The minimum area of convex lattice n-gons

Imre Bárány *
Rényi Institute of Mathematics,
Hungarian Academy of Sciences
H-1364 Budapest Pf. 127 Hungary

barany@renyi.hu

and

Department of Mathematics University College London Gower Street, London, WC1E 6BT, UK

Norihide Tokushige
College of Education
Ryukyu University
Nishihara, Okinawa, 903-0213 Japan
hide@edu.u-ryukyu.ac.jp

June 28, 2002

Abstract

Let A(n) be the minimum area of convex lattice n-gons. We prove that $\lim A(n)/n^3$ exists. Our computations suggest that the value of the limit is very close to 0.0185067...

^{*}Partially supported by Hungarian National Science Foundation Grants T 032452 and t 029255

1 Introduction

What is the minimal area A(n) a convex lattice polygon with n vertices can have? The first to answer this question was G.E. Andrews [An63]. He proved that $A(n) \geq cn^3$ with some universal constant c. V.I. Arnol'd arrived to the same question from another direction [Ar80], and proved the same estimate. Further proofs are due to W. Schmidt [Schm85], Bárány-Pach [BP92]. The best lower bound comes form Rabinowitz [Ra93] via an inequality of Rényi-Sulanke [RS63]

$$\frac{1}{8\pi^2} < \frac{A(n)}{n^3} \le \frac{1}{54}(1 + o(1)).$$

The upper bound follows from Remark 2 below.

Our main result is:

Theorem 1 $\lim A(n)/n^3$ exists.

The value of the limit — as we are going to show — equals the minimum of finitely many explicit extremal problems. But the finitely many is about 10^{10} , too many to solve. Our computations show, however, that most likely

$$\lim \frac{A(n)}{n^3} = 0.0185067....$$

We will also see that the convex lattice n-gon P with area A(n) has elongated shape: after applying a suitable lattice preserving affine transformation, P has lattice width c_1n in direction (0,1) and has width c_2n^2 in direction (1,0) where c_1, c_2 positive constants. Almost all the paper is devoted to the proof of Theorem 1.

Remark 1 Actually, Andrews [An63] showed much more, namely the following (see also [Schm85], [KS84]). If $P \subset \mathbf{R}^d$ is a convex lattice polytope with n vertices and volume V > 0, then

$$cn^{\frac{d+1}{d-1}} < V,$$

where c is a constant depending only on dimension.

2 Reduction

Define \mathcal{P}_n as the set of all convex lattice n-gons in \mathbf{R}^2 , then

$$A(n) = \min\{\operatorname{Area} P : P \in \mathcal{P}_n\}.$$

In the next two claims, whose proof is given at the end of this section, we reduce the search for A(n). As A(n) is increasing it is enough to work with even n.

Claim 1 For even n, there exists a centrally symmetric $P \in \mathcal{P}_n$ with A(n) = Area P.

Fix a centrally symmetric $P \in \mathcal{P}_n$ with A(n) = Area P (n = 2k even). The edges are $z_1, z_2, \ldots, z_k, -z_1, \ldots, -z_k$ in this order. Clearly, each z_i is a primitive vector, i.e., its components are coprime. Write **P** for the set of all primitive vectors in \mathbb{Z}^2 . Define

$$C = \text{conv}\{z_1, z_2, \dots, z_k, -z_1, \dots, -z_k\}.$$

Then P is the zonotope spanned by $\{z_1, \ldots, z_k\}$, i.e., $P = \sum_{i=1}^k [0, z_i]$ As it is well-known and easy to check

$$\operatorname{Area} P(C) = \sum_{1 \leq i < j \leq k} |\det(z_i, z_j)|.$$

Write \mathcal{C} for the set of 0-symmetric convex bodies in \mathbf{R}^2 . So $C \in \mathcal{C}$ and define

$$A(C) = \frac{1}{8} \sum_{u \in C \cap \mathbf{P}} \sum_{v \in C \cap \mathbf{P}} |\det(u, v)|.$$

The following claim shows that A(C) = Area P(C).

Claim 2 If $z \in C \cap \mathbf{P}$ then $z = z_i$, or $-z_i$ for some i.

This means that the search for A(n), or for minimal $P \in \mathcal{P}_n$ is reduced to the following minimization problem.

$$Min(n) = min\{A(C) : C \in \mathcal{C} \text{ with } |C \cap \mathbf{P}| = n\}.$$

Observe that the solution C to the problem Min(n) is invariant under lattice preserving linear transformation. Thus we may fix C in standard position. This means that the lattice width of C is 2b = 2b(C) and is taken in direction (0,1). Recall (from [KL88], say,) that the width of $K \subset \mathbf{R}^2$ in direction $z \in \mathbf{Z}^2, z \neq 0$ is

$$w(z, K) = \max\{zx - zy : x, y \in K\},\$$

and the *lattice* width of K is, by definition,

$$w(K) = \min\{w(z, K) : z \in \mathbf{Z}^2, z \neq 0\}.$$

Now let [-a, a] be the intersection of C with the x axis. We may further assume that the tangent line to C at (a,0) has slope ≥ 1 . A simple computation, (using the fact that the width of C in direction (1,0) and (1,-1)is at least 2b) shows that $2a \geq b$. We fix C in this standard position. We record the following inequalities:

$$2a \ge b$$
, $2ab \le \text{Area } C \le 4ab$.

