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Abstract. We present a simple proof for the generalizations of a result due to
Wallace and a result due to Miquel to higher dimensions.

1. Introduction

Let us recall the following two classic results in plane geometry.

Theorem 1 (Wallace [6] 1804). Every three extended sides of a general quadrilateral
determine a triangle, and therefore determine a circle circumscribed to the triangle.
Thus,

(
4
3

)
= 4 circles are determined by a quadrilateral. These four circles meet at a

point.

Theorem 2 (Miquel [4] 1834). On each (extended) side of an arbitrary triangle,
consider a point different from the two vertices. Then the three circles, each of which
is determined by a vertex and the two points on the adjacent side, meet at a point.

In this note, we present a simple proof for the generalizations of the above results
to higher dimensions. In the following, we write A1A2 . . . An (or

∏n
i=1 Ai) for A1 ∩

A2 ∩ · · · ∩An, and if A1 ∩A2 ∩ · · · ∩An = {X}, then we write X = A1A2 . . . An. Let
[n] = {1, 2, . . . , n} and [m,n] = {i : m ≤ i ≤ n}. We denote the cardinality of a set
A by |A|. Then the generalized results are stated below.

Theorem 3. Let S1, . . . , Sd+2 be d + 2 hyperplanes in Rd such that each d + 1 of
them determine a d-simplex. For each i ∈ [d + 2], let Ti be the circumsphere of the
d-simplex determined by {Sj : j ∈ [d + 2] \ {i}}. Then the intersection T1 . . . Td+2 is
a single point if d is even, and empty if d is odd.

Theorem 4. Suppose that d+1 hyperplanes S1, . . . , Sd+1 in Rd determine a d-simplex
with vertices Q1, . . . , Qd+1, where Qi =

∏
j ̸=i Sj. For distinct i, j ∈ [d + 2], choose

a point Qij on the line QiQj, avoiding Qi, Qj. For each i ∈ [d + 1], let Ti be the
circumsphere of the d-simplex spanned by the d+1 points {Qi}∪{Qij : j ̸= i}. Then
the d + 1 spheres T1, . . . , Td+1 intersect at a single point.

2. Proofs

We first prove Theorem 4, and then we derive Theorem 3 from Theorem 4. A
triple (d, {Si}, {Ti}), where i ∈ [d + 1], is called an M-triple if it lists the dimension,
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hyperplanes and spheres under the condition of Theorem 4. We note that this triple
is hereditary, namely, if (d, {Si}, {Ti}) is an M-triple then so is (d−1, {S1Si}, {S1Ti})
(i ∈ [2, d+2]) by identifying S1 with Rd−1. By an “ℓ-point” we mean a point of type
Qij in Theorem 4, namely, a point chosen on a line.

Proof of Theorem 4. We show the following slightly stronger claim.

Claim 1. For an M-triple (d, {Si}, {Ti}) and T := T1 . . . Td, there exist points X,Y ∈
Rd such that TTd+1 = X, TSd+1 = Y , and T = {X,Y }.

The existence of the point X implies the theorem. Note that X = Y may happen.
We prove the claim by induction on the dimension d. In the case d = 1, we have
three distinct reals Q1, Q2, Q12, and S1 = {Q2}, S2 = {Q1}, T1 = {Q1, Q12} T2 =
{Q2, Q12}. Thus it follows that X = Q12 and Y = Q1. The planar case d = 2 follows
from Theorem 2. Let d ≥ 3. We show the case d assuming that the claim is true
up to (d − 1)-dimensions. We divide the remaining part of the proof into two steps.
In the first step we apply the induction hypothesis in 2 dimensions to get points of
type Qijk. These points will be used as ℓ-points in the second step, where we apply
the induction hypothesis in (d − 1)-dimensions. Notice that

Qa = Ta

∏
i̸=a

Si, Qab = TaTb

∏
i ̸=a,b

Si.

First we look at the sections by the 2-dimensional plane H = S4 . . . Sd+1. For
each i ∈ [3], let S ′

i := SiH and T ′
i := TiH. Then for {a, b, c} = [3], S ′

a is a line
on H, and S ′

aS
′
b = SaSbH = Qc, Qbc = SaTbTcH = S ′

aTbTc ∈ S ′
a. Also, T ′

a is the
circle determined by Qa, Qab, Qac ∈ H. Thus applying the induction hypothesis
to the M-triple (d = 2, {S ′

1, S
′
2, S

′
3}, {T ′

1, T
′
2, T

′
3}), we get the intersection Q123 :=

T ′
1T

′
2T

′
3 = T1T2T3H. In the same way, we get the intersection of three spheres and

d − 2 hyperplanes

Qijk = TiTjTk

∏
ℓ̸∈{i,j,k}

Sℓ. (1)

Next we look at the sections by the (d − 1)-dimensional hyperplane φ(T1), where
φ is an inversion of Rd with respect to a sphere centered at Q1. For i ∈ [2, d + 1] let
σi = φ(T1Si) and τi = φ(T1Ti). Since Q1 ∈ T1

∏
i∈[2,d+1] Si, we find that σ2, . . . , σd+1

are (d − 2)-dimensional flats on the hyperplane φ(T1). For a ∈ [2, d + 1], set

qa := φ(Q1a) = φ(T1Ta

∏
i ̸∈{1,a}

Si) ∈ τa

∏
i∈[2,d+1]\{a}

σi.

