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Abstract. We present a vector space version of Katona’s t-intersection theorem
[12]. Let V be the n-dimensional vector space over a finite field, and let F be a
family of subspaces of V . Suppose that dim(F ∩ F ′) ≥ t holds for all F, F ′ ∈ F .
Then we show that |F| ≤

∑n
k=d

[
n
k

]
for n+ t = 2d, and |F| ≤

∑n
k=d+1

[
n
k

]
+
[
n−1
d

]
for n+ t = 2d+ 1. We also consider the case when the condition dim(F ∩ F ′) ≥ t
is replaced with dim(F ∩ F ′) ̸= t− 1.

1. Introduction

In 1964, Katona published his t-intersection theorem [12], which is one of the most
basic results in extremal set theory. It has been extended in many ways, one of them
being a result concerning a set-system avoiding just one intersection due to Frankl
and Füredi [6]. In this article, we show vector space versions of these results using
the linear algebra method.

We begin by recalling the Katona’s original theorem. Let X = {1, 2, . . . , n} and
let

(
X
k

)
denote the set of all k-element subsets of X. Let

P(X) =
∪n
k=0

(
X
k

)
be the power set of X. We say that a family of subsets F ⊂ P(X) is t-intersecting
if |F ∩ F ′| ≥ t holds for all F, F ′ ∈ F . Let us define a t-intersecting family K(n, t)
of subsets as follows. For n + t = 2d, let K(n, t) =

∪n
k=d

(
X
k

)
. For n + t = 2d + 1,

choose an (n − 1)-element subset Y ⊂ X, and set K(n, t) = (
∪n
k=d+1

(
X
k

)
) ∪

(
Y
d

)
.

Then Katona’s t-intersection theorem states the following.

Theorem 1 ([12]). Let 1 ≤ t ≤ n and let F ⊂ P(X) be t-intersecting. Then
|F| ≤ |K(n, t)|. Moreover if t > 1 then equality holds iff F is isomorphic to K(n, t).

For a family of subsets F of X and 0 ≤ u ≤ n we define the u-th shadow ∆u(F)
of F by

∆u(F) = {G ∈
(
X
u

)
: G ⊂ F for some F ∈ F}.

The following result is a key tool for the original proof of Theorem 1.
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Theorem 2 ([12]). Let 1 ≤ t ≤ k ≤ n and let F ⊂
(
X
k

)
be t-intersecting. Then, for

k − t ≤ u ≤ k, we have

|∆u(F)|/|F| ≥
(
2k − t

u

)
/

(
2k − t

k

)
.

Now we present vector space versions of the above theorems. Fix the q-element
field Fq and let V be the n-dimensional vector space over this field. Let

[
V
k

]
denote

the set of all k-dimensional subspaces of V , let
[
n
k

]
= |

[
V
k

]
| =

∏k−1
i=0

qn−i−1
qk−i−1

, and let

L(V ) =
∪n
k=0

[
V
k

]
be the lattice of subspaces of V with respect to inclusion. We say that a family of
subspaces F ⊂ L(V ) is t-intersecting if dim(F ∩ F ′) ≥ t holds for all F, F ′ ∈ F . For
0 ≤ u ≤ n we define the u-th shadow ∆u[F ] of F by

∆u[F ] = {G ∈
[
V
u

]
: G ⊂ F for some F ∈ F}.

Then the corresponding result to Theorem 2 is as follows.

Theorem 3. Let 1 ≤ t ≤ k ≤ n and let F ⊂
[
V
k

]
be t-intersecting. Then, for

k − t ≤ u ≤ k, we have

|∆u[F ]|/|F| ≥
[
2k − t

u

]
/

[
2k − t

k

]
.

Let us define a t-intersecting family K[n, t] of subspaces as follows. For n+ t = 2d,
let K[n, t] =

∪n
k=d

[
V
k

]
. For n + t = 2d + 1, choose an (n − 1)-dimensional subspace

W ⊂ V , and set K[n, t] = (
∪n
k=d+1

[
V
k

]
) ∪

[
W
d

]
. Using Theorem 3 we will obtain the

following vector space version of the Katona’s theorem.

Theorem 4. Let 1 ≤ t ≤ n and let F ⊂ L(V ) be t-intersecting. Then |F| ≤ |K[n, t]|.
Moreover if t > 1 then equality holds iff F is isomorphic to K[n, t].

