On a special arrangement of spheres

Hiroshi Maehara and Norihide Tokushige Ryukyu University, Nishihara, Okinawa, Japan

April 28, 2003

Abstract

A sphere-system in \mathbb{R}^n is a family of n+2 spheres in \mathbb{R}^n in which each n+1 spheres have a unique common point but all n+2 have empty intersection. A unit-sphere-system is a sphere-system consisting of all unit spheres. We prove that for every $2 \le n \ne 3$, there is a unit-sphere-system in \mathbb{R}^n . The case n=3 is open. We also prove that if there is a unit-sphere-system in \mathbb{R}^3 , then there is a tetrahedron in \mathbb{R}^3 one of whose "escribed" spheres lies completely inside the circumscribed sphere.

1 Introduction

By a *sphere-system* in the *n*-dimensional Euclidean space \mathbb{R}^n , we mean a family of n+2 (hollow) spheres in \mathbb{R}^n such that (i) each n+1 spheres have a unique common point, and (ii) the intersection of all n+2 spheres is empty. Figure 1 shows a sphere-system (a circle-system) in \mathbb{R}^2 .

Figure 1: A circle-system

Concerning a circle-system, the following result is known.

Theorem 1. If some three circles in a circle-system are unit circles, then the remaining circle is also a unit circle.

This theorem was first discovered by Roger Johnson in 1916, see [6]. A proof is given in Pólya [5] (Chapter 10) to show how a useful idea occurs to us in a process of problem-solving. See also Davis and Hersh [3] Chapter 6.

A sphere-system consisting of all unit spheres is called a *unit-sphere-system*. The circle-system in Figure 1 is a unit-sphere-system (unit-circle-system) in \mathbb{R}^2 . Theorem 1 implies that if some three circles in a circle-system are unit circles, then it is a unit-circle-system. Thus, there are many unit-circle-systems in \mathbb{R}^2 . It is obvious that no unit-sphere-system exists in \mathbb{R}^1 .

In a sphere-system in \mathbb{R}^n , n > 2, we cannot expect a result similar to Theorem 1. For example, if a sphere-system in \mathbb{R}^3 has four unit spheres whose centers span a regular tetrahedron, then the radius of the fifth sphere is 2/3. In $n \geq 3$, even the existence of a unit-sphere-system in \mathbb{R}^n seems doubtful. The first author conjectured [4] that for $n \geq 3$, no unit-sphere-system in \mathbb{R}^n would exist. This was wrong.

A sphere-system in \mathbb{R}^n is called a *right-bipyramid*-type (RB-type) if the spheres have centers $p_0, p_1, \ldots, p_{n+1}$ such that (i) p_1, p_2, \ldots, p_n span an (n-1)-dimensional regular simplex Δ^{n-1} in \mathbb{R}^n , and (ii) the line segment $p_0 p_{n+1}$ intersects Δ^{n-1} orthogonally at their barycenters.

Theorem 2. There is a unit-sphere-system of RB-type in \mathbb{R}^n if and only if $n \geq 4$.

Thus, there are unit-sphere-systems in \mathbb{R}^n for all $n \neq 1, 3$. At present, we do not know whether there is a unit-sphere-system in \mathbb{R}^3 or not. Several attempts lead us to the following conjecture.

Conjecture 1. There is no unit-sphere-system in \mathbb{R}^3 .

For an n-dimensional simplex σ in \mathbb{R}^n , $n \geq 2$, its circumscribed sphere is the sphere passing through the n+1 vertices of the simplex. A sphere that is tangent to all n+1 facets (or extended hyperplanes) of σ is called a tangent sphere of σ . The one that is contained in σ is the inscribed sphere of σ , and other tangent spheres are called escribed spheres of σ . Every triangle has exactly four tangent circles. For $n \geq 3$, the number of distinct tangent spheres of an n-simplex depends on the shape of the simplex. The number of tangent spheres of a tetrahedron in \mathbb{R}^3 can vary from 4 to 8, see, e.g. Berger [2] p.296.

Figure 2: The circumscribed circle and an escribed circle of a triangle

It is obvious that in the plane case, the circumscribed circle of a triangle always cuts all escribed circles of the triangle, see Figure 2. Then, for $n \geq 3$, is there an n-simplex that has an escribed sphere disjoint from its circumscribed sphere?

Conjecture 2. In any tetrahedron in \mathbb{R}^3 , each escribed sphere intersects the circumscribed sphere.