Then the d flats σ2, . . . , σd+1 determine a (d − 1)-simplex in φ(T1) with vertices
q2, . . . , qd+1. Also, for distinct a, b ∈ [2, d + 1], using (1) set

qab := φ(Q1ab) = φ(T1TaTb

∏
i̸∈{1,a,b}

Si) ∈ τaτb

∏
i∈[2,d+1]\{a,b}

σi.

We note that φ(Td+1

∏
i ̸∈{1,a,b} Si) =

∏
i∈[2,d+1]\{a,b} σi is the line qaqb itself, and qab

is an ℓ-point on this line. Moreover, the d points q2, q23, q24, . . . , q2,d+1 determine a
(d − 2)-dimensional sphere, which is τ2. Similarly, for a ∈ [2, d + 1], the sphere τa

passes through d points qa and qab (b ∈ [2, d + 1] \ {a}). We apply the induction
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hypothesis to the M-triple (d − 1, {σi}, {τi}) to get τ2 . . . τd+1 = x, τ2 . . . τdσd+1 = y,
and τ2 . . . τd = {x, y}. In other words, we have φ(TTd+1) = x, φ(TSd+1) = y, and
φ(T ) = {x, y}. Since φ is a bijection on Rd \{Q1}, we have X = φ−1(x), Y = φ−1(y)
as desired. ¤

A triple (d, {Si}, {Ti}) (i ∈ [d + 2]) is called a W-triple if it lists the dimension,
hyperplanes and spheres under the condition of Theorem 3. This triple is hered-
itary. Moreover, we observe that if (d, {Si}, {Ti}) (i ∈ [d + 2]) is a W-triple then
(d, {Si}, {Ti}) (i ∈ [d+1]) is an M-triple. To see this, we need to find proper ℓ-points.
Let H be the d-simplex determined by the hyperplanes S1, . . . , Sd+1. Then the hy-
perplane Sd+2 cuts the extended edges of H, and determines the desired ℓ-points.

Proof of Theorem 3. We prove by induction on the dimension d. The case d = 1 is
trivial, and the case d = 2 is Theorem 1. Let d ≥ 3 and suppose that the theorem is
true up to (d − 1)-dimensions.

Let T := T1 . . . Td. By Applying Claim 1 to the M-triple (d, {Si}, {Ti}) (i ∈ [d+1]),
there are X,Y ∈ Rd such that X = TTd+1, Y = TSd+1, and T = {X,Y }. Similarly,
applying Claim 1 to another M-triple (d, {Sj}, {Tj}) (j ∈ [d+2]\{d+1}), we have T =
{X ′, Y ′}, where X ′ = TTd+2, Y ′ = TSd+2. Thus {TTd+1, TSd+1} = {TTd+2, TSd+2},
and TTd+1 = TTd+2 iff TSd+1 = TSd+2.

Applying the induction hypothesis to the W-triple

(d − 2, {SiSd+1Sd+2}, {TiSd+1Sd+2}), where i ∈ [d],

we find that TSd+1Sd+2 is a single point if d− 2 is even, and empty otherwise. Thus
if d is even, then TSd+1 = TSd+2 and TTd+1 = TTd+2, namely, TTd+1Td+2 is a single
point. If d is odd, then TTd+1 ̸= TTd+2 and TTd+1Td+2 is empty. ¤

3. Concluding remarks

Roberts [5] obtained Theorem 3 for d = 3. Then Grace [2] proved Theorem 3
and Theorem 4 up to 4 dimensions. He considered intersections of cubic surfaces
corresponding to Si∪Ti. One can extend his algebraic approach to higher dimensions,
see “The generalised Miquel theorem” and “Generalisation of Wallace’s theorem” in
Chapter I of Baker [1].

On the other hand, Longuet-Higgins [3] obtained Theorem 3 as a base case for a
version of Clifford’s chain. In particular, he found that the d + 2 hyperplanes and
the d + 2 spheres appearing in Theorem 3 can be viewed as a part of facets of the
(d + 2)-dimensional hemi-cube. Our proof for Theorem 4 is based on his idea. In
our case, the corresponding polytope is the (d + 1)-dimensional hypercube. We just
mention that the structure essentially comes from the following extension of Claim 1.

Theorem 5. Let (d, {Si}, {Ti}) be an M-triple. Then for each ∅ ̸= J ⊂ [d+1], there
exists a point QJ ∈ Rd such that QJ =

∏
j∈J Tj

∏
k ̸∈J Sk.

Notice that in the cases |J | = 1, 2, the point QJ coincides with a vertex and an
ℓ-point of the d-simplex in Theorem 4, respectively. For comparison, we state the
corresponding result for a W-triple due to Longuet-Higgins.
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Theorem 6. Let (d, {Si}, {Ti}) be a W-triple. Then for each ∅ ̸= J ⊂ [d + 2] there
exists a point QJ ∈ Rd such that QJ =

∏
j∈J Tj

∏
k ̸∈J Sk iff d − |J | even.
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