We say that a family of subsets F ⊂ P(X) is (t− 1)-avoiding if |F ∩ F ′| ̸= t− 1
holds for all distinct F, F ′ ∈ F . Notice that if F is t-intersecting then it is (t − 1)-
avoiding. In 1975, Erdős [4] asked what happens if in Theorem 1 we weaken the
condition “t-intersecting” to “(t − 1)-avoiding.” Define a (t − 1)-avoiding family
K∗(n, t − 1) of subsets of X by K∗(n, t − 1) = K(n, t) ∪

∪
k<t−1

(
X
k

)
. In [5], Frankl

conjectured that this construction gives the maximum possible size for n > n0(t), and
he proved this for the case t = 2 (1-avoiding families) for all n. This conjecture was
solved by Frankl and Füredi in 1984 [6] using the so-called “linear algebra method.”
We present the corresponding vector space version. To state our result, we need
some definitions. We say that a family of subspaces F ⊂ L(V ) is (t− 1)-avoiding if
dim(F ∩F ′) ̸= t− 1 holds for all distinct F, F ′ ∈ F . Define a (t− 1)-avoiding family
K∗[n, t− 1] of subspaces of V by K∗[n, t− 1] = K[n, t] ∪

∪
k<t−1

[
V
k

]
.

Theorem 5. Let t ≥ 1, n > n0(t), and let F ⊂ L(V ) be (t − 1)-avoiding. Then
|F| ≤ |K∗[n, t − 1]|. Moreover if t > 1 then equality holds iff F is isomorphic to
K∗[n, t− 1].
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Since a t-intersecting family is always a (t−1)-avoiding family, the following result
is an obvious extension of Theorem 3 (for the case k ≥ 2t − 1), which will be used
to prove Theorem 5.

Theorem 6. Let t ≥ 1, n ≥ k ≥ 2t− 1, and let F ⊂
[
V
k

]
be (t− 1)-avoiding. Then,

for k − t ≤ u ≤ k, we have

|∆u[F ]|/|F| ≥
[
2k − t

u

]
/

[
2k − t

k

]
.

In [6] the corresponding set-system version of Theorem 6 is conjectured to be true
but it is proved only under the assumption of k > k0(t). This is because the proof
relies on a result of Frankl and Singhi [10] stating that every k-uniform, (t − 1)-
avoiding family of subsets is (k − t)-independent, provided k > k0(t). (We will
define “(k − t)-independence” in Section 2.) This proof, in turn, uses a divisibility
property of integers which requires k > k0(t). On the other hand, we will use some
basic properties of the cyclotomic polynomials to show that every k-uniform, (t−1)-
avoiding family of subspaces is (k− t)-independent provided k ≥ 2t− 1 (Lemma 5).
In this sense, Theorem 6 is an example where a vector space version of a theorem
has a stronger result than a set-system version, with a simpler proof.

Finally we mention the maximum size of k-uniform, (t− 1)-avoiding families. As
for the case k ≥ 2t−1, we only have the following weaker bound, which is stated in [8]
without a proof. (In [8] they claimed that Theorem 7 follows from their Theorem 1.1,
but this is true only for t-intersecting families.)

Theorem 7. Let t ≥ 1, n ≥ k ≥ 2t− 1, and let F ⊂
[
V
k

]
be (t− 1)-avoiding. Then

|F| ≤
[
n
k−t

]
.

Frankl and Graham [8] conjecture that if k ≥ 2t then the upper bound can be
improved to

[
n−t
k−t

]
. (Theorem 7 for the case k = 2t− 1 is almost sharp as described

below.) On the other hand, Frankl and Füredi [7] obtained the sharp upper bound(
n−t
k−t

)
for the corresponding set-system version, provided k ≥ 2t and n > n0(k). The

proof technique used in [7] is more combinatorial, and different from that in [6].
For the case k ≤ 2t− 1 we will derive the following result from Theorem 7.

Theorem 8. Let t ≥ 1, 2t−1 ≥ k > t−1, n ≥ k, and let F ⊂
[
V
k

]
be (t−1)-avoiding.

Then |F| ≤
[
n
t−1

][
2k−t
k

]
/
[
2k−t
t−1

]
.

Theorem 8 is asymptotically tight as n→ ∞ for fixed t, k. We show the tightness
(Theorem 9 in Section 4) using a packing result of Rödl [14].

We will use the linear algebra method to prove our results. The proofs are similar
to those in [6], but we will follow the formulation in the Babai–Frankl book [2]. The
key idea is an independence of row vectors of the inclusion matrix. This idea was
already used by Frankl and Graham in [8], and we could use their results but we
choose to give direct and elementary proofs for self-completeness.

This paper is organized as follows. In Section 2 we prepare some basic tools for the
linear algebra method, and prove Theorem 3 and Theorem 4 (the Katona theorem for
vector spaces). Then in Section 3 we consider families avoiding just one intersection,
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and prove Theorem 5 and Theorem 6. In Section 4 we focus on uniform families and
prove Theorem 7 and Theorem 8.

2. The Katona theorem for vector spaces

In this section, we prepare some basic tools for the linear algebra method, and
prove Theorem 3 and Theorem 4.