Theorem 3. Let $n \geq 3$. If there is a unit-sphere-system in \mathbb{R}^n , then there is an n-dimensional simplex one of whose escribed spheres lies completely inside the circumscribed sphere.

The case n=3 of this theorem implies that Conjecture 1 follows from Conjecture 2. It also follows from Theorems 2 and 3 that for $n \geq 4$, there is an n-simplex in \mathbb{R}^n one of whose escribed spheres lies completely inside the circumscribed sphere.

In the final section (Section 5), we consider unit-sphere-systems from the view point of unit-distance representations of the graph $K_{d+2,d+2}$ —"1-factor."

2 Proof of Theorem 2

In a sphere-system in \mathbb{R}^n , the unique common point of each n+1 spheres is called the *junction* of the n+1 spheres.

First recall here that the radius of the circumscribed sphere of a k-dimensional regular simplex of unit side-length is equal to

$$\sqrt{\frac{k}{2(k+1)}}. (1)$$

We prove that there is an RB-type sphere-system consisting of the spheres of the same size in \mathbb{R}^n if and only if $n \geq 4$. Suppose that there is an RB-type sphere-system $\{S_0, S_1, \ldots, S_{n+1}\}$ in \mathbb{R}^n consisting of n+2 spheres of the same

radius r. Let p_i denote the center of S_i . Since the sphere-system is RB-type, we may suppose that p_1, \ldots, p_n are the vertices of a regular (n-1)-simplex of unit side-length centered at the origin $o = (0, \ldots, 0)$, lying on the hyperplane H defined by setting the last coordinate to be zero. Moreover, we may put

$$p_0 = (0, \dots, 0, x), p_{n+1} = (0, \dots, 0, -x), x > 0.$$
 (2)

For each $i=0,1,\ldots,n+1$, let q_i denote the junction determined by the n+1 spheres other than S_i . Since $S_0 \cap S_{n+1} \subset H$, the junctions q_1,\ldots,q_n lie on H. Since $\overline{p_iq_0} = \overline{p_iq_{n+1}} = r$ for $i=1,\ldots,n$, we may put

$$q_0 = (0, \dots, 0, y), \ q_{n+1} = (0, \dots, 0, -y).$$
 (3)

Since $r = \overline{p_0q_{n+1}} = \overline{p_0q_1} > \overline{p_0o}$, it follows that y > 0 and

$$r = \overline{p_0 q_{n+1}} = x + y. \tag{4}$$

Since $= \overline{op_i} = \sqrt{(n-1)/(2n)}$ by (1), we have

$$r = \overline{p_1 q_0} = \sqrt{y^2 + (n-1)/(2n)}. (5)$$

Since, for each $1 \le i \le n$, the line op_i is the locus of those points on H that are equidistant from the n-1 points p_k $(k=1,\ldots,n;\ k\ne i)$, the junction q_i lies on the line op_i . Hence we may put

$$q_i = tp_i, i = 1, 2, \dots, n.$$
 (6)

For each $1 \le i \le n$, let z_i denote the center of the (n-2)-dimensional simplex spanned by $\{p_1, \ldots, p_n\} - \{p_i\}$, that is,

$$z_i = \frac{1}{n-1} \left(\sum_{k=1}^n p_k - p_i \right) = \frac{-1}{n-1} p_i, \ i = 1, 2, \dots, n.$$

Then

$$\overline{p_1 z_n} = \sqrt{\frac{n-2}{2(n-1)}},$$

by (1). Since $\overline{p_1q_n}^2 = \overline{p_1z_n}^2 + \overline{z_nq_n}^2$, we have

$$r = \overline{p_1 q_n} = \sqrt{\frac{n-2}{2(n-1)} + \left(t + \frac{1}{n-1}\right)^2 \frac{n-1}{2n}}.$$
 (7)

Since $\overline{p_0q_n}^2 = \overline{p_0o^2} + \overline{oq_n}^2$, we have

$$r = \overline{p_0 q_n} = \sqrt{x^2 + t^2 \frac{n-1}{2n}}. (8)$$

From (7)(8), we have

$$t = nx^2 - \frac{n^2 - 2n + 1}{2(n-1)}. (9)$$

From (4)(5) and (4)(7)(9), we have the following simultaneous equation for x, y:

$$2xy = \frac{n-1}{2n} - x^2 (10)$$

$$(x+y)^2 = \frac{n-2}{2(n-1)} + \frac{n-1}{2n} \left(nx^2 - \frac{n^2 - 2n - 1}{2(n-1)} \right)^2.$$
 (11)