Remark 2 From now on we may assume $b \ge 2$ since for b = 1, according to Claim 2, the minimal C is (with n=2k)

$$conv\{\pm(0,1),\pm(1,1),\pm(2,1),\ldots,\pm(k-2,1),\pm(1,0)\}$$

which gives $\lim \frac{A(C)}{n^3} = \frac{1}{48}$, the example found in [Ra93]. When $C \in \mathcal{C}$ is a circle with $|C \cap \mathbf{P}| = n$, its radius, and then A(C) are estimated easily showing $\lim \frac{A(C)}{n^3} = \frac{1}{54}$. This is the estimate given in the introduction.

Proof of Claim 1. Let $Q \in \mathcal{P}_n$ with vertices v_1, v_2, \ldots, v_{2k} (n = 2k) in this order. The diagonal $[v_i, v_{i+k}]$ cuts Q into two parts. Reflecting the part with smaller (or equal) area to the point $(v_i + v_{i+k})/2$ produces a lattice polygon with area \leq Area Q. So it is enough to show that, for some $i \in \{1, \ldots, k\}$, the reflected n-gon is convex. It is certainly convex if there are parallel tangent lines to Q at v_i and v_{i+k} .

If there are no such tangents then the lines of the edges incident to v_i intersect those of incident to v_{i+k} on the same side of the line $v_i v_{i+k}$, on the left side, say. Then the lines of the edges, incident to v_{i+k} intersect those of v_{i+k+1} on the left side of the line $v_{i+1}v_{i+k+1}$, again. Starting with i=1 a contradiction is reached at i=k+1.

We prove Claim 2 in stronger form:

Claim 2' Assume that $x_1, \ldots, x_k \in \mathbf{R}^2$, and no two of them collinear. If $x \in \text{conv}\{\pm x_1, \ldots, \pm x_k\}$ and $x \neq \pm x_i$ ($\forall i$), then there is a j such that replacing x_j by x gives a zonotope with smaller area.

Proof. Assume first that x is on the boundary of $\text{conv}\{\pm x_1, \ldots, \pm x_k\}$. Then $x = (1 - u)x_s + ux_t$ for some 0 < u < 1. We may also assume that $\sum_{i=1}^k |\det(x_i, x_s)| \ge \sum_{i=1}^k |\det(x_i, x_t)|$. Let $y_s = x$ and $y_i = x_i$ if $i \ne s$. Then

$$egin{array}{lll} \sum_{i=1}^k |\det(y_i,y_s)| &=& \sum_{i
eq s} |\det(x_i,x)| < \sum_{i=1}^k |\det(x_i,x)| \ &=& \sum_{i=1}^k |\det(x_i,(1-u)x_s+ux_t)| \ &=& \sum_{i=1}^k |(1-u)\det(x_i,x_s)+u\det(x_i,x_t)| \ &\leq& (1-u)\sum_{i=1}^k |\det(x_i,x_s)|+u\sum_{i=1}^k |\det(x_i,x_s)| \ &\leq& (1-u)\sum_{i=1}^k |\det(x_i,x_s)|+u\sum_{i=1}^k |\det(x_i,x_s)| \ &=& \sum_{i=1}^k |\det(x_i,x_s)|. \end{array}$$

Thus, replacing x_s by x makes the area smaller.

If x is in the interior of $conv\{\pm x_1, \ldots, \pm x_k\}$, then λx is on the boundary of this set with a unique $\lambda > 1$ (apart from the trivial case x = 0). The previous argument shows that replacing x_s by λx makes the area smaller, and consequently, replacing x_s by x makes it smaller, too.

In the next two sections we approximate $|C \cap \mathbf{P}|$ and A(C) using that the density of \mathbf{P} in \mathbf{Z}^2 is $6/\pi^2$ (cf. [HW79]). We need to measure approximation by a quantity invariant under lattice preserving linear transformations. This is going to be the lattice width 2b = 2b(C).

3 Approximating $|C \cap P|$

Lemma 1

$$\left| |C \cap \mathbf{P}| - \frac{6}{\pi^2} \operatorname{Area} C \right| \ll \operatorname{Area} C \cdot \frac{\log b}{b}.$$

Here and in what follows we use Vinogradov's \ll notation. Thus $f(n) \ll g(n)$ means that $f(n) \leq Dg(n)$ with some universal constant D.

