−2)-dimensional simplex
spanned by {p1, . . . , pn} − {pi}, that is,

zi =
1

n− 1

(
n∑

k=1

pk − pi

)
=

−1

n− 1
pi, i = 1, 2, . . . , n.

Then

p1zn =

√
n− 2

2(n− 1)
,

by (1). Since p1qn
2 = p1zn

2 + znqn
2, we have

r = p1qn =

√
n− 2

2(n− 1)
+

(
t +

1

n− 1

)2
n− 1

2n
. (7)
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Since p0qn
2 = p0o

2 + oqn
2, we have

r = p0qn =

√
x2 + t2

n− 1

2n
. (8)

From (7)(8), we have

t = nx2 − n2 − 2n + 1

2(n− 1)
. (9)

From (4)(5) and (4)(7)(9), we have the following simultaneous equation for
x, y:

2xy =
n− 1

2n
− x2 (10)

(x + y)2 =
n− 2

2(n− 1)
+

n− 1

2n

(
nx2 − n2 − 2n− 1

2(n− 1)

)2

. (11)

Eliminating y, we get a sectic equation for x with 6 solutions

±
√

n− 1

2n
, ±

√
n2 − 4

8n(n− 1)
±

√
n− 4

8(n− 1)
.

(These solutions can be easily found by using, say, Mathematica or Maple.)
Thus the system of equations (10)(11) has a real solution (x, y) with x >
0, y > 0 if and only if the sectic equation has a real solution x such that
0 < x <

√
(n− 1)/(2n), that is, if and only if√

n2 − 4

8n(n− 1)
±

√
n− 4

8(n− 1)
(12)

are real numbers. Hence, we must have n ≥ 4.
Next, suppose n ≥ 4. Let x be one of the values in (12) and define p0, pn+1

as in (2). Choose an (n− 1)-dimensional regular simplex of unit side-length
centered at the origin and lying on the hyperplane H, and let p1, . . . , pn

be its vertices. Define t, y by (9)(10), and q0, q1, . . . , qn+1 by (3)(6). Put
r = x + y. Then, (4)(5)(7)(8) hold. Hence, the spheres of radius r centered
at p0, p1, . . . , pn+1 form a sphere-system of RB-type.
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3 Some lemmas

Let ϕ denote the inversion of Rn with respect to the unit sphere centered at
the origin o.

Lemma 1. Suppose that in the plane, a circle Γ encloses a triangle ABC,
and the triangle ABC encloses a circle γ of radius 1/d centered at the origin.
Then the radius r of ϕ(Γ ) satisfies r ≤ d/2, the equality holds only when Γ
is the circumscribed circle of ABC and γ is the inscribed circle of ABC.

Proof. By replacing ABC by a larger triangle if necessary, we may suppose
that ABC is inscribed in Γ . Let A′B′C ′ be the triangle homothetic to ABC
and circumscribed to the circle γ. Then, since the center of the homothety
is contained in the triangle A′B′C ′, the circumscribed circle Γ ′ of A′B′C ′

lies inside Γ . Hence ϕ(Γ ) lies inside ϕ(Γ ′), and hence the radius of ϕ(Γ ) is
smaller than the radius of ϕ(Γ ′). Therefore, it is enough to show that the
radius of ϕ(Γ ′) is equal to d/2.

Now, notice that by the inversion ϕ, the line A′B′ goes to a circle of
diameter d passing through the origin. Similarly, the lines B′C ′, C ′A′ go
to two circles of diameter d passing through the origin. And the points
ϕ(A′), ϕ(B′), ϕ(C ′) are the intersection points of pairs among these three
circles. Therefore, these three circles and ϕ(Γ ′) form together a circle-system.
Then by Theorem 1, the radius of ϕ(Γ ′) is d/2.

Lemma 2. Let σ be an n-simplex in Rn, n ≥ 3, and let ` be a line passing
through an interior point of σ. Then there is a plane π containing the line `
such that σ ∩ π is a triangle.

