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Dedicated to Gyula O. H. Katona on his 70th birthday

ABSTRACT. We present a vector space version of Katona’s t-intersection theorem
[[@]. Let V be the n-dimensional vector space over a finite field, and let F be a
family of subspaces of V. Suppose that dim(F N F’) > ¢ holds for all F, F’ € F.

Then we show that |[F| < Y p_, [}] for n+¢=2d, and |F| <>, 1 + "2

for n +t¢=2d+ 1. We also consider the case when the condition dim(F N F') > ¢
is replaced with dim(F N F') # ¢ — 1.

1. INTRODUCTION

In 1964, Katona published his ¢-intersection theorem [[2], which is one of the most
basic results in extremal set theory. It has been extended in many ways, one of them
being a result concerning a set-system avoiding just one intersection due to Frankl
and Firedi [B]. In this article, we show vector space versions of these results using
the linear algebra method.

We begin by recalling the Katona’s original theorem. Let X = {1,2,...,n} and
let ()k() denote the set of all k-element subsets of X. Let

P(X) = Uiz (3)

be the power set of X. We say that a family of subsets F C P(X) is t-intersecting
if |[F'NF'| >t holds for all F) F" € F. Let us define a t-intersecting family KC(n,t)

of subsets as follows. For n +t = 2d, let K(n,t) = Uy_; (7). For n+¢ =2d + 1,

choose an (n — 1)-element subset Y C X, and set K(n,t) = (Ui_s1 (),f)) U (Z)
Then Katona’s t-intersection theorem states the following.

Theorem 1 ([I)). Let 1 < t < n and let F C P(X) be t-intersecting. Then
|F| < IK(n,t)|. Moreover if t > 1 then equality holds iff F is isomorphic to K(n,t).

For a family of subsets F of X and 0 < u < n we define the u-th shadow A, (F)
of F by

A(F)={Ge (¥):GC F for some F € F}.

The following result is a key tool for the original proof of Theorem M.
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Theorem 2 ([[X]). Let 1 <t <k <n and let F C ()kf) be t-intersecting. Then, for
k—t<u<k, we have

auE= (0,

Now we present vector space versions of the above theorems. Fix the ¢-element
field F, and let V be the n-dimensional vector space over this field. Let Dﬂ denote

the set of all k-dimensional subspaces of V, let [I] = [[}]| = | -1 and let

L) =Ur [}]

be the lattice of subspaces of V' with respect to inclusion. We say that a family of
subspaces F C L(V) is t-intersecting if dim(F N F’) > ¢ holds for all F, I’ € F. For
0 < u < n we define the u-th shadow A,[F] of F by

A[F]={G €[] : G CF for some F € F}.
Then the corresponding result to Theorem R is as follows.

Theorem 3. Let 1 < t < k < n and let F C Dﬂ be t-intersecting. Then, for
k—t<u<k, we have

I T 0 e

Let us define a t-intersecting family IC[n, t] of subspaces as follows. For n+t = 2d,
let Kn,t] = Up_y [Z] For n+t¢ = 2d + 1, choose an (n — 1)-dimensional subspace
W c V, and set K[n,t] = (Uj_s [‘,ﬂ) U [Vg] Using Theorem B we will obtain the
following vector space version of the Katona’s theorem.

Theorem 4. Let 1 <t <n andlet F C L(V) be t-intersecting. Then |F| < |K[n,t]|.
Moreover if t > 1 then equality holds iff F is isomorphic to K[n,t].

We say that a family of subsets F C P(X) is (¢t — 1)-avoiding if |[FNF'| #t—1
holds for all distinct F, F' € F. Notice that if F is t-intersecting then it is (t — 1)-
avoiding. In 1975, Erdés [@] asked what happens if in Theorem 0 we weaken the
condition “t-intersecting” to “(t — 1)-avoiding.” Define a (¢t — 1)-avoiding family
K*(n,t — 1) of subsets of X by K*(n,t — 1) = K(n,t) U U, (7). In [B], Frankl
conjectured that this construction gives the maximum possible size for n > ny(t), and
he proved this for the case t = 2 (1-avoiding families) for all n. This conjecture was
solved by Frankl and Fiiredi in 1984 [B] using the so-called “linear algebra method.”
We present the corresponding vector space version. To state our result, we need
some definitions. We say that a family of subspaces F C L(V) is (¢ — 1)-avoiding if
dim(F N E’) #t—1 holds for all distinct F, F" € F. Define a (t — 1)-avoiding family