Let V be the n-dimensional vector space over Fq. For 0 ≤ i ≤ k ≤ n, F ⊂
[
V
k

]
,

and G ⊂
[
V
i

]
, define the inclusion matrix M(F ,G) as follows. This is an |F| × |G|

matrix whose (F,G)-entry m(F,G), where F ∈ F and G ∈ G, is defined by

m(F,G) =

{
1 if F ⊃ G,

0 if F ̸⊃ G.

For F ⊂
[
V
k

]
and 0 ≤ j ≤ i ≤ k, simple counting yields

M(F ,
[
V
i

]
)M(

[
V
i

]
,
[
V
j

]
) =

[
k−j
i−j

]
M(F ,

[
V
j

]
). (1)

In fact, the (F, J)-entry of (1), where F ∈ F and J ∈
[
V
j

]
, counts

#{I ∈
[
V
i

]
: J ⊂ I ⊂ F}.

In particular, (1) shows the following.

Lemma 1. Let 0 ≤ j ≤ i ≤ k and F ⊂
[
V
k

]
. Then colspM(F ,

[
V
j

]
) is contained in

colspM(F ,
[
V
i

]
), where colspM denotes the column space of M over Q.

We say that F ⊂
[
V
k

]
is s-independent if the rows of M(F ,

[
V
s

]
) are linearly inde-

pendent over Q, that is, the inclusion matrix has full row-rank. In this case, |F| ≤
[
n
s

]
immediately follows.

Lemma 2 ([8]). Let 0 ≤ s ≤ u ≤ k and let F ⊂
[
V
k

]
be s-independent. Then

|∆u[F ]|/|F| ≥
[
k + s

u

]
/

[
k + s

k

]
. (2)

Proof. Let A⊕B = V denote the direct sum, that is, A∩B = {0} and span{A,B} =
V . For each line x ∈

[
V
1

]
choose W =Wx ∈

[
V
n−1

]
so that x⊕W = V . Let

Fx = {G ∈
[
W
k−1

]
: x⊕G ∈ F} ⊂

[
W
k−1

]
.

Claim 1. Fx ⊂
[
W
k−1

]
is s-independent, that is, rankM(Fx,

[
W
s

]
) = |Fx|.

We postpone the proof of Claim 1, and we first prove the lemma by induction on k
assuming Claim 1. Inequality (2) trivially holds for the following three cases: s = 0,
u = s, and u = k. So let 1 ≤ s < u < k and assume that (2) is true for k − 1. By
Claim 1 we can apply the induction hypothesis to Fx ⊂

[
W
k−1

]
, and we get

|∆u−1[Fx]| ≥ |Fx|
[
(k−1)+s
u−1

][
(k−1)+s
(k−1)

] . (3)
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By counting #{(x, F ) ∈
[
V
1

]
× F : x ⊂ F} in two ways, namely, by counting the

number of edges in the corresponding bipartite graph from each side, we have∑
x∈[V1 ]

|Fx| =
[
k
1

]
|F|. (4)

Similarly by counting #{(x,G) ∈
[
V
1

]
×∆u[F ] : x ⊂ G}, we have∑

x∈[V1 ]

|∆u−1[Fx]| =
[
u
1

]
|∆u[F ]|. (5)

Using (5), (3), and (4), we get

|∆u[F ]| (5)= 1[
u
1

] ∑
x

|∆u−1[Fx]|
(3)

≥ 1[
u
1

] ∑
x

|Fx|
[
k−1+s
u−1

][
k−1+s
k−1

]
(4)
=

1[
u
1

] · [k
1

]
|F| ·

[
k−1+s
u−1

][
k−1+s
k−1

] = |F|
[
k+s
u

][
k+s
k

] .
This shows that (2) is true for k as well, and completes the induction.

So all we need is to prove Claim 1. Fix x ∈
[
V
1

]
and let W ∈

[
V
n−1

]
be such that

x⊕W = V . Divide
[
V
s

]
into two parts

[
V
s

]
= C∪D, where C is the set of s-dimensional

subspaces of V not containing x, and the remaining part is D = {x⊕T : T ∈
[
W
s−1

]
}.

(Then |C| = qs
[
n−1
s

]
and |D| =

[
n−1
s−1

]
.) Let

Fx = {F ∈ F : x ⊂ F} ⊂
[
V
k

]
.

We divide the columns of M(Fx,
[
V
s

]
) into two blocks:

M(Fx,
[
V
s

]
) =

(
M(Fx, C)|M(Fx,D)

)
. (6)

A subspace S ∈
[
V
s

]
can be represented by an s×n matrix in reduced echelon form

with no zero rows (see, e.g., [3]), and let ref(S) denote the matrix. We can associate
D with matrices for which leading 1 in the last row occurs in the last column. Then
there is a natural bijection from D to

[
W
s−1

]
by taking the (s− 1)× (n− 1) principal

minor of ref(S). Thus we may assume that

M(Fx,D) =M(Fx,
[
W
s−1

]
).