Proof. First consider the case n = 3. Let π be any plane containing `. Rotate
π around the line ` until it meets a vertex of σ. At that time, the section of σ
by the plane π is a triangle. Similarly, for n ≥ 3, we can cut the n-simplex σ
by a hyperplane containing ` so that the section is an (n− 1)-simplex. Then
the lemma follows by induction on n.

Lemma 3. Let n ≥ 3. Suppose that a sphere Σ in Rn encloses an n-simplex
σ, and σ contains a sphere K of radius 1/d centered at the origin. Then the
radius of the sphere ϕ(Σ) is smaller than d/2.

Proof. Let ` be a line passing through the origin and the center of the sphere
Σ. Then there is a plane π containing ` such that π ∩ σ is a triangle. Notice
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that on the plane π, the circle Σ ∩ π is not the circumscribed circle of the
triangle σ∩π. Now, by restricting ϕ on this plane π, and applying Lemma 1,
we can deduce that the radius of ϕ(Σ) is smaller than d/2.

Lemma 4. Let {S0, S1, . . . , Sn+1} be a sphere-system in Rn, and let qi be
the junction of the n + 1 spheres other than Si. Let ϕ0 denote the inversion
of Rn with respect to the unit sphere centered at q0. Then n + 1 points
ϕ0(qi) (1 ≤ i ≤ n + 1) span an n-simplex σ, and ϕ0(S0) is the circumscribed
sphere of σ.

Proof. Since q0 6∈ S0, ϕ0(S0) is a sphere, and the n+1 points ϕ0(qi) (1 ≤ i ≤
n + 1) clearly lie on ϕ0(S0). For each i = 1, 2, . . . , n + 1, Hi := ϕ0(Si) is a
hyperplane containing the n points ϕ0(qj) (1 ≤ j ≤ n + 1, j 6= i).

Suppose that X := {ϕ0(qi) | 1 ≤ i ≤ n + 1} does not span an n-simplex.
Then X lies on the flat spanned by X − {ϕ0(qi)}, for some 1 ≤ i ≤ n + 1.
Hence X lies on the hyperplane Hi, which contradicts qi 6∈ Si.

The next lemma will be clear.

Lemma 5. Let σ be an n-simplex in Rn. Then for any point q 6∈ σ, there is a
vertex p of σ such that the line segment pq crosses the hyperplane determined
by the facet of σ opposite to p.

4 Proof of Theorem 3

Let {S0, S1, . . . , Sn+1} be a unit-sphere-system in Rn, n ≥ 3, and let qi denote
the junction of n + 1 spheres other than Si. Denote by ϕ0 the inversion of
Rn with respect to the unit sphere centered at q0.

First, we show that there is a j such that qj lies inside Sj. Suppose that
q0 lies outside S0. The n + 1 points ϕ0(q1), . . . , ϕ0(qn+1) span an n-simplex
σ and ϕ0(S0) is the circumscribed sphere of σ. Since q0 lies outside ϕ0(S0),
σ does not contain q0. Then, by Lemma 5, there is some j, 1 ≤ j ≤ n + 1,
such that the hyperplane ϕ0(Sj) separates ϕ0(qj) from q0. This implies that
qj lies inside the sphere Sj.

By changing the indexes if necessary, we may now suppose that q0 lies
inside S0. Let Λ denote the sphere of radius 2 centered at q0. Then the n+1
spheres Si (0 ≤ i ≤ n + 1) lie inside Λ with each being tangent to Λ, and S0
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lies completely inside Λ. Let

K = ϕ(Λ),

Σ = ϕ(S0),

Hi = ϕ(Si), i = 1, 2, . . . , n + 1.

Then, Hi, i = 1, 2, . . . , n+1, are hyperplanes. Let σ be the n-simplex spanned
by the n+1 points ϕ0(qi) (1 ≤ i ≤ n+1). The sphere Σ is the circumscribed
sphere of σ, and K is a tangent sphere of σ. Furthermore, K lies com-
pletely inside Σ. So, it is enough to show that K is an escribed sphere of
σ. Suppose, on the contrary, that K is the inscribed sphere of σ. Then, by
Lemma 3, the radius of S0 = ϕ(Σ) is smaller than 1. This contradicts that
{S0, S1, . . . , Sn+1} is a unit-sphere-system.