Proof. The proof is standard and uses the Möbius function $\mu(d)$ see [HW79]. Set

$$C^+ = C \cap \{(x, y) \in \mathbf{R}^2 : y > 0\}.$$

Clearly, $|C \cap \mathbf{P}| = 2 + 2|C^+ \cap \mathbf{P}|$ and

$$\begin{array}{lcl} |C^{+} \cap \mathbf{P}| & = & \sum\limits_{(u,v) \in C^{+} \cap \mathbf{Z}^{2}} \sum\limits_{\substack{d \mid u \\ d \mid v}} \mu(d) = \sum\limits_{d=1}^{\infty} \mu(d) & \sum\limits_{\substack{(u,v) \in C^{+} \cap \mathbf{Z}^{2} \\ d \mid u, d \mid v}} 1 = \\ & = & \sum\limits_{d=1}^{b} \mu(d) |\frac{1}{d}C^{+} \cap \mathbf{Z}^{2}|. \end{array}$$

Claim 3

$$\left|\left|\frac{1}{d}C^+ \cap \mathbf{Z}^2\right| - \frac{1}{d^2}\mathrm{Area}\,C^+\right| \le \frac{12a}{d}.$$

Proof. It suffices to show this for d=1. Let Q(z) denote the unit square centered at $z \in \mathbf{Z}^2$. Call $z \in \mathbf{Z}^2$ inside if $Q(z) \subset C^+$, boundary if $z \in C^+$ but $Q(z) \not\subset C^+$, and outside if $z \not\in C^+$ and $Q(z) \cap \operatorname{int} C^+ \neq \emptyset$. (Note that we will use the same inside, boundary, and outside squares Q(z) in the next section.) Clearly

$$\begin{split} |C^+ \cap \mathbf{Z}^2| &= |\{z \in \mathbf{Z}^2 : \mathrm{inside}\}| + |\{z \in \mathbf{Z}^2 : \mathrm{boundary}\}| = \\ &= \mathrm{Area}\, C^+ + \sum_{z \text{ boundary}} \mathrm{Area}\, (Q(z) \setminus C^+) - \sum_{z \text{ outside}} \mathrm{Area}\, (Q(z) \cap C^+), \end{split}$$

and the number of boundary and outside $z \in \mathbb{Z}^2$ is at most the perimeter of the smallest aligned box containing C^+ , which is $2b + 2(a+b) \le 12a$.

With Claim 3 we have

$$egin{aligned} \left|\sum_{d=1}^b \mu(d) \left(\left|rac{1}{d}C^+ \cap \mathbf{Z}^2
ight| - rac{1}{d^2}\mathrm{Area}\,C^+
ight)
ight| \ &\leq \sum_{d=1}^b \left|\left|rac{1}{d}C^+ \cap \mathbf{Z}^2
ight| - rac{1}{d^2}\mathrm{Area}\,C^+
ight| \ &\leq \sum_{d=1}^b rac{1}{d}(2b+2(a+b)) \leq 12a(1+\log b). \end{aligned}$$

Thus

$$\left| |C^+ \cap \mathbf{P}| - \sum_{d=1}^b rac{\mu(d)}{d^2} \operatorname{Area} C^+
ight| \leq 12a(1 + \log b).$$

Note that $|\sum_{d=1}^{b} \frac{\mu(d)}{d^2} - \frac{6}{\pi^2}| \le \sum_{d=b+1}^{\infty} \frac{1}{d^2} < \frac{1}{b}$. Then

$$\begin{split} \left| |C \cap \mathbf{P}| - \frac{6}{\pi^2} \operatorname{Area} C \right| &\leq 2 + \frac{1}{b} \operatorname{Area} C + 24a(1 + \log b) \\ &\leq \operatorname{Area} C \left(\frac{2}{2ab} + \frac{1}{b} + \frac{12(1 + \log b)}{b} \right) \\ &\ll \operatorname{Area} C \cdot \frac{\log b}{b}. \end{split}$$

This completes the proof of Lemma 1.

4 Approximating A(C)

Lemma 2

$$\left| \sum_{u \in C^+ \cap \mathbf{P}} \sum_{v \in C^+ \cap \mathbf{P}} |\det(u, v)| - \left(\frac{6}{\pi^2} \right)^2 \int_{C^+} \int_{C^+} |\det(x, y)| \, dx \, dy \right| \ll (\operatorname{Area} C^+)^3 \frac{\log b}{b}.$$

Proof. It is very simple to see that

$$\det(u,v) = \int_{x \in O(u)} \int_{y \in O(v)} \det(x,y) \, dx \, dy.$$

Then this holds for $|\det(u, v)|$ with $|\det(x, y)|$ as the integrand if $\det(x, y)$ has constant sign on $Q(u) \times Q(v)$. This happens if Q(u) and Q(v) are separated

by a line going through the origin. In case they are not separated, there are $\xi, \eta \in \mathbf{R}^2$ with $\|\xi\|_{\max}, \|\eta\|_{\max} \leq \frac{1}{2}$ such that

$$0 = \det(u + \xi, v + \eta) = (u_1 + \xi_1)(v_2 + \eta_2) - (u_2 + \xi_2)(v_1 + \eta_1).$$