K*[n,t — 1] of subspaces of V by K*[n,t — 1] = K[n,t] UU,-,_, [1]-

Theorem 5. Let t > 1, n > no(t), and let F C L(V) be (t — 1)-avoiding. Then
|F| < |K*[n,t — 1])|. Moreover if t > 1 then equality holds iff F is isomorphic to
K*[n,t —1].
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Since a t-intersecting family is always a (¢ — 1)-avoiding family, the following result
is an obvious extension of Theorem B (for the case k > 2t — 1), which will be used
to prove Theorem B.

Theorem 6. Lett > 1, n>k>2t—1, and let F C Dﬂ be (t — 1)-avoiding. Then,
for k —t <u <k, we have

IR e

In [B] the corresponding set-system version of Theorem B is conjectured to be true
but it is proved only under the assumption of k& > ko(¢). This is because the proof
relies on a result of Frankl and Singhi [[d] stating that every k-uniform, (¢ — 1)-
avoiding family of subsets is (k — t)-independent, provided k > ko(t). (We will
define “(k — t)-independence” in Section B.) This proof, in turn, uses a divisibility
property of integers which requires k& > ky(¢). On the other hand, we will use some
basic properties of the cyclotomic polynomials to show that every k-uniform, (¢t —1)-
avoiding family of subspaces is (k — t)-independent provided k > 2t — 1 (Lemma B).
In this sense, Theorem B is an example where a vector space version of a theorem
has a stronger result than a set-system version, with a simpler proof.

Finally we mention the maximum size of k-uniform, (¢ — 1)-avoiding families. As
for the case k > 2t—1, we only have the following weaker bound, which is stated in [B]
without a proof. (In [B] they claimed that Theorem @ follows from their Theorem 1.1,
but this is true only for ¢-intersecting families.)

Theorem 7. Lett > 1, n >k > 2t — 1, and let F C [}] be (t — 1)-avoiding. Then
Fl< 2

Frankl and Graham [B] conjecture that if & > 2t then the upper bound can be
improved to [Z::] (Theorem [@ for the case k = 2t — 1 is almost sharp as described
below.) On the other hand, Frankl and Fiiredi [@ obtained the sharp upper bound
(Z:i) for the corresponding set-system version, provided k > 2t and n > ng(k). The
proof technique used in [@] is more combinatorial, and different from that in [B].

For the case k < 2t — 1 we will derive the following result from Theorem [@.

Theorem 8. Lett > 1,2t—1>k>t—1,n >k, and let F C Dﬂ be (t—1)-avoiding.
Then | F| < [ ][]/ B4

k t—1

Theorem B is asymptotically tight as n — oo for fixed ¢, k. We show the tightness
(Theorem @ in Section H) using a packing result of Rodl [[4].

We will use the linear algebra method to prove our results. The proofs are similar
to those in [B], but we will follow the formulation in the Babai-Frankl book [B]. The
key idea is an independence of row vectors of the inclusion matrix. This idea was
already used by Frankl and Graham in [B], and we could use their results but we
choose to give direct and elementary proofs for self-completeness.

This paper is organized as follows. In Section B we prepare some basic tools for the
linear algebra method, and prove Theorem B and Theorem B (the Katona theorem for
vector spaces). Then in Section B we consider families avoiding just one intersection,
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and prove Theorem B and Theorem B. In Section B we focus on uniform families and
prove Theorem [@ and Theorem B.

2. THE KATONA THEOREM FOR VECTOR SPACES

In this section, we prepare some basic tools for the linear algebra method, and
prove Theorem B and Theorem @.

Let V be the n-dimensional vector space over F,. For 0 <¢ <k <n, F C Dﬂ,

and G C [7], define the inclusion matrix M(F,G) as follows. This is an |F| x |G|
matrix whose (F, G)-entry m(F,G), where F' € F and G € G, is defined by

1 if FDOG,

m(F,G) = {o it F G

For F C Dﬂ and 0 < j <1 < k, simple counting yields
MF DML G = E1ME 5D (1)

i i J 1—J J

In fact, the (F, J)-entry of (0), where F' € F and J € [‘ﬂ, counts
#{1ell]:TJcIcF}.