Eliminating y, we get a sectic equation for x with 6 solutions

$$\pm\sqrt{\frac{n-1}{2n}}, \ \pm\sqrt{\frac{n^2-4}{8n(n-1)}}\pm\sqrt{\frac{n-4}{8(n-1)}}.$$

(These solutions can be easily found by using, say, *Mathematica* or *Maple*.) Thus the system of equations (10)(11) has a real solution (x, y) with x > 0, y > 0 if and only if the sectic equation has a real solution x such that $0 < x < \sqrt{(n-1)/(2n)}$, that is, if and only if

$$\sqrt{\frac{n^2 - 4}{8n(n-1)}} \pm \sqrt{\frac{n-4}{8(n-1)}} \tag{12}$$

are real numbers. Hence, we must have $n \geq 4$.

Next, suppose $n \geq 4$. Let x be one of the values in (12) and define p_0, p_{n+1} as in (2). Choose an (n-1)-dimensional regular simplex of unit side-length centered at the origin and lying on the hyperplane H, and let p_1, \ldots, p_n be its vertices. Define t, y by (9)(10), and $q_0, q_1, \ldots, q_{n+1}$ by (3)(6). Put r = x + y. Then, (4)(5)(7)(8) hold. Hence, the spheres of radius r centered at $p_0, p_1, \ldots, p_{n+1}$ form a sphere-system of RB-type.

3 Some lemmas

Let φ denote the inversion of \mathbb{R}^n with respect to the unit sphere centered at the origin o.

Lemma 1. Suppose that in the plane, a circle Γ encloses a triangle ABC, and the triangle ABC encloses a circle γ of radius 1/d centered at the origin. Then the radius r of $\varphi(\Gamma)$ satisfies $r \leq d/2$, the equality holds only when Γ is the circumscribed circle of ABC and γ is the inscribed circle of ABC.

Proof. By replacing ABC by a larger triangle if necessary, we may suppose that ABC is inscribed in Γ . Let A'B'C' be the triangle homothetic to ABC and circumscribed to the circle γ . Then, since the center of the homothety is contained in the triangle A'B'C', the circumscribed circle Γ' of A'B'C' lies inside Γ . Hence Γ lies inside Γ and hence the radius of Γ is smaller than the radius of Γ lies inside Γ is enough to show that the radius of Γ is equal to Γ

Now, notice that by the inversion φ , the line A'B' goes to a circle of diameter d passing through the origin. Similarly, the lines B'C', C'A' go to two circles of diameter d passing through the origin. And the points $\varphi(A'), \varphi(B'), \varphi(C')$ are the intersection points of pairs among these three circles. Therefore, these three circles and $\varphi(\Gamma')$ form together a circle-system. Then by Theorem 1, the radius of $\varphi(\Gamma')$ is d/2.

Lemma 2. Let σ be an n-simplex in \mathbb{R}^n , $n \geq 3$, and let ℓ be a line passing through an interior point of σ . Then there is a plane π containing the line ℓ such that $\sigma \cap \pi$ is a triangle.

Proof. First consider the case n=3. Let π be any plane containing ℓ . Rotate π around the line ℓ until it meets a vertex of σ . At that time, the section of σ by the plane π is a triangle. Similarly, for $n \geq 3$, we can cut the n-simplex σ by a hyperplane containing ℓ so that the section is an (n-1)-simplex. Then the lemma follows by induction on n.

Lemma 3. Let $n \geq 3$. Suppose that a sphere Σ in \mathbb{R}^n encloses an n-simplex σ , and σ contains a sphere K of radius 1/d centered at the origin. Then the radius of the sphere $\varphi(\Sigma)$ is smaller than d/2.

Proof. Let ℓ be a line passing through the origin and the center of the sphere Σ . Then there is a plane π containing ℓ such that $\pi \cap \sigma$ is a triangle. Notice

that on the plane π , the circle $\Sigma \cap \pi$ is not the circumscribed circle of the triangle $\sigma \cap \pi$. Now, by restricting φ on this plane π , and applying Lemma 1, we can deduce that the radius of $\varphi(\Sigma)$ is smaller than d/2.