This shows that

$$\det(u,v) = u_1v_2 - u_2v_1 = -u_1\eta_2 - \xi_1v_2 - \xi_1\eta_2 + u_2\eta_1 + v_1\xi_2 + \xi_2\eta_1$$

implying $|\det(u,v)| \leq \frac{1}{2}(|u_1| + |u_2| + |v_1| + |v_2| + 1) \leq \frac{1}{2}(2a + 2b + 1) \leq 4a$ if $u, v \in \mathbb{Z}^2 - \{0\}.$

Similarly, if Q(u) and Q(v) are not separated, then for all $(x, y) \in Q(u) \times Q(v)$ (with $u, v \in \mathbb{Z}^2 - \{0\}$ again)

$$|\det(x,y)| \le 8a.$$

We start estimating $\sum \sum |\det(u, v)|$ via

$$\begin{split} \sum_{u \in C^{+} \cap \mathbf{P}} \sum_{v \in C^{+} \cap \mathbf{P}} |\det(u, v)| &= \sum_{u \in C^{+} \cap \mathbf{Z}^{2}} \sum_{v \in C^{+} \cap \mathbf{Z}^{2}} |\det(u, v)| \sum_{s|u_{1}, s|u_{2}} \mu(s) \sum_{t|v_{1}, t|v_{2}} \mu(t) \\ &= \sum_{s=1}^{\infty} \sum_{t=1}^{\infty} \mu(s) \mu(t) \sum_{u \in C^{+} \cap \mathbf{Z}^{2}} \sum_{v \in C^{+} \cap \mathbf{Z}^{2}} \sum_{t|v_{1}, t|v_{2}} |\det(u, v)| \\ &= \sum_{s=1}^{b} \sum_{t=1}^{b} s \mu(s) t \mu(t) \sum_{u \in \frac{1}{s}C^{+} \cap \mathbf{Z}^{2}} \sum_{v \in \frac{1}{t}C^{+} \cap \mathbf{Z}^{2}} |\det(u, v)| \\ &= \sum_{s=1}^{b} (1) - \sum_{t=1}^{\infty} (2) + \sum_{t=1}^{\infty} (3) \end{split}$$

where

$$\sum_s \sum_t s \mu(s) t \mu(t) \sum_{u \in \frac{1}{r}C^+ \cap \mathbf{Z}^2} \sum_{v \in \frac{1}{r}C^+ \cap \mathbf{Z}^2} \int_{Q(u)} \int_{Q(v)} |\det(x,y)| \, dx \, dy,$$

 $\sum(2)$ is the same as $\sum(1)$ but for non-separated Q(u), Q(v), and

$$\sum(3) = \sum_{s} \sum_{t} s \mu(s) t \mu(t) \sum_{u \in \frac{1}{s}C^{+} \cap \mathbf{Z}^{2}} \sum_{v \in \frac{1}{t}C^{+} \cap \mathbf{Z}^{2}} |\det(u, v)| \, dx \, dy,$$

again for non-separated Q(u), Q(v). For fixed s and t, the number, N(s,t), of non-separated pairs Q(u), Q(v) with $u \in \frac{1}{s}C^+ \cap \mathbf{Z}^2$ and $v \in \frac{1}{t}C^+ \cap \mathbf{Z}^2$ can be estimated generously via Claim 3:

$$N(s,t) \le \left(\operatorname{Area} \frac{1}{s}C^+ + \frac{10a}{s}\right) \left(\operatorname{Area} \frac{1}{t}C^+ + \frac{10a}{t}\right)$$

 $\ll \left(\operatorname{Area} C^+\right)^2 \frac{1}{s^2t^2}.$

In $\sum(3)$, $|\det(u,v)| \ll \frac{a}{s} + \frac{a}{t}$, and in $\sum(2)$ the integrand $|\det(x,y)| \ll \frac{a}{s} + \frac{a}{t}$ as well. Consequently

$$|\sum(2)|, |\sum(3)| \ll \sum_{s=1}^{b} \sum_{t=1}^{b} st (\operatorname{Area} C^{+})^{2} \frac{1}{s^{2}t^{2}} (\frac{1}{s} + \frac{1}{t}) a$$

$$\ll (\operatorname{Area} C^{+})^{3} \frac{\log b}{b}.$$

Now we turn to $\Sigma(1)$. Define $R(s) = \bigcup_{u \text{ boundary}} (Q(u) \setminus \frac{1}{s}C^+)$ and $T(s) = \bigcup_{u \text{ outside}} (Q(u) \cap \frac{1}{s}C^+)$. We have to integrate over

$$\left[\frac{1}{s}C^{+} \cup R(s) \setminus T(s)\right] \times \left[\frac{1}{t}C^{+} \cup R(t) \setminus T(t)\right].$$

The main term comes from integrating over $\frac{1}{s}C^+ \times \frac{1}{t}C^+$. We are going to estimate the remaining 8 integrals.