In particular, () shows the following.

Lemma 1. Let 0 < j < i< k and F C [‘,ﬂ Then colsp M (F, [‘ﬂ) s contained in
colsp M (F, [‘ﬂ), where colsp M denotes the column space of M over Q.

We say that F C [‘,ﬂ is s-independent if the rows of M (F, [‘ﬂ) are linearly inde-
pendent over Q, that is, the inclusion matrix has full row-rank. In this case, |F| < [Z]
immediately follows.

Lemma 2 ([8]). Let 0 < s <u <k and let F C [/] be s-independent. Then
E+s| |k+s

IS i vt )
u

Proof. Let A® B =V denote the direct sum, that is, ANB = {0} and span{A, B} =
V. For each line z € [‘ﬂ choose W =W, € [n‘il] so that t & W = V. Let

Fo={Ge[l]:eeGeryc ]

Claim 1. F, C [kvfl] is s-independent, that is, rank M (F,, [V:}) = |Fzl.

We postpone the proof of Claim 0, and we first prove the lemma by induction on &
assuming Claim [. Inequality (B) trivially holds for the following three cases: s = 0,
u=s,and u==Fk. Solet 1 <s < u < k and assume that (B) is true for £ — 1. By
Claim @ we can apply the induction hypothesis to F, C [kvfl], and we get
(k—1)+s
[ u—1 :|

- - 3
05 ¥

|Aufl[}—x” > ‘]:z|
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By counting #{(z, F) € [[] x F : & C F} in two ways, namely, by counting the

number of edges in the corresponding bipartite graph from each side, we have

> FL =17 (4)
ve[!]

Similarly by counting #{(z, G) € [‘1/] X Ay[F] : x C G}, we have
> 1Aa[F] = [IALF]). (5)
IE[Y]

Using (B), (B), and (@), we get

@ 1 gz Lt 2]

This shows that (B) is true for k as well, and completes the induction.
So all we need is to prove Claim 0. Fix x € [‘ﬂ and let W € [n‘jl} be such that

x@®W = V. Divide [‘ﬂ into two parts [‘ﬂ = CUD, where C is the set of s-dimensional
subspaces of V not containing x, and the remaining part is D = {e T : T € [SV_VJ }.
(Then |C| = ¢*[*,'] and |D| = ["7]].) Let

Fr={FeF:aCF}cC[}]
We divide the columns of M (F?, ["]) into two blocks:
M7, []) = (M(F*,0)| M (F*, D). (6)

A subspace S € [Z] can be represented by an s x n matrix in reduced echelon form
with no zero rows (see, e.g., [B]), and let ref(.S) denote the matrix. We can associate
D with matrices for which leading 1 in the last row occurs in the last column. Then
there is a natural bijection from D to [SV_VJ by taking the (s — 1) x (n — 1) principal
minor of ref(.S). Thus we may assume that

M(F*, D) = M(F*, [1]).
This together with Lemma 0 gives
colsp M (F®, D) = colsp M (F=, ["]) C colsp M(F=, [V]). (7)

If S € C then the s x (n — 1) principal minor of ref(S) determines a subspace in
[‘ﬂ This gives a map ¢ : C — [‘f}, and for each S € [V:} we have |p71(S)| = ¢*
because p(S) = p(5’) iff ref(S) and ref(S’) differ only in the last column. Thus
columns corresponding to S and S’ in M (F?,C) are the same iff ¢(S) = ¢(5’), and

M(F®,C) can be viewed as ¢° copies of M(F2, ['V]). Hence we have
colsp M (F*,C) = colsp M (F=, ["]). (8)
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By (@) and (B) with (B), it follows colsp M (F7, [‘ﬂ) C colsp M (F=, [Vﬂ), and
rank M (F*, [V]) < rank M (F=, []). (9)

The opposite inequality is trivial, thus we have equality in (8). On the other hand,
since F is s-independent, F* is also s-independent and rank M (F7, [‘ﬂ) = |F*|.
Thus equality in (8) yields that rank M (F*, ["V]) = |F*|. Finally, noting that |F*| =
| F.| and M(F=, [V]) = M(F,, [V]), we have rank M(F,, ['V]) = |F.| as needed.
This completes the proof of Claim 0 and Lemma B. 0

Lemma 3 ([B]). Let 1 <t < k and let F C [}] be t-intersecting. Then F is
(k — t)-independent.