This together with Lemma 1 gives

colspM(Fx,D) = colspM(Fx,
[
W
s−1

]
) ⊂ colspM(Fx,

[
W
s

]
). (7)

If S ∈ C then the s × (n − 1) principal minor of ref(S) determines a subspace in[
W
s

]
. This gives a map φ : C →

[
W
s

]
, and for each S ∈

[
W
s

]
we have |φ−1(S)| = qs

because φ(S) = φ(S ′) iff ref(S) and ref(S ′) differ only in the last column. Thus
columns corresponding to S and S ′ in M(Fx, C) are the same iff φ(S) = φ(S ′), and
M(Fx, C) can be viewed as qs copies of M(Fx,

[
W
s

]
). Hence we have

colspM(Fx, C) = colspM(Fx,
[
W
s

]
). (8)
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By (7) and (8) with (6), it follows colspM(Fx,
[
V
s

]
) ⊂ colspM(Fx,

[
W
s

]
), and

rankM(Fx,
[
V
s

]
) ≤ rankM(Fx,

[
W
s

]
). (9)

The opposite inequality is trivial, thus we have equality in (9). On the other hand,
since F is s-independent, Fx is also s-independent and rankM(Fx,

[
V
s

]
) = |Fx|.

Thus equality in (9) yields that rankM(Fx,
[
W
s

]
) = |Fx|. Finally, noting that |Fx| =

|Fx| and M(Fx,
[
W
s

]
) = M(Fx,

[
W
s

]
), we have rankM(Fx,

[
W
s

]
) = |Fx| as needed.

This completes the proof of Claim 1 and Lemma 2. �
Lemma 3 ([8]). Let 1 ≤ t ≤ k and let F ⊂

[
V
k

]
be t-intersecting. Then F is

(k − t)-independent.

Proof. Let

f(x) =
∏
t≤i<k

[
x− i

1

]
=

∏
t≤i<k

qx−i − 1

q − 1
. (10)

By setting y = qx, we can rewrite f(x) as a polynomial g(y) of degree k − t in Q[y],
that is,

f(x) = g(y) =
∏
t≤i<k

q−iy − 1

q − 1
.

Let ϕs(y) =
∏s−1

i=0
q−iy−1
qs−i−1

. Then ϕ0(y), . . . , ϕk−t(y) form a basis of the vector space

(over Q) of polynomials of degree k − t with variable y. Thus we can determine
a0, a1, . . . , ak−t ∈ Q uniquely so that

g(y) =
k−t∑
s=0

asϕs(y).

In other words, noting that ϕs(y) =
∏s−1

i=0
qx−i−1
qs−i−1

=
[
x
s

]
, we can determine a0, . . . , ak−t

so that

f(x) =
k−t∑
s=0

as
[
x
s

]
. (11)

Now define an |F| × |F| matrix A by

A =
k−t∑
s=0

asM(F ,
[
V
s

]
)M(F ,

[
V
s

]
)T .

For F, F ′ ∈ F , the (F, F ′)-entry of A is

k−t∑
s=0

as#{W ∈
[
V
s

]
: W ⊂ F ∩ F ′} =

k−t∑
s=0

as
[
dim(F∩F ′)

s

]
.

This equals f(dim(F ∩F ′)) by (11). Moreover, using the t-intersecting property with
(10), we have

f(dim(F ∩ F ′)) =

{
0 if F ̸= F ′,

f(k) ̸= 0 if F = F ′.
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Thus A is a diagonal matrix with no zero diagonal entries, and rankA = |F|.
On the other hand, it follows from Lemma 1 that the colspM(F ,

[
V
s

]
) is con-

tained in colspM(F ,
[
V
k−t

]
) for 0 ≤ s < k − t, and so colspA is contained in

colspM(F ,
[
V
k−t

]
). This gives rankM(F ,

[
V
k−t

]
) ≥ rankA = |F|. Thus M(F ,

[
V
k−t

]
)

has full row-rank, namely, F is (k − t)-independent. �

Proof of Theorem 3. By Lemma 3, F is (k − t)-independent. So letting s = k − t in
Lemma 2, we get the desired inequality. �

Proof of Theorem 4. We start with the following simple counting fact.

Claim 2. Let A ∈
[
V
a

]
. Then #{B ∈

[
V
n−a

]
: A⊕B = V } = qa(n−a).

