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Abstract

The following game is considered. The first player can take any number of stones,
but not all the stones, from a single pile of stones. After that, each player can take
at most n-times as many as the previous one. The player first unable to move loses
and his opponent wins.

Let f1, f2, . . . be an initial sequence of stones in increasing order, such that the
second player has a winning strategy when play begins from a pile of size fi. It is
proved that there exist constants c = c(n) and k0 = k0(n) such that fk+1 = fk+fk−c

for all k > k0, and limn→∞ c(n)/(n log n) = 1.
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Let us consider the following game which we call n-times nim. The first player
can take any number of stones, but not all the stones, from a single pile
of stones. After that, each player can take at most n-times as many as the
previous one. The player first unable to move loses and his opponent wins.
Usually this game is considered for a positive integer n, but throughout this
paper we only assume that n ≥ 1, i.e., n can be a real number.

Let F (n) := {f1, f2, . . .} be the sequence of initial numbers of stones in in-
creasing order such that the second player has a winning strategy when the
first player begins moving from a pile of size fi. Clearly f1 = 1, since the first
player has no move, so the second wins. Then, obviously,

fi = i holds for i ≤ ⌊n+ 1⌋, (1)
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also f⌊n+2⌋ = ⌊n+ 3⌋.

Whinihan (who ascribes “Fibonacci nim” to R.E. Gaskell, see [2]) found that
2-times nim satisfies fk+1 = fk+ fk−1, that is, F (2) is the Fibonacci sequence.
Then Schwenk [1] proved that in n-times nim there exist constants c = c(n)
and k0 = k0(n) such that fk+1 = fk+fk−c for all k > k0. He asked to determine
the behavior of c = c(n). We are going to prove the result of Schwenk in a
different way, and answer his question.

Theorem 1 Let n be a fixed positive real at least 1.

(i) For every k ≥ 1 there exists an r = r(k) such that fk+1 = fk + fr holds.
(ii) r(k) can be computed by r(k) = min{r : nfr ≥ fk}.
(iii) (n+1

n
)fk ≤ fk+1 holds for all k ≥ 1.

(iv) r(k) ≤ r(k + 1) ≤ r(k) + 1, i.e., the function r(k) is continuous in the
discrete sense.

(v) There is a constant c = c(n) such that r(k) = k − c holds for all k > k0.

PROOF. We prove all these statements simultaneously, applying induction
on k. The cases k ≤ n are trivial, with r(k) = 1.

Suppose now that all statements are proved for k′ < k and consider k. Let r(k)
be defined via (ii). We first prove that the first player has a winning strategy
for s stones as long as

fk < s < fk + fr(k). (2)

If n(s− fk) < fk holds then the first player can remove s− fk stones and win,
as fk is a second player win. From now on, we suppose

n(s− fk) ≥ fk, i.e., s ≥ n+ 1

n
fk. (3)

Let us show that
s− fk is a first player win.

Suppose the contrary, then s− fk = fq holds for some q. Since fq = s− fk <
fr(k) by (2), the definition of r(k) implies nfq < fk, and n(s− fk) = nfq < fk,
contradicting (3).

Now let the first player play according to the winning strategy for s − fk
stones. This will enable him a finite number of moves to reduce the number
of remaining stones to exactly fk.

For convenience, we make this strategy even more clear, by requiring him to
remove all the “extra stones,” i.e., reduce the number of remaining stones to
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fk only if he has no other winning moves for his “mind game” of s−fk stones.
This makes sure that when he reduces the number of stones to exactly fk, the
number of stones, say t, that he is taking is a second player win. That is

t = fl for some l < r(k), (4)

implying, by the definition of r(k) that

nt < fk, (5)

and thus completing the proof that this is a winning strategy for the first
player.

Now, to complete the proof of (i), we must show that

fk + fr(k) is a second player win.

If the first player removes fr(k) or more stones, then the second can remove
all the remaining and win. Otherwise let the second player play the “mind
game” for fr(k) stones, by delaying his ultimate move (as above) as long as he
can. Then, the number of stones (say t) which he removes finally to reduce
the number of remaining stones to fk will satisfy (4) and thus (5) too, proving
that this is a correct winning strategy. This concludes the proof of (i) and (ii).
Then (iii) follows directly from (i) and (ii).