Proof. Let

flz) = H {ml—z} _ H qw—z‘_l. (10)

4 : qg—1
t<i<k t<i<k
By setting y = ¢, we can rewrite f(z) as a polynomial g(y) of degree k —t in Q[y],
that is,

q 'y —1
f(z) =g(y) = 1
t<i<k q
Let ¢s(y) = Hf:_é ‘;:i’j. Then ¢o(y), ..., ¢r_+(y) form a basis of the vector space

(over Q) of polynomials of degree k — ¢t with variable y. Thus we can determine
ag, i, . .., ax_¢ € Q uniquely so that

k—t
g(y) = Z as®s(y)
s=0
In other words, noting that ¢s(y) = Hf;é Z::zj = [ﬂ, we can determine ag, . . ., Gp_q
so that
k—t
flx) = g [ﬂ (11)
s=0
Now define an |F| x |F| matrix A by
k—t
A= a, M(F,[7]) M(F, [V])".
s=0
For F, F' € F, the (F, F')-entry of A is
k—t k—t .
Z%#{W eV WcFnF} = Zas [dlm(imF )].
s=0 s=0

This equals f(dim(F NFE")) by (). Moreover, using the ¢-intersecting property with
(), we have

0 if F £ P,

f@mWHF»:{ﬂ@¢o if F=F"



THE KATONA THEOREM FOR VECTOR SPACES 7

Thus A is a diagonal matrix with no zero diagonal entries, and rank A = |F].

On the other hand, it follows from Lemma @O that the colsp M (F, [‘ﬂ) is con-
tained in colsp M (F, [k‘it}) for 0 < s < k —t, and so colsp A is contained in
colsp M(F, [,V,]). This gives rank M(F,[,”,]) > rank A = |F|. Thus M(F,["])

k—t k—t
has full row-rank, namely, F is (k — t)-independent. O

Proof of Theorem B@. By Lemma B, F is (k — t)-independent. So letting s = k — ¢ in
Lemma B, we get the desired inequality. 0

Proof of Theorem [J. We start with the following simple counting fact.

Claim 2. Let A€ [V]. Then #{B€ [ ]:A®B=V}= ¢,

Proof. We may assume that ref(4) = (O I,). Then A® B =V gives ref(B) =

(In,a *), and there are ¢*"~% ways for choosing the * part. O
Let G = G(a,n — a) be a bipartite graph with the vertex partition V(G) =

["JU Y] and the edge set E(G) = {(A,B) : A® B = V}. Then, by Claim B, this

is a ¢*"~%-regular graph. For a vertex subset A C [‘ﬂ, let

Ng(A)={Be[" ]:(A B) € E(G) for some A € A}

denote the neighborhood of A. We count the number of edges between A and
Ng(A) in two ways. Then this number is exactly ¢*"~%|A| on one hand, and at
most ¢*"~%|Ng(A)| on the other hand. Namely, we have the Hall condition:

Al < [Ne(A)l.
Thus the bipartite graph has a perfect matching, which can be stated as follows.

Lemma 4. There is a bijection 1) : [‘ﬂ — [n‘ja} such that A ® ¢(A) =V holds for
all Ae[7].

We will use ¢¥(A) as a “complement” of A here, and also in the proof of Theorem B
later. (Notice that the orthogonal space A+ does not necessarily satisfy A® A+ = V.
The authors thank one of the referees for notifying this fact.)

Let Fro=FN[}], fo=|Fel. d=|(n+t)/2], and a =k —t + L.

Claim 3. |A[Fp]| + |Foea| <[] fort <k <d.

Proof. Let G € A[Fy] and G C F € Fj,. Using Lemma @ let H = ¢(G) € [n‘:a}
Since V.=G@& H C F+ H CV we have n = dim(F + H) and
dm(FNH)=dmF +dimH —dim(F+H)=k+(n—a)—n=t—1.