Proof. We may assume that ref(A) =
(
O Ia

)
. Then A ⊕ B = V gives ref(B) =(

In−a ∗
)
, and there are qa(n−a) ways for choosing the ∗ part. �

Let G = G(a, n − a) be a bipartite graph with the vertex partition V (G) =[
V
a

]
∪
[
V
n−a

]
and the edge set E(G) = {(A,B) : A⊕B = V }. Then, by Claim 2, this

is a qa(n−a)-regular graph. For a vertex subset A ⊂
[
V
a

]
, let

NG(A) = {B ∈
[
V
n−a

]
: (A,B) ∈ E(G) for some A ∈ A}

denote the neighborhood of A. We count the number of edges between A and
NG(A) in two ways. Then this number is exactly qa(n−a)|A| on one hand, and at
most qa(n−a)|NG(A)| on the other hand. Namely, we have the Hall condition:

|A| ≤ |NG(A)|.

Thus the bipartite graph has a perfect matching, which can be stated as follows.

Lemma 4. There is a bijection ψ :
[
V
a

]
→

[
V
n−a

]
such that A ⊕ ψ(A) = V holds for

all A ∈
[
V
a

]
.

We will use ψ(A) as a “complement” of A here, and also in the proof of Theorem 8
later. (Notice that the orthogonal space A⊥ does not necessarily satisfy A⊕A⊥ = V .
The authors thank one of the referees for notifying this fact.)

Let Fk = F ∩
[
V
k

]
, fk = |Fk|, d = ⌊(n+ t)/2⌋, and a = k − t+ 1.

Claim 3. |∆a[Fk]|+ |Fn−a| ≤
[
n

n−a

]
for t ≤ k ≤ d.

Proof. Let G ∈ ∆a[Fk] and G ⊂ F ∈ Fk. Using Lemma 4 let H = ψ(G) ∈
[
V
n−a

]
.

Since V = G⊕H ⊂ F +H ⊂ V we have n = dim(F +H) and

dim(F ∩H) = dimF + dimH − dim(F +H) = k + (n− a)− n = t− 1.

Then it follows from the t-intersecting property of F that H = ψ(G) ̸∈ Fn−a. This
gives ψ(∆a[Fk]) ∩ Fn−a = ∅, and

|∆a[Fk]|+ |Fn−a| = |ψ(∆a[Fk])|+ |Fn−a| ≤
[
n

n−a

]
as desired. �
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We notice for later use in the proof of Theorem 5 in Section 3 that the proof above
did not use the full t-intersecting property, but only the (t− 1)-avoiding property.

Let t ≤ k < d. Applying Theorem 3 with u = a = k − t+ 1, we have

|∆a[Fk]| ≥ |Fk|
[
2k − t

a

]
/

[
2k − t

k

]
=
qk − 1

qa − 1
fk.

Since qk−1
qa−1

≥ 1 iff a ≤ k, that is, t ≥ 1, it follows that |∆a[Fk]| ≥ fk with equality

holding iff Fk = ∅ or t = 1. Then we can infer from Claim 3 that

fk + fn−a ≤ |∆a[Fk]|+ |Fn−a| ≤
[

n

n− a

]
. (12)

(This is true for k = d as well but we will not use this case.) Moreover if t > 1 then
fk + fn−a =

[
n

n−a

]
iff fk = 0 and fn−a =

[
n

n−a

]
where t ≤ k < d.

First consider the case n+ t = 2d. Applying (12) for k = t, t+1, . . . , d−1 we have

|F| =
n∑
k=0

fk = fn +
n−1∑
k=t

fk

= fn +
(
(ft + fn−1) + (ft+1 + fn−2) + · · ·+ (fd−1 + fd)

)
≤

[
n

n

]
+

([
n

n− 1

]
+

[
n

n− 2

]
+ · · ·+

[
n

d

])
= |K[n, t]|.

If t > 1 then equality holds iff fk = 0 for 0 ≤ k < d and fk =
[
n
k

]
for d ≤ k ≤ n,

namely, F is isomorphic to K[n, t].
Next consider the case n + t − 1 = 2d. Since Fd ⊂

[
V
d

]
is a t-intersecting family

with 2d− t < n < 2d, we can use a result in [11] to get

fd = |Fd| ≤
[
2d− t

d

]
=

[
n− 1

d

]
. (13)

Moreover if t > 1 then equality holds iff Fd =
[
W
d

]
for some (n − 1)-dimensional

subspace W ⊂ V . Using (12) for k = t, t+ 1, . . . , d− 1 and using (13) for k = d, we
have

|F| =
n∑
k=0

fk = fn +
n−1∑
k=t

fk + fd

= fn +
(
(ft + fn−1) + (ft+1 + fn−2) + · · ·+ (fd−1 + fd+1)

)
+ fd

≤
[
n

n

]
+

([
n

n− 1

]
+

[
n

n− 2

]
+ · · ·+

[
n

d+ 1

])
+

[
n− 1

d

]
= |K[n, t]|.