It is readily seen that for $x, y \in C^+ |\det(x, y)| \leq \operatorname{Area} C^+$. We need a slight strengthening of this (whose simple proof is omitted).

Claim 4 When $x \in R(s) \cup T(s)$ and $y \in R(t) \cup T(t)$ and $s, t \leq b$, then

$$|\det(x,y)| \ll \frac{\operatorname{Area} C^+}{st}.$$

Using Claim 4

$$egin{aligned} \int_{rac{1}{s}C^+} \int_{R(t)} |\det(x,y)| \, dx \, dy &\ll rac{\operatorname{Area}C^+}{st} \int_{rac{1}{s}C^+} dx \int_{R(t)} dy \ &\ll rac{\operatorname{Area}C^+}{st} rac{1}{s^2} \operatorname{Area}C^+ rac{a}{t} &\ll rac{(\operatorname{Area}C^+)^3}{b} rac{1}{s^3t^2}. \end{aligned}$$

So the sum of these terms multiplied by st is

$$\ll \sum_{s=1}^{b} \sum_{t=1}^{b} st \, \frac{(\operatorname{Area} C^{+})^{3}}{b} \, \frac{1}{s^{3}t^{2}} \ll (\operatorname{Area} C^{+})^{3} \, \frac{\log b}{b}.$$

The same applies to the integral over $\frac{1}{s}C^+\times T(t)$ and when t and s are interchanged. Similarly

$$\int_{T(s)} \int_{T(t)} |\det(x,y)| \, dx \, dy \ll rac{\operatorname{Area} C^+}{st} rac{a}{s} rac{a}{t} \ll rac{(\operatorname{Area} C^+)^3}{b^2} rac{1}{s^2} rac{1}{t^2},$$

and the same works for the remaining three integrals. Thus we have

$$\left| \sum_{u \in C^+ \cap \mathbf{P}} \sum_{v \in C^+ \cap \mathbf{P}} |\det(u, v)| - \sum_{s=1}^b \sum_{t=1}^b s \mu(s) t \mu(t) \int_{\frac{1}{s}C^+} \int_{\frac{1}{t}C^+} |\det(x, y)| \, dx \, dy \right| \ll$$

$$\ll (\operatorname{Area} C^+)^3 \left(\frac{\log b}{b} + \frac{\log^2 b}{b^2} \right) \ll (\operatorname{Area} C^+)^3 \frac{\log b}{b}.$$

Here

$$egin{aligned} \sum_{s=1}^b \sum_{t=1}^b s \mu(s) t \mu(t) \int_{rac{1}{s}C^+} \int_{rac{1}{t}C^+} |\det(x,y)| \, dx \, dy \ &= \sum_{s=1}^b \sum_{t=1}^b rac{\mu(s)}{s^2} rac{\mu(t)}{t^2} \int_{C^+} \int_{C^+} |\det(x,y)| \, dx \, dy \ &= \left(rac{6}{\pi^2} - \sum_{s=b+1}^\infty rac{\mu(s)}{s^2}
ight) \left(rac{6}{\pi^2} - \sum_{t=b+1}^\infty rac{\mu(t)}{t^2}
ight) \int_{C^+} \int_{C^+} |\det(x,y)| \, dx \, dy. \end{aligned}$$

By Claim 4 $\int_{C^+} \int_{C^+} |\det(x,y)| dx dy \ll (\operatorname{Area} C^+)^3$. Thus

$$\begin{split} \left| \sum_{s=1}^{b} \sum_{t=1}^{b} s \mu(s) t \mu(t) \int_{\frac{1}{s}C^{+}} \int_{\frac{1}{t}C^{+}} |\det(x,y)| \, dx \, dy \\ - \left(\frac{6}{\pi^{2}} \right)^{2} \int_{C^{+}} \int_{C^{+}} |\det(x,y)| \, dx \, dy \right| \ll (\operatorname{Area} C^{+})^{3} \frac{1}{b} \end{split}$$

finishing the proof of Lemma 2.

5 Symmetrization

Theorem 2 Assume $K \in \mathcal{C}$, and $B \in \mathcal{C}$ is a disk with Area K = Area B. Then

$$\int_K \int_K |\det(x,y)| \, dx \, dy \geq \int_B \int_B |\det(x,y)| \, dx \, dy.$$

Equality holds iff K is an ellipsoid.