Then it follows from the ¢-intersecting property of F that H = ¢(G) & F,—,. This
gives Y(Ay[Fr]) N Fre = 0, and

Al Fe]| + [ Facal = [(AFD] + | Focal <[]
as desired. O
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We notice for later use in the proof of Theorem B in Section B that the proof above
did not use the full t-intersecting property, but only the (¢ — 1)-avoiding property.
Let t <k < d. Applying Theorem B with u = a =k —t + 1, we have

IR i B =

k :qa—lfk'

Since gij > 1iff a <k, that is, t > 1, it follows that |A,[Fy]| > fr with equality

holding iff 7, = 0 or ¢t = 1. Then we can infer from Claim B that

fk +fn—a S |Aa[fk]| + |'Fn—a| S |: " :| (12)

n—a

(This is true for k = d as well but we will not use this case.) Moreover if ¢ > 1 then
fo+ foea = [ " } iff fy =0and f,_,= [nfa] where t < k < d.

n—a.

First consider the case n+t = 2d. Applying (I2) for k =¢,t+1,...,d—1 we have

n n—1
FI=> fe="Ffat+ > fi
k=0 k=t
= fot ((fi + fas1) + (i1 + faz2) + 4 (fam1 + f2))

<l o (2 el oo i) =

If t > 1 then equality holds iff fy = 0 for 0 < k < d and f; = m for d < k < n,
namely, F is isomorphic to K[n, t].

Next consider the case n +t — 1 = 2d. Since Fy; C [
with 2d —t < n < 2d, we can use a result in [[] to get

P Fdd— t} _ [n; 1]. (13

|4

d] is a t-intersecting family

Moreover if ¢ > 1 then equality holds iff F; = [‘fﬂ for some (n — 1)-dimensional
subspace W C V. Using (@) for k =t¢,t+1,...,d — 1 and using (I3) for k = d, we
have

n n—1
FI=> fo="tat Y futfa
k=0 k=t
= fo+ ((fr + fac1) + (frrr + faz2) + -+ (famr + fas1)) + fa

o (R A PR s I N N o TS

If t > 1 then equality holds iff f, =0 for 0 < k < d, fi = [Z] ford+1 <k <n,
and Fy; = [V;] for some (n — 1)-dimensional subspace W, namely, F is isomorphic
to K[n,t]. This completes the proof of Theorem @. O
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3. AVOIDING JUST ONE INTERSECTION
In this section we prove Theorem H and Theorem B.

Lemma 5. Lett > 1, k> 2t — 1, and let F C Dﬂ be (t — 1)-avoiding. Then F is
(k — t)-independent.

Proof. We proceed as in Lemma B but using a different f(z), that is,

@ )@ )6 )
f(z) = (¢t —=1)(¢F 1 —=1)---(¢g—1) °

As we did in the proof of Lemma B we can write f(z) = > i ;as[?] for some
ag, - .., ax_y € Q. Define an |F| x |F| matrix A by

k-1

(14)

Then, for F, F' € F, the (F, F')-entry of A is ZS 0 s[dim(imF/)} = f(dim(F N F")).
By(I]ZIl) we have f(x) =0forx =t t+1,...,k—1, and

k—j _ — b1 = ¢)
_ q q q ¢)
f(k)_H ¢ -1 H ¢ —1
j=1 J=1
_ (_1)k tq(k DA (k=2)++t _ (_1>k tq(k—t)(k—t—&-l)/Q. (15)
For the remaining values except ¢t — 1, namely, for x = 0,1,...,t — 2, we have

flz) = ¢"® D[ and
e B i B

Recall that ¢"—1 = [];,, ®;(q), where ®;(q) € Z[q] is the j-th cyclotomic polynomial.
Let us look at the RHS of (I@). The numerator contains ®;_;.1(q) as a factor coming
from ¢*7*™1 — 1. On the other hand, j = ¢t —x — 1 is the maximum j such that ®;(q)
appears in the denominator as a factor. Using x > 0 and k£ > 2t — 1 we have
t—x—1<t—1<k—t+1 So Py 411(q) does not appear in the denominator.
Since cyclotomic polynomials are pairwise relatively prime, it follows from (I@) that

Oy _411(q) divides [k;”_tl}, namely,

€Zlgl.  (16)

Op_ip1(q) | f(z) for . =0,1,...,t —2.