If t > 1 then equality holds iff fk = 0 for 0 ≤ k < d, fk =
[
n
k

]
for d + 1 ≤ k ≤ n,

and Fd =
[
W
d

]
for some (n − 1)-dimensional subspace W , namely, F is isomorphic

to K[n, t]. This completes the proof of Theorem 4. �
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3. Avoiding just one intersection

In this section we prove Theorem 5 and Theorem 6.

Lemma 5. Let t ≥ 1, k ≥ 2t − 1, and let F ⊂
[
V
k

]
be (t − 1)-avoiding. Then F is

(k − t)-independent.

Proof. We proceed as in Lemma 3 but using a different f(x), that is,

f(x) =
(qk−1 − qx)(qk−2 − qx) · · · (qt − qx)

(qk−t − 1)(qk−t−1 − 1) · · · (q − 1)
. (14)

As we did in the proof of Lemma 3 we can write f(x) =
∑k−t

s=0 as
[
x
s

]
for some

a0, . . . , ak−t ∈ Q. Define an |F| × |F| matrix A by

A =
k−t∑
s=0

asM(F ,
[
V
s

]
)M(F ,

[
V
s

]
)T .

Then, for F, F ′ ∈ F , the (F, F ′)-entry of A is
∑k−t

s=0 as
[
dim(F∩F ′)

s

]
= f(dim(F ∩ F ′)).

By (14), we have f(x) = 0 for x = t, t+ 1, . . . , k − 1, and

f(k) =
k−t∏
j=1

qk−j − qk

qj − 1
=

k−t∏
j=1

qk−j(1− qj)

qj − 1

= (−1)k−tq(k−1)+(k−2)+···+t = (−1)k−tq(k−t)(k−t+1)/2. (15)

For the remaining values except t − 1, namely, for x = 0, 1, . . . , t − 2, we have
f(x) = qx(k−t)

[
k−x−1
k−t

]
and[

k − x− 1

k − t

]
=

[
k − x− 1

t− x− 1

]
=

(qk−x−1 − 1) · · · (qk−t+1 − 1)

(qt−x−1 − 1) · · · (q − 1)
∈ Z[q]. (16)

Recall that qn−1 =
∏

j|nΦj(q), where Φj(q) ∈ Z[q] is the j-th cyclotomic polynomial.

Let us look at the RHS of (16). The numerator contains Φk−t+1(q) as a factor coming
from qk−t+1− 1. On the other hand, j = t−x− 1 is the maximum j such that Φj(q)
appears in the denominator as a factor. Using x ≥ 0 and k ≥ 2t − 1 we have
t − x − 1 ≤ t − 1 < k − t + 1. So Φk−t+1(q) does not appear in the denominator.
Since cyclotomic polynomials are pairwise relatively prime, it follows from (16) that
Φk−t+1(q) divides

[
k−x−1
k−t

]
, namely,

Φk−t+1(q)
∣∣ f(x) for x = 0, 1, . . . , t− 2.

But Φk−t+1(q) does not divide f(k) in Z[q] by (15). Note also that f(t − 1) never
appears in A because of the (t− 1)-avoiding property. Consequently it follows that
f(dim(F ∩ F ′)) ∈ Z[q] and{

Φk−t+1(q) | f(dim(F ∩ F ′)) if F ̸= F ′,

Φk−t+1(q) ̸ | f(dim(F ∩ F ′)) if F = F ′.
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This means that A is a diagonal matrix with no zero diagonal entries in the residue
ring Z[q]/(Φk−t+1(q)), and thus rankA = |F|. On the other hand, it follows from (1)
and the definition of A that colspA ⊂ colspM(F ,

[
V
k−t

]
). Therefore we have

|F| = rankA ≤ rankM(F ,
[
V
k−t

]
) ≤ |F|.

Thus rankM(F ,
[
V
k−t

]
) = |F|, namely, F is (k − t)-independent. �

Proof of Theorem 6. This follows from Lemma 2 and Lemma 5. �
Proof of Theorem 5. Let Fk = F ∩

[
V
k

]
, fk = |Fk|, d = ⌊(n+ t)/2⌋, and a = k− t+1.

Let t ≤ k < d. By Theorem 6, we have

|∆a[Fk]| ≥ |Fk|
[
2k − t

a

]
/

[
2k − t

k

]
=
qk − 1

qa − 1
fk,

and so |∆a[Fk]| ≥ fk with equality holding iff Fk = ∅ or t = 1. Then we can infer
from Claim 3 (see the notice right after the proof of Claim 3) that

fk + fn−a ≤
qk − 1

qa − 1
fk + fn−a ≤

[
n

n− a

]
. (17)

Moreover if t > 1 then fk+fn−a =
[
n

n−a

]
iff fk = 0 and fn−a =

[
n

n−a

]
where t ≤ k < d.