This theorem is known as Busemann's random simplex inequality [Bu53]. The proof goes by standard symmetrization (see e.g. [Bu53] or [Schn93]), so we only give a sketch. Let K^* be the symmetral of K with respect to a line l passing through O. We may assume, without loss of generality, that l is the x axis. To prove the theorem, it suffices to show the following:

Claim 5

$$\int_K \int_K |\det(x,y)| \, dx \, dy \geq \int_{K^*} \int_{K^*} |\det(x,y)| \, dx \, dy.$$

Proof. Write $x=(x_1,x_2)$ and $y=(y_1,y_2)$. Fix $x_1\in \mathbf{R}$ and define $I(x_1)=\{x_2\in \mathbf{R}: (x_1,x_2)\in K\}$ which is clearly an interval, $I(x_1)=[A,B]$, say. Then $\{x_2\in \mathbf{R}: (x_1,x_2)\in K^*\}=[-(B-A)/2,(B-A)/2]$ is an interval again which we denote by $I^*(x_1)$. Similarly, for fixed $y_1,\{y_2: (y_1,y_2)\in K\}=I(y_1)$ is an interval. Now the part of the integral $\int_K \int_K |\det(x,y)| \, dx \, dy$ with x_1 and y_1 fixed and the same part of $\int_{K^*} \int_{K^*} |\det(x,y)| \, dx \, dy$ can be compared easily. First, $\det(x,y)=x_1y_2-x_2y_1$, and

$$\int_{I(x_1)} \int_{I(y_1)} \left| x_1 y_2 - x_2 y_1 \right| dx_2 \, dy_2 \leq \int_{I^*(x_1)} \int_{Y^*(y_1)} \left| x_1 y_2 - x_2 y_1 \right| dx_2 \, dy_2.$$

This is true since the integrand is the absolute value of a linear function on the rectangle $(x_2, y_2) \in I(x_1) \times I(y_1)$ which is clearly the smallest when the linear function is 0 at the center of the rectangle. This is the case exactly for the symmetral.

If B is a disk centered at the origin, then

$$\int_B \int_B |\det(x,y)| \, dx \, dy = rac{8}{9\pi^2} (\operatorname{Area} B)^3.$$

Thus Lemmas 1 and 2, and Theorem 2 give

Corollary 1 If $C \in \mathcal{C}$ with $|C \cap \mathbf{P}| = n$, then

$$A(C) \ge \left(\frac{1}{54} - D \frac{\log b}{b}\right) n^3$$

where D is a universal constant.

Remark 3 It turns out that one can take D = 5000 here when working with explicit constants instead of \ll .

6 The value of $\lim A(n)/n^3$

Set

$$f(z_1,\ldots,z_b) = rac{2}{3} \sum_{i=1}^b \left(2 rac{\phi^2(i)}{i} + rac{\phi(i)}{i^2} (\sum_{j=1}^{i-1} j \phi(j))
ight) z_i^3 + 2 \sum_{i=1}^b \phi(i) z_i \left(\sum_{j=1}^{i-1} rac{\phi(j)}{j} z_j^2
ight).$$

We say that z_1, \ldots, z_b is special if the z_i are decreasing, $z_b \geq 0$ and they are convex, i.e., they satisfy $2z_i \geq z_{i-1} + z_{i+1}$ for $i = 2, \ldots, b-1$. Define the following minimization problem:

minimize
$$f(z_1,\ldots,z_b)$$
 subject to $4\sum_{i=1}^b \frac{\phi(i)}{i}z_i=1,z_1,\ldots,z_b$ is special.

The minimum, which clearly exists, will be denoted by M(b).

Theorem 3 $\lim A(n)/n^3 = \min_{b \le 10^{10}} M(b)$.

Before the proof we give the following construction. Assume b > 1, and x_1, \ldots, x_b is special with $x_1 > 0$. Define

$$K = \operatorname{conv}\{(\pm x_i, \pm i) \in \mathbf{R}^2 : i = 1, \dots, b\}.$$

K is a convex set which is symmetric with respect to both axes. Define the 2 by 2 diagonal matrix H_n , with diagonal elements λ_n and 1, that satisfies $|\mathbf{P} \cap H_n K| = n$. (There might be a little ambiguity in this definition since several, but at most 4b, elements may appear on the boundary of $H_n K$. Resolve it by considering some of these points as belonging, while some others as not belonging, to $H_n K$.) Setting $K_n = H_n K$ we see that $|\mathbf{P} \cap K_n| = n$.

Define $I(e, f; i) = \{(x, i) \in \mathbf{Z}^2 : e \leq x < f\}$. It is clear that the density of **P** on the line y = i is $\phi(i)/i$, and there are exactly $\phi(i)$ primitive points on an interval of the form I(si, (s+1)i; i). Write I(i, s) for this interval. Now

$$|n-4\sum_{i=1}^b rac{\phi(i)}{i} \lambda_n x_i| \leq 4\sum_1^b i \leq 4b^2,$$

since, for each i > 0, the error term comes from the two subintervals $I_{left}(i)$ and $I_{right}(i)$ of $I(-\lambda_n x_i, \lambda_n x_i; i)$ that remain after deleting all I(i, s) contained in it. A similar argument gives the following claim.