But ®;_;11(q) does not divide f(k) in Z[g| by (IH). Note also that f(t — 1) never
appears in A because of the (¢t — 1)-avoiding property. Consequently it follows that
f(dim(F N F")) € Z[q] and

Oirni(g) | f(dim(FOF)) it F# F,
Oj_rii(q) [ f(dim(F N FY)) if F = F'.
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This means that A is a diagonal matrix with no zero diagonal entries in the residue
ring Z[q|/(®r—i11(¢)), and thus rank A = |F|. On the other hand, it follows from ()
and the definition of A that colsp A C colsp M (F, [k‘i J ). Therefore we have

| F| = rank A < rank M(F, [,",]) < |F|.
Thus rank M (F, [V,]) = |F|, namely, F is (k — t)-independent. O
Proof of Theorem [@. This follows from Lemma B and Lemma B. OJ
et s B+ = Vb d= 402 ad a= kil
2k —t] [2k —t b1
Bal Bl 2 \m[ , H A } b

and so |Ay[Fx]| > fr with equality holding iff 7, = () or t = 1. Then we can infer
from Claim B (see the notice right after the proof of Claim B) that

q* —

k1 n
fk+fnfa§q fk"_fnfag |: :| (17)
q*—1 n—a
Moreover if ¢t > 1 then fi+ f,_, = [nﬁa} iff f, =0and f,_, = [nﬁa] where t < k < d.

For k < t we will use a trivial upper bound f; < [Z}
Case 1. n+t=2d.
We have

n n—1 t—1
FI=>fo=Fat Y fet D I
k=0 k=t k=0

=Fot ((ft fom)) + (i + fac2) o+ (o + £2)) + D fe (18)

k=0
First suppose that f;_1 = 0. Then applying (@) for k =t,t+1,...,d — 1 we have

<[ (L] e+ )+ S ] = et

If ¢ > 1 then equality holds iff f, = m for0<k<t—1, fr=0fort—1<k<d
and f = m for d < k < n, namely, F is isomorphic to K*[n,t — 1].

Next suppose that f;_; # 0, that is, there is an Fy € F;_1. Since F is (t — 1)-
avoiding, no subspace containing Fj can be a member of F, which implies that

wsli] - B2
for k£ > t. In particular we have
Ja < N —M,
where N = m, M = [Z:((fj))] Setting k = d — 1 in () we have
afa-1+ fa < N,
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where o = Zz:j >1. S0 fg_1 < é(N — fa). Thus we have
1 1 1
Jioi+Ffa<—(N—=fo)+fa=—N+(1—-—=)fa
a e} e}
1 1 1
< —N 1—-—)(N—-M)=N-(1——)M.
S INH (- DN M) =N (1)

Hence we have

d=1 _ d—t [0 (4 _
ft—1+fd—1+fd§[tfl}—i-ln}—u{n (t 1>}

d ¢t -1 |d—(t—1)
The RHS is less than [1] for n > ng(t). Using this with (I2) for k = ¢,¢t+1,...,d—2
we can infer from (IR) that |F| < |[K*[n,t — 1]|.
Case 2. n+t—1=2d.

If 7, F" € [V] then dim(F N F’) >t — 1. Since F is (t — 1)-avoiding, F; C [Y] is
actually ¢-intersecting. So we can use a result in [[] to get

== (19

Moreover if ¢ > 1 then equality holds ifft F; = [Vcﬂ for some (n — 1)-dimensional
subspace W C V. Write |F| as follows:

n n—1 t—1
FI=Y fi=fatd fi+ > f
k=0 k=t k=0
t—2

= fot ((fe+ fact) + (forr + fa2) + o+ (far + 1)) + fat froa + ) Fie
k=0

First suppose that f;_; = 0. We use () for k =t,t+1,...,d—1, (I¥) for k = d,
and fj, < [}] for the remaining k. In this way we get |F| < |K*[n, ¢ — 1]|. Moreover
if ¢ > 1 then equality holds iff f; = [Z] for0<k<t—1, fr=0fort—1<k<d,
fe = m ford+1 <k <n,and Fy = [Vg] for some (n — 1)-dimensional subspace W,
namely, F is isomorphic to K*[n,t — 1].