5 Unit distance representations

Let G be a finite graph. An injection f : V (G) → Rd is called a unit distance
representation (u.d.r.) of G if

||f(x)− f(y)|| = 1 iff xy ∈ E(G).

Let us define the dimension of G by

dim(G) = min{d : ∃u.d.r. f : V (G) → Rd}.

Let Gd denote the graph Kd+2,d+2 − (d + 2)K2, that is,

V (Gd) = A ∪B, A = {a1, . . . , ad+2}, B = {b1, . . . , bd+2},

E(Gd) = {aibj : 1 ≤ i, j ≤ d + 2, i 6= j}.

Note that Gd has 2(d + 2) vertices and (d + 2)2 − (d + 2) edges. It is easy to
see that dim(G1) = 2.

Now we consider the unit-sphere-system in Rd. If the centers of the
spheres and the junctions are all different (this is the case in RB-type as
easily verified), then by taking the centers as f(A) and junctions as f(B),
we have a u.d.r. f of Gd in Rd. Hence Theorem 1 (Figure 1) and Theorem 2
give

dim(Gd) ≤ d for d = 2 or d ≥ 4. (13)
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Note that dim(Gd) ≤ d implies the existence of a unit-sphere system in Rd,
but there is a unit-sphere-system in which a center and a junction coincide,
and which does not give a unit distance representation of Gd.

Lemma 6. dim(Gd) ≥ d for d ≥ 1.

Proof. We prove the above inequality by linear algebra method (cf. [1]). Sup-
pose that Gd has a u.d.r. f in Rn. Then, by definition, we have

||f(ai)− f(bj)|| = 1 iff i 6= j.

Let us define an n-variable polynomial gi : Rn → R (1 ≤ i ≤ d+2) by gi(x) =
||x− f(ai)||2 − 1. Namely, setting x = (x1, . . . , xn) and f(ai) = (α1, . . . , αn),

gi(x1, . . . , xn) = (x2
1 + · · ·+ x2

n)− 2(α1x1 + · · ·+ αnxn) + α2
1 + · · ·+ α2

n − 1.

Since gi(f(bj)) = 0 iff i 6= j, these d + 2 polynomials g1, . . . , gd+2 are linearly
independent, i.e., dim <g1, . . . , gd+2> = d + 2.

On the other hand, gi is a member of the subspace of polynomials spanned
by

x2
1 + · · ·+ x2

n, x1, x2, . . . , xn, 1

whose dimension is n + 2. Therefore, we have dim <g1, . . . , gd+2> ≤ n + 2
and d ≤ n, which completes the proof.

The next theorem follows from the Lemma 6 and (13).

Theorem 4. dim(Gd) = d for d = 2 or d ≥ 4.

Now we know that dim(G3) = 3 or 4 and our conjecture is

Conjecture 3. dim(G3) = 4.

If G3 has a u.d.r f in R3, then we may assume that

f(a1) = (0, 0, 0), f(b2) = (1, 0, 0), f(b3) = (p,±
√

1− p2, 0).

The authors checked with aid of computer that f(b4) 6= (0, 0, 1).

Let r1, . . . , rd+2 be positive reals. Suppose that an injection f : V (Gd) →
Rd satisfies

||f(ai)− f(bj)|| = ri iff i 6= j. (14)
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This representation gives a sphere-system in Rd. For every d ≥ 2, we can find
r1, . . . , rd+2 with an injection f : V (Gd) → Rn satisfying (14) iff n ≥ d. The
proof is the same as the proof of Lemma 6 by setting gi(x) = ||x−f(ai)||2−r2

i .
On the other hand, for every d ≥ 2 (including d = 3) we have a sphere-system
in Rd in which the centers and the junctions are all different. Therefore, the
dimension of Gd as a representation satisfying (14) is precisely d for all d ≥ 2.
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