Claim 6

$$A(K_n) = \lambda_n^3 f(x_1, \dots, x_b) + O(\lambda_n^2),$$

where the implied constant depends only on b.

Proof. We only give a sketch. The basic observation is that $\sum |\det(u,v)|$ over $(u,v) \in (I(i,s) \cap \mathbf{P}) \times (I(j,t) \cap \mathbf{P})$ is the same as $\phi(i)\phi(j)/(ij)$ times the same sum over $(u,v) \in I(i,s) \times I(j,t)$, provided $\det(u,v)$ does not change sign on the box $I(i,s) \times I(j,t)$. The error terms come from two sources: First, from boxes where sign change occurs, but there are few of those, and there $|\det(u,v)| \leq ij$. Secondly, when $u \in I_{left}(i)$ or $I_{right}(i)$, and similarly for v. But these intervals are short, with $|\det(u,v)|$ at most $4b\lambda_n$ (cf Claim 4). The statement follows by summing $\phi(i)\phi(j)|\det(u,v)|/(ij)$ over all $(u,v) \in (K_n \cap \mathbf{Z}^2) \times (K_n \cap \mathbf{Z}^2)$.

So this construction satisfies $|\mathbf{P} \cap K_n| = n$ and

$$\lim rac{A(K_n)}{n^3} = f(x_1,\ldots,x_b) \left(4\sum_{i=1}^b rac{\phi(i)}{i}x_i
ight)^{-3}.$$

Proof of Theorem 1. Let C_n be the solution of the extremal problem $\operatorname{Min}(n)$ from Section 2. Let n_j be a sequence along which $\operatorname{Min}(n_j)$ tends to $M = \liminf \operatorname{Min}(n)$. If $b(C_n) \to \infty$ along a subsequence of n_j , then, according to Corollary 1

$$\lim \frac{A(C_n)}{n^3} = \frac{1}{54}$$

along the sequence n_j . But then this is true along the sequence n as well since, for the disk B_n containing n primitive points, $\lim A(B_n)/n^3 = 1/54$.

Assume now that $b(C_n)$ is bounded along n_j . Then we can choose a subsequence of n_j along which $b(C_n) = b$ for some fixed b > 1. To save writing, we denote this subsequence by n_j as well.

Let C_n^* denote the symmetral of C_n with respect to the y axis. The discrete analogue of the proof of Theorem 2 shows (we omit the straightforward details) that, along the sequence n_j ,

$$\lim \frac{A(C_n)}{n^3} = \lim \frac{A(C_n^*)}{n^3}.$$

For $n = n_j$ and i = 0, 1, ..., b define $x_i(n) \ge 0$ by

$$[-x_i(n), x_i(n)] = C_n^* \cap \{(x, i) : x \in \mathbf{R}\}.$$

Then with our previous notation $x_0(n) = a(C_n^*) = a(C_n)$, and $a(C_n) \to \infty$ (along n_j) since Area $C_n \le 4a(C_n)b$. Choose now a subsequence of n_j along which $x_i(n)/a(C_n)$ is convergent, with limit x_i , for $i = 1, \ldots, b$. As the sequence x_1, \ldots, x_b is special and $x_1 > 0$, the above construction works and gives the sequence K_n . It is obvious that, along the last subsequence of n_j , $\lim A(K_n)/n^3 = \lim A(C_n^*)/n^3 = M$. Then

$$\lim_{n\to\infty}\frac{A(K_n)}{n^3}=M$$

as well.

Proof of Theorem 3. Given a special x_1, \ldots, x_b with $4\sum_{1}^{b} \frac{\phi(i)}{i} x_i = 1$, we constructed a sequence of bodies K_n with $|K_n \cap \mathbf{P}| = n$ and $\lim A(K_n)/n^3 = f(x_1, \ldots, x_b)$. So the value of the limit in Theorem 1 is less than 1/54 if we find a single special sequence on which f is smaller than 1/54. Here is such a sequence with b = 15:

```
\begin{array}{llll} x_1=0.03352589244, & x_2=0.03335447314, & x_3=0.03300806459, \\ x_4=0.03251038169, & x_5=0.03186074614, & x_6=0.03104245531, \\ x_7=0.03004944126, & x_8=0.02886386937, & x_9=0.02745127878, \\ x_{10}=0.02577867736, & x_{11}=0.02380388582, & x_{12}=0.02143223895, \\ x_{13}=0.01851220227, & x_{14}=0.01470243266, & x_{15}=0.008861427136, \end{array}
```

giving

$$f(x_1,\ldots,x_{15})=0.0185067386955\ldots$$

which is smaller than 1/54 = 0.0185185185... by about 10^{-5} .