Lemma 4. Let $\{S_0, S_1, \ldots, S_{n+1}\}$ be a sphere-system in \mathbb{R}^n , and let q_i be the junction of the n+1 spheres other than S_i . Let φ_0 denote the inversion of \mathbb{R}^n with respect to the unit sphere centered at q_0 . Then n+1 points $\varphi_0(q_i)$ $(1 \le i \le n+1)$ span an n-simplex σ , and $\varphi_0(S_0)$ is the circumscribed sphere of σ .

Proof. Since $q_0 \notin S_0$, $\varphi_0(S_0)$ is a sphere, and the n+1 points $\varphi_0(q_i)$ $(1 \le i \le n+1)$ clearly lie on $\varphi_0(S_0)$. For each $i=1,2,\ldots,n+1$, $H_i:=\varphi_0(S_i)$ is a hyperplane containing the n points $\varphi_0(q_i)$ $(1 \le j \le n+1, j \ne i)$.

Suppose that $X := \{\varphi_0(q_i) \mid 1 \le i \le n+1\}$ does not span an *n*-simplex. Then X lies on the flat spanned by $X - \{\varphi_0(q_i)\}$, for some $1 \le i \le n+1$. Hence X lies on the hyperplane H_i , which contradicts $q_i \notin S_i$.

The next lemma will be clear.

Lemma 5. Let σ be an n-simplex in \mathbb{R}^n . Then for any point $q \notin \sigma$, there is a vertex p of σ such that the line segment pq crosses the hyperplane determined by the facet of σ opposite to p.

4 Proof of Theorem 3

Let $\{S_0, S_1, \ldots, S_{n+1}\}$ be a unit-sphere-system in \mathbb{R}^n , $n \geq 3$, and let q_i denote the junction of n+1 spheres other than S_i . Denote by φ_0 the inversion of \mathbb{R}^n with respect to the unit sphere centered at q_0 .

First, we show that there is a j such that q_j lies inside S_j . Suppose that q_0 lies outside S_0 . The n+1 points $\varphi_0(q_1), \ldots, \varphi_0(q_{n+1})$ span an n-simplex σ and $\varphi_0(S_0)$ is the circumscribed sphere of σ . Since q_0 lies outside $\varphi_0(S_0)$, σ does not contain q_0 . Then, by Lemma 5, there is some $j, 1 \leq j \leq n+1$, such that the hyperplane $\varphi_0(S_j)$ separates $\varphi_0(q_j)$ from q_0 . This implies that q_j lies inside the sphere S_j .

By changing the indexes if necessary, we may now suppose that q_0 lies inside S_0 . Let Λ denote the sphere of radius 2 centered at q_0 . Then the n+1 spheres S_i ($0 \le i \le n+1$) lie inside Λ with each being tangent to Λ , and S_0

lies completely inside Λ . Let

$$K = \varphi(\Lambda),$$

 $\Sigma = \varphi(S_0),$
 $H_i = \varphi(S_i), i = 1, 2, \dots, n+1.$

Then, $H_i, i = 1, 2, ..., n+1$, are hyperplanes. Let σ be the n-simplex spanned by the n+1 points $\varphi_0(q_i)$ ($1 \le i \le n+1$). The sphere Σ is the circumscribed sphere of σ , and K is a tangent sphere of σ . Furthermore, K lies completely inside Σ . So, it is enough to show that K is an escribed sphere of σ . Suppose, on the contrary, that K is the inscribed sphere of σ . Then, by Lemma 3, the radius of $S_0 = \varphi(\Sigma)$ is smaller than 1. This contradicts that $\{S_0, S_1, ..., S_{n+1}\}$ is a unit-sphere-system.

5 Unit distance representations

Let G be a finite graph. An injection $f:V(G)\to\mathbb{R}^d$ is called a unit distance representation (u.d.r.) of G if

$$||f(x) - f(y)|| = 1$$
 iff $xy \in E(G)$.

Let us define the dimension of G by

$$\dim(G) = \min\{d : \exists u.d.r. f : V(G) \to \mathbb{R}^d\}.$$

Let G_d denote the graph $K_{d+2,d+2} - (d+2)K_2$, that is,

$$V(G_d) = A \cup B, \ A = \{a_1, \dots, a_{d+2}\}, \ B = \{b_1, \dots, b_{d+2}\},$$

$$E(G_d) = \{a_i b_i : 1 \le i, \ j \le d+2, \ i \ne j\}.$$

Note that G_d has 2(d+2) vertices and $(d+2)^2 - (d+2)$ edges. It is easy to see that $\dim(G_1) = 2$.