The proof of (iv). From (ii), r(k) ≤ r(k + 1) is clear. Using (i) and (ii),
nfr(k)+1 ≥ n(fr(k) + fr(r(k))) ≥ fk + fr(k) = fk+1 follows, proving r(k + 1) ≤
r(k) + 1.

Finally, we prove (v). From (iv) it follows that k − r(k) is a monotone in-
creasing, integer-valued function. Therefore, it is sufficient to prove that it is
bounded from above. Actually, we shall see that

k − r(k) < (n+ 1) log n. (6)

To show (6), suppose the contrary. Then, using (iii), we have

fr(k) = fk ·
fk−1

fk
· fk−2

fk−1

· · ·
fr(k)
fr(k)+1

≤ fk(
n

n+ 1
)k−r(k)

≤ fk((1−
1

n+ 1
)n+1)logn < fke

− logn =
fk
n
,

contradicting the definition of r(k).

Thus the proof is complete. 2
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Theorem 2 Let n be a fixed positive real at least 1.

(vi) ( n
n−1

)fk > fk+1 holds for all k > k0.

(vii)

⌊
log n

log n− log(n− 1)

⌋
≤ c(n) ≤

⌈
log n

log(n+ 1)− log n

⌉
.

(viii) lim
n→∞

c(n)

n log n
= 1.

PROOF. By (i) and (v), we have

fk+1 = fk + fk−c (7)

for k > k0. On the other hand, (ii) implies

nf(k+1)−c ≥ fk+1 > nfk−c. (8)

By (7) and (8), we have fk+1 > nfk−c = n(fk+1 − fk), i.e., nfk > (n− 1)fk+1,
which proves (vi).

Set U :=
⌈

logn
log(n+1)−logn

⌉
, then ( n

n+1
)U ≤ 1

n
. To show c(n) ≤ U , suppose the

contrary. Then using (iii), we have

fr(k) = fk ·
fk−1

fk
· fk−2

fk−1

· · ·
fr(k)
fr(k)+1

≤ fk(
n

n+ 1
)k−r(k)

= fk(
n

n+ 1
)c(n) < fk(

n

n+ 1
)U ≤ fk

n
,

contradicting (ii).

Set L :=
⌊

logn
logn−log(n−1)

⌋
, then (n−1

n
)L ≥ 1

n
. To show c(n) ≥ L, suppose on the

contrary that c(n) + 1 ≤ L. Then using (vi), we have

fr(k)−1 = fk ·
fk−1

fk
· fk−2

fk−1

· · ·
fr(k)−1

fr(k)
≥ fk(

n− 1

n
)k−r(k)+1

= fk(
n

n+ 1
)c(n)+1 ≥ fk(

n− 1

n
)L ≥ fk

n
,

contradicting (ii).

(viii) follows immediately from (vii). 2

Here are some numerical data concerning c(n).
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n L c(n) U ⌊n log n⌋

2 1 1 1 1

3 2 3 3 3

4 4 5 6 5

5 7 7 8 8

6 9 10 11 10

7 12 13 14 13

8 15 16 17 16

9 18 19 20 19

10 21 22 24 23

11 25 25 27 26

12 28 29 31 29

13 32 32 34 33

14 35 37 38 36

n c(n)

1 ≤ n < 2 0

2 ≤ n < 5/2 1

5/2 ≤ n < 3 2

3 ≤ n < 7/2 3

7/2 ≤ n < 43/11 4

43/11 ≤ n < 13/3 5

13/3 ≤ n < 14/3 6

14/3 ≤ n < 51/10 7

It is worth noting that c(n) = c(n′) does not necessarily imply F (n) = F (n′).
For example, c(n) = 4 for 7/2 ≤ n < 43/11, but there are two winning
sequences for the second player, that is,

F (n) = {1, 2, 3, 4, 6, 8, 11, 15, 21, 27, 35, 46, . . .} for 7/2 ≤ n < 11/3,

F (n) = {1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 32, 43, . . .} for 11/3 ≤ n < 43/11.
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