For k < t we will use a trivial upper bound fk ≤
[
n
k

]
.

Case 1. n+ t = 2d.
We have

|F| =
n∑
k=0

fk = fn +
n−1∑
k=t

fk +
t−1∑
k=0

fk

= fn +
(
(ft + fn−1) + (ft+1 + fn−2) + · · ·+ (fd−1 + fd)

)
+

t−1∑
k=0

fk. (18)

First suppose that ft−1 = 0. Then applying (17) for k = t, t+ 1, . . . , d− 1 we have

|F| ≤
[
n

n

]
+

([
n

n− 1

]
+

[
n

n− 2

]
+ · · ·+

[
n

d

])
+

t−2∑
k=0

[
n

k

]
= |K∗[n, t− 1]|.

If t > 1 then equality holds iff fk =
[
n
k

]
for 0 ≤ k < t − 1, fk = 0 for t − 1 ≤ k < d

and fk =
[
n
k

]
for d ≤ k ≤ n, namely, F is isomorphic to K∗[n, t− 1].

Next suppose that ft−1 ̸= 0, that is, there is an F0 ∈ Ft−1. Since F is (t − 1)-
avoiding, no subspace containing F0 can be a member of F , which implies that

fk ≤
[
n

k

]
−

[
n− (t− 1)

k − (t− 1)

]
for k ≥ t. In particular we have

fd ≤ N −M,

where N =
[
n
d

]
, M =

[
n−(t−1)
d−(t−1)

]
. Setting k = d− 1 in (17) we have

αfd−1 + fd ≤ N,
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where α = qd−1−1
qd−t−1

≥ 1. So fd−1 ≤ 1
α
(N − fd). Thus we have

fd−1 + fd ≤
1

α
(N − fd) + fd =

1

α
N + (1− 1

α
)fd

≤ 1

α
N + (1− 1

α
)(N −M) = N − (1− 1

α
)M.

Hence we have

ft−1 + fd−1 + fd ≤
[
n

t− 1

]
+

[
n

d

]
− qd−1 − qd−t

qd−1 − 1

[
n− (t− 1)

d− (t− 1)

]
.

The RHS is less than
[
n
d

]
for n > n0(t). Using this with (17) for k = t, t+1, . . . , d−2

we can infer from (18) that |F| < |K∗[n, t− 1]|.
Case 2. n+ t− 1 = 2d.

If F, F ′ ∈
[
V
d

]
then dim(F ∩ F ′) ≥ t− 1. Since F is (t− 1)-avoiding, Fd ⊂

[
V
d

]
is

actually t-intersecting. So we can use a result in [11] to get

fd = |Fd| ≤
[
n− 1

d

]
. (19)

Moreover if t > 1 then equality holds iff Fd =
[
W
d

]
for some (n − 1)-dimensional

subspace W ⊂ V . Write |F| as follows:

|F| =
n∑
k=0

fk = fn +
n−1∑
k=t

fk +
t−1∑
k=0

fk

= fn +
(
(ft + fn−1) + (ft+1 + fn−2) + · · ·+ (fd−1 + fd+1)

)
+ fd + ft−1 +

t−2∑
k=0

fk.

First suppose that ft−1 = 0. We use (17) for k = t, t+1, . . . , d− 1, (19) for k = d,
and fk ≤

[
n
k

]
for the remaining k. In this way we get |F| ≤ |K∗[n, t− 1]|. Moreover

if t > 1 then equality holds iff fk =
[
n
k

]
for 0 ≤ k < t− 1, fk = 0 for t− 1 ≤ k < d,

fk =
[
n
k

]
for d+1 ≤ k ≤ n, and Fd =

[
W
d

]
for some (n− 1)-dimensional subspace W ,

namely, F is isomorphic to K∗[n, t− 1].
Next suppose that ft−1 ̸= 0. Then we can argue as in Case 1 to conclude that

ft−1 + fd−1 + fd+1 <
[
n
d+1

]
for n > n0(t), which gives |F| < |K∗[n, t − 1]|. This

completes the proof of Theorem 5 �

If we change the definition of a (t−1)-avoiding family F so that dim(F∩F ′) ̸= t−1
is required for all F, F ′ ∈ F , then ft−1 = 0 follows from this new definition. In this
case the above proof shows that Theorem 5 holds without assuming n > n0(t).

4. Uniform families

In this section we prove Theorem 7 and Theorem 8. Then we will show that
Theorem 8 is asymptotically sharp using a packing result of Rödl.