Now we consider the unit-sphere-system in \mathbb{R}^d . If the centers of the spheres and the junctions are all different (this is the case in RB-type as easily verified), then by taking the centers as f(A) and junctions as f(B), we have a u.d.r. f of G_d in \mathbb{R}^d . Hence Theorem 1 (Figure 1) and Theorem 2 give

$$\dim(G_d) \le d \text{ for } d = 2 \text{ or } d \ge 4. \tag{13}$$

Note that $\dim(G_d) \leq d$ implies the existence of a unit-sphere system in \mathbb{R}^d , but there is a unit-sphere-system in which a center and a junction coincide, and which does not give a unit distance representation of G_d .

Lemma 6. $\dim(G_d) \geq d$ for $d \geq 1$.

Proof. We prove the above inequality by linear algebra method (cf. [1]). Suppose that G_d has a u.d.r. f in \mathbb{R}^n . Then, by definition, we have

$$||f(a_i) - f(b_j)|| = 1$$
 iff $i \neq j$.

Let us define an *n*-variable polynomial $g_i : \mathbb{R}^n \to \mathbb{R}$ $(1 \le i \le d+2)$ by $g_i(x) = ||x - f(a_i)||^2 - 1$. Namely, setting $x = (x_1, \dots, x_n)$ and $f(a_i) = (\alpha_1, \dots, \alpha_n)$,

$$g_i(x_1, \dots, x_n) = (x_1^2 + \dots + x_n^2) - 2(\alpha_1 x_1 + \dots + \alpha_n x_n) + \alpha_1^2 + \dots + \alpha_n^2 - 1.$$

Since $g_i(f(b_j)) = 0$ iff $i \neq j$, these d+2 polynomials g_1, \ldots, g_{d+2} are linearly independent, i.e., dim $\langle g_1, \ldots, g_{d+2} \rangle = d+2$.

On the other hand, g_i is a member of the subspace of polynomials spanned by

$$x_1^2 + \cdots + x_n^2, x_1, x_2, \ldots, x_n, 1$$

whose dimension is n+2. Therefore, we have $\dim \langle g_1, \ldots, g_{d+2} \rangle \leq n+2$ and $d \leq n$, which completes the proof.

The next theorem follows from the Lemma 6 and (13).

Theorem 4. $\dim(G_d) = d$ for d = 2 or $d \ge 4$.

Now we know that $\dim(G_3) = 3$ or 4 and our conjecture is

Conjecture 3. $\dim(G_3) = 4$.

If G_3 has a u.d.r f in \mathbb{R}^3 , then we may assume that

$$f(a_1) = (0,0,0), f(b_2) = (1,0,0), f(b_3) = (p, \pm \sqrt{1-p^2}, 0).$$

The authors checked with aid of computer that $f(b_4) \neq (0,0,1)$.

Let r_1, \ldots, r_{d+2} be positive reals. Suppose that an injection $f: V(G_d) \to \mathbb{R}^d$ satisfies

$$||f(a_i) - f(b_j)|| = r_i \quad \text{iff} \quad i \neq j.$$
(14)

This representation gives a sphere-system in \mathbb{R}^d . For every $d \geq 2$, we can find r_1, \ldots, r_{d+2} with an injection $f: V(G_d) \to \mathbb{R}^n$ satisfying (14) iff $n \geq d$. The proof is the same as the proof of Lemma 6 by setting $g_i(x) = ||x - f(a_i)||^2 - r_i^2$. On the other hand, for every $d \geq 2$ (including d = 3) we have a sphere-system in \mathbb{R}^d in which the centers and the junctions are all different. Therefore, the dimension of G_d as a representation satisfying (14) is precisely d for all $d \geq 2$.

References

- [1] L. Babai and P. Frankl, *Linear algebra methods in combinatorics* (Preliminary version 2), Department of Computer Science, The University of Chicago (1992).
- [2] M. Berger, Geometry I, New York (1987) Springer-Verlag.
- [3] P. J. Davis and R. Hersh, *The Mathematical Experience*, Boston (1982) Birkhäuser.
- [4] H. Maehara, Helly-type theorems for spheres, *Discrete Comput. Geom.*, 4 (1989) 279-285.
- [5] G. Pólya, Mathematical Discovery, New York (1981) Wiley.
- [6] D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, London (1991) Penguin Books.