To see the bound $b \leq 10^{10}$, we use Corollary 1: if $b > 10^{10}$, and $C \in \mathcal{C}$ with $|C \cap \mathbf{P}| = n$, then

$$\frac{A(C)}{n^3} \ge \frac{1}{54} - 5000 \frac{\log 10^{10}}{10^{10}} > 0.018507.$$

Remark 4 The 10^{10} bound can be improved to about 10^7 by proving a stability version of Theorem 2: informally stated, this would say that if the left hand side of the inequality in Theorem 2 is smaller than $1 + \varepsilon$ times its right hand side, then K can be sandwiched between two ellipsoids E and $(1 + c\sqrt{\varepsilon})E$.

7 Remarks on computation

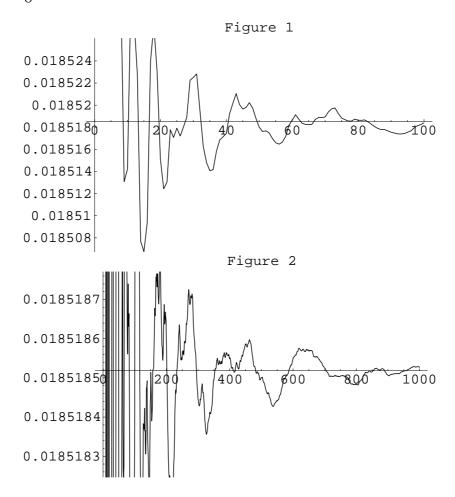
It seems hard to solve the minimization problems explicitly. We used the following heuristics. Let x_1, \ldots, x_b be a solution to the problem. What can we expect about x_1, \ldots, x_b ? According to Theorem 2, it is reasonable to assume that $(x_1, 1), \ldots, (x_b, b)$ are almost on the boundary of an ellipsoid. So let E_t be an ellipsoid whose half-axes are of length 1 and t with $b \le t \le b+1$, and define

$$w(i,t) = \sqrt{1 - \left(\frac{i}{t}\right)^2} \quad (0 \le i \le t).$$

Set $W=4\sum_{i=1}^{b}\frac{\phi(i)}{i}w(i,t)$ and $z_i=w(i,t)/W$ for $i=1,\ldots,b$. Then these z_1,\ldots,z_b form a good approximation for the solution of the minimization problem. In fact, this method gives, with t=15.56 (then b=15) the points z_1,\ldots,z_{15} , that already satisfy $f(z_1,\ldots,z_{15})<1/54$. The even better solution x_1,\ldots,x_{15} giving $f(x_1,\ldots,x_{15})=0.0185067\ldots$ was found near the previous z_1,\ldots,z_{15} by solving the set of equations that constitute the necessary conditions for the extremum.

Using this heuristics we have checked the value of f near the ellipsoid E_t for $b=1,\ldots,100$ carefully (Figure 1) and for $b=101,\ldots,1000$ roughly (Figure 2). The computation suggests that the true limit of $A(n)/n^3$ is very close to the above value 0.0185067... If this is the case then the

minimizer P_n is very close, but not equal to, the ellipsoid with equation $x^2/A^2 + y^2/B^2 = 1$ where $A = 0.003573n^2$ and B = 1.656n. But even if the minimum is different, the shape of the minimizer P_n is oblong: it is c_1n wide c_2n^2 long in its lattice width direction.



References

[An63] G. E. Andrews: A lower bound for the volumes of strictly convex bodies with many boundary points. Trans. AMS, 106 (1963), 270–279.

- [Ar80] V. I. Arnol'd: Statistics of integral convex polytopes. (in Russian) Funk. Anal. Pril., 14 (1980), 1–3. English translation: Funct. Anal. Appl., 14 (1980), 79–84.
- [BP92] I. Bárány, J. Pach: On the number of convex lattice polygons. Comb. Prob. Comp., 1 (1992), 295–302.
- [Bu53] H. Busemann: Volume in terms of concurrent cross-sections, Pacific J. Math., 3 (1953), 1–12.
- [HW79] G. H. Hardy, E. M. Wright: An introduction to the theory of numbers, Clarendon Press, Oxford (1979).
- [KL88] R. Kanann, L. Lovász. Covering minima and lattice-point-free convex bodies, Annals of Math., 128 (1988), 577–602.
- [KS84] S. B. Konyagin, K. A. Sevastyanov: Estimation of the number of vertices of a convex integral polyhedron in terms of its volume. (in Russian) Funk. Anal. Pril., 18 (1984), 13–15. English translation: Funct. Anal. Appl., 18 (1984), 11–13.
- [Ra93] S. Rabinowitz: $O(n^3)$ bounds for the area of a convex lattice n-gon. Geombinatorics, 2 (1993), 85–88.
- [RS63] A. Rényi, R. Sulanke: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrsch. Verw. Geb., 2 (1963), 75-84.
- [Schm85] W. Schmidt: Integral points on surfaces and curves. Monatshefte Math., 99 (1985), 45–82.
- [Schn93] R. Schneider: Convex bodies: the Brunn-Minkowski theory. Encyclopedia Math. Appl. vol 44. Cambridge University Press, Cambridge, 1993.