Proof of Theorem 7. This is a direct consequence of Lemma 5. �
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In the rest of this section we follow the proof in [7]. Recall the bijection ψ from
Lemma 4.

Proof of Theorem 8. Let b = 2t− k − 1. For B ∈
[
V
b

]
let

F(B) := {C ∈
[
ψ(B)
k−b

]
: B ⊕ C ∈ F}.

Then we have ∑
B∈[Vb ]

|F(B)| =
[
k
b

]
|F|. (20)

Let k̃ = k−b = 2k−2t+1 and t̃−1 = (t−1)−b = k− t. Then F(B) is a k̃-uniform,

(t̃ − 1)-avoiding family with k̃ = 2t̃ − 1. (In fact if there are C1, C2 ∈ F(B) such
that dim(C1 ∩ C2) = t̃ − 1, then Fi = B ⊕ Ci ∈ F (i = 1, 2) but dim(F1 ∩ F2) =
b+ (t̃− 1) = t− 1, a contradiction.) Thus, by Theorem 7, we have

|F(B)| ≤
[
n−b
k̃−t̃

]
=

[
n−b
k−t

]
. (21)

Now it follows from (20) and (21) that

|F| ≤
[
n
b

][
n−b
k−t

]
/
[
k
b

]
=

[
n
t−1

][
2k−t
k

]
/
[
2k−t
t−1

]
as needed. �

The bound in Theorem 8 is asymptotically sharp. Namely, we have the following.

Theorem 9. Let t ≥ 1 and k > t− 1 be fixed. Then for every ϵ > 0 there is an n0

such that for all n > n0 and V = Fnq there is a (t− 1)-avoiding family F ⊂
[
V
k

]
with

|F| > (1− ϵ)
[
n
t−1

][
2k−t
k

]
/
[
2k−t
t−1

]
.

To prove Theorem 9 we need the following variant of the packing theorem of Rödl
[14].

Theorem 10. Let r and s be fixed. Then for every ϵ > 0 there is an n0 such that for
all n > n0 and V = Fnq there is a family H ⊂

[
V
r

]
which satisfies dim(H ∩H ′) < s

for all H,H ′ ∈ H and |H| > (1− ϵ)
[
n
s

]
/
[
r
s

]
.

Proof of Theorem 9. By Theorem 10 we can take a family S ⊂
[
V

2k−t

]
with dim(S ∩

S ′) < t− 1 for all S, S ′ ∈ S and |S| ∼
[
n
t−1

]
/
[
2k−t
t−1

]
as n→ ∞. Let F = ∆k(S). Then

F is (t − 1)-avoiding and |F| =
[
2k−t
k

]
|S| because k > t − 1. Thus F satisfies the

desired properties. �
Finally we remark that Theorem 10 is derived from the following result stating

that almost regular hypergraphs have almost perfect matchings. This result was
originally obtained by Frankl and Rödl [9] and we use a stronger version given by
Pippenger (see [1] or [13]).

Theorem 11 ([9, 1, 13]). Let F ⊂
(
X
k

)
satisfy the following.

(1) There is D such that #{F ∈ F : x ∈ F} = D for all x ∈ X.
(2) For all {x, y} ∈

(
X
2

)
, #{F ∈ F : {x, y} ⊂ F} = o(D) as D → ∞.

Then there exist pairwise disjoint F1, . . . , Fm ∈ F with m ∼ |X|/k (as D → ∞ and
hence |X| → ∞).
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Proof of Theorem 10. Let X =
[
V
s

]
and k =

[
r
s

]
. Define F := {

[
R
s

]
: R ∈

[
V
r

]
} ⊂

(
X
k

)
.

Then F is D-regular, where D =
[
n−s
r−s

]
. Moreover, for a pair {x, y} ⊂ X, we have

#{F ∈ F : {x, y} ⊂ F} ≤
[
n−s−1
r−s−1

]
= o(D).

In fact if n → ∞ for fixed r and s, then D → ∞ and
[
n−s−1
r−s−1

]
/D = qr−s−1

qn−s−1
→ 0,

namely,
[
n−s−1
r−s−1

]
= o(D). Thus, by Theorem 11, we have a matching F1, . . . , Fm ∈ F

withm ∼
[
n
s

]
/
[
r
s

]
. For 1 ≤ i ≤ m we can write Fi =

[
Ri

s

]
. ThenH := {R1, . . . , Rm} ⊂[

V
r

]
satisfies the desired properties of Theorem 10. �
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[9] P. Frankl, V. Rödl. Near perfect coverings in graphs and hypergraphs. European J. Combin. 6

(1985) 317–326.
[10] P. Frankl, N. M. Singhi. Linear dependencies among subsets of a finite set. Europ. J. Combin.,

4 (1983) 313–318.
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