Next suppose that f;_; # 0. Then we can argue as in Case 1 to conclude that
fee1 + fa1 + fa < [d:‘LJ for n > ng(t), which gives |F| < |K*[n,t — 1]|. This
completes the proof of Theorem B O

If we change the definition of a (t—1)-avoiding family F so that dim(FNF’) #t—1
is required for all F, F" € F, then f;_; = 0 follows from this new definition. In this
case the above proof shows that Theorem B holds without assuming n > ng(t).

4. UNIFORM FAMILIES

In this section we prove Theorem [@ and Theorem B. Then we will show that
Theorem B is asymptotically sharp using a packing result of Rodl.

Proof of Theorem [1. This is a direct consequence of Lemma B. 0
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In the rest of this section we follow the proof in [@]. Recall the bijection ¢ from
Lemma H.

Proof of Theorem B. Let b=2t —k — 1. For B € [V} let
]—"()—{CG[ ] Ba& C e F}.

Then we have
Z FB)] = []I7- (20)
Bel}]
Let k=k—b=2k—2t+1andi—1= (t—1)—b=k—t. Then F(B) is a k-uniform,
(t — 1)-avoiding family with k =2t — 1. (In fact if there are Cy,Cy € F(B) such
that dim(Cy N Cy) =t — 1, then F; = B& C; € F (i = 1,2) but dim(F N Fy) =
b+ (t —1) =t — 1, a contradiction.) Thus, by Theorem @, we have

FB) < [ = [ (21)
Now it follows from (EO) and (E0) that

P < BIGZ/B] = LI 051/ 0
as needed. OJ
The bound in Theorem B is asymptotically sharp. Namely, we have the following.

Theorem 9. Lett > 1 and k >t — 1 be fixed. Then for every e > 0 there is an ng
such that for all n > ng and V' =T} there is a (t — 1)-avoiding family F C Dﬂ with

FI> =[5 PR

To prove Theorem B we need the following variant of the packing theorem of Rodl
[ra].

Theorem 10. Let r and s be fized. Then for every e > 0 there is an ng such that for
all n > ng and V- = Ky there is a family H C [‘:] which satisfies dim(H N H') < s
for all H H' € H and [H| > (1 —€)["]/["].

S

Proof of Theorem @. By Theorem M we can take a family S C [% J with dim(S N
Sy <t—1forall ;8 € Sand|S|~ ["]/[7] asn — co. Let F = Ay(S). Then

t—1
F is (t — 1)-avoiding and |F| = [Qkk "1|S| because k >t — 1. Thus F satisfies the
desired properties. O

Finally we remark that Theorem M is derived from the following result stating
that almost regular hypergraphs have almost perfect matchings. This result was
originally obtained by Frankl and Rédl [ and we use a stronger version given by
Pippenger (see [O] or [I3]).

Theorem 11 (8, O, @3]). Let F C ()k() satisfy the following.

(1) There is D such that #{F € F :x € F'} = D for allz € X.

(2) For all {z,y} € (3), #{F € F : {z,y} C F} = o(D) as D — oo.
Then there exist pairwise disjoint Fi, ..., F,, € F with m ~ |X|/k (as D — oo and
hence | X| — 00).
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Proof of Theorem 0. Let X = [‘s/] and k = []. Define F := {[f‘] 'R e [‘7{]} C ()k()
Then F is D-regular, where D = [:_ ] Moreover, for a pair {z,y} C X, we have

S
—S

#{F e F:{r,y} CF} < ["7871} = o(D).

r—s—1

In fact if n — oo for fixed r and s, then D — oo and [7::3—1] /D = 271

s—1 qn—s—1
namely, [ﬁ:j:ﬂ = o(D). Thus, by Theorem [, we have a matching F,..., F,, € F
with m ~ m/[ﬂ For 1 < ¢ < m we can write F; = [Z’} ThenH :={Ry,...,R,} C
[‘ﬂ satisfies the desired properties of Theorem [M. 0
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