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Abstract

Let F1, . . . ,Fr ⊂
(
[n]
k

)
be r-cross t-intersecting, that is, |F1 ∩ · · · ∩ Fr| ≥ t holds for all

F1 ∈ F1, . . . , Fr ∈ Fr. We prove that for every p, µ ∈ (0, 1) there exists r0 such that for
all r > r0, all t with 1 ≤ t < (1/p − µ)r−1/(1 − p) − 1, there exist n0 and ε so that if
n > n0 and |k/n − p| < ε, then |F1| · · · |Fr| ≤

(
n−t
k−t

)r
.
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1. Introduction

Let n, k, r and t be positive integers with t ≤ k ≤ n, and let [n] = {1, 2, . . . , n}.
A family G ⊂ 2[n] is called r-wise t-intersecting if |G1 ∩ · · · ∩ Gr| ≥ t holds for all
G1, . . . , Gr ∈ G. For example, let us consider the case r = 2. The following two families
are both k-uniform 2-wise t-intersecting families:

A0 ={A ∈
(
[n]
k

)
: [t] ⊂ A},

A1 ={A ∈
(
[n]
k

)
: |A ∩ [t + 2]| ≥ t + 1}.

By comparing the sizes of A0 \ A1 and A1 \ A0, we see that

|A0| ≥ |A1| iff n ≥ (t + 1)(k − t + 1). (1)

Frankl [6] and Wilson [29] proved that if n > (t + 1)(k − t + 1) then |A0| =
(
n−t
k−t

)
is the

maximum size of 2-wise t-intersecting families in
(
[n]
k

)
, and A0 is the only optimal family

up to isomorphism. Recall that two families G,G′ ⊂ 2[n] are said to be isomorphic, and
denoted by G ∼= G′, if there exists a vertex permutation τ on [n] such that G′ = {{τ(g) :
g ∈ G} : G ∈ G}.

Let us define a typical r-wise t-intersecting family B`(n, r, t) and its k-uniform sub-
family A`(n, k, r, t), where 0 ≤ ` ≤ bn−t

r c, as follows:

B`(n, r, t) = {B ⊂ [n] : |B ∩ [t + r`]| ≥ t + (r − 1)`},

A`(n, k, r, t) = B`(n, r, t) ∩
(
[n]
k

)
.
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Let m(n, k, r, t) be the maximum size of k-uniform r-wise t-intersecting families on n
vertices. The problem of determining m(n, k, r, t) goes back to Erdős–Ko–Rado [4], and
is still wide open. All known results, e.g., [1, 4, 5, 6, 7, 12, 22, 23, 24, 25, 26, 27, 29],
suggest

m(n, k, r, t) = max
`

|A`(n, k, r, t)|. (2)

A notable result due to Ahlswede and Khachatrian [1] says that the conjecture (2) is
true for r = 2.

For a fixed real p ∈ (0, 1), we will consider the situation that n, k → ∞ with keeping
p = k/n. In this case, we see from (1) that

limn,k→∞ |A0(n, k, 2, t)|/|A1(n, k, 2, t)| ≥ 1 iff t + 1 ≤ 1/p.

In this paper, we are interested in the situation that

m(n, k, r, t) =
(

n − t

k − t

)
, (3)

and the above fact suggests that the range of such t, for fixed p = k/n and r, is bounded
from above by a function of p. In fact, a direct computation (see Lemma 10) shows that

lim
n→∞

|A0(n, k, r, t)|/|A1(n, k, r, t)| ≥ 1 iff 1 ≤ t ≤ (p1−r − p)/(1 − p) − r =: tp,r. (4)

Let us see some other examples. If n ≥ 2k, then m(n, k, 2, 1) = |A0(n, k, 2, 1)| =(
n−1
k−1

)
. A 2-wise 1-intersecting family is also an r-wise 1-intersecting family for any

r ≥ 2. So, we have m(n, k, r, 1) =
(
n−1
k−1

)
for r ≥ 2 and k/n ≤ 1/2.

If n < 2k, then
(
[n]
k

)
= Abn−1

2 c(n, k, 2, 1) is a 2-wise 1-intersecting family. But
(
[n]
k

)
is not necessarily r-wise 1-intersecting for r ≥ 3. In fact, it is known from [5, 7, 12, 19]
that m(n, k, r, 1) =

(
n−1
k−1

)
iff n ≥ rk/(r − 1). Thus we have

m(n, k, r, 1) =
(
n−1
k−1

)
for r ≥ (1 − k

n )−1.

In general, if rk ≥ (r − 1)n + t, then
(
[n]
k

)
is r-wise t-intersecting. So, to get (3) for a

fixed p = k/n with n, k → ∞, we need p ≤ r−1
r , or equivalently, r ≥ 1

1−p . Namely, the
range of such r is bounded from below by a function of p. The following sample result,
essentially proved in [27], is a starting point of our research (cf. Corollary 1).

Theorem 1. For every p ∈ (0, 1) there exists r0 such that for all r > r0, all t with
1 ≤ t < tp,r, there exists n0 so that if n > n0 and k/n ≤ p, then

m(n, k, r, t) = |A0(n, k, r, t)| =
(
n−t
k−t

)
.

Moreover A0(n, k, r, t) is the only optimal family (up to isomorphism).

In this paper, we will extend the above result to cross intersecting families. Indeed,
we will consider two types of problems related to (2); one is about k-uniform cross
intersecting families and the other is about the p-weight of cross intersecting families.

A set of families {G1, . . . ,Gr}, where G1, . . . ,Gr ⊂ 2[n], is called r-cross t-intersecting
if |G1 ∩ · · · ∩ Gr| ≥ t holds for all G1 ∈ G1, . . . , Gr ∈ Gr. We first consider a k-uniform
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product version of the Erdős–Ko–Rado problem. Let k = (k1, . . . , kr) ∈ Nr and let us
define

m×(n,k, r, t) = max
r∏

s=1

|Fs|,

where the maximum is taken over all r-cross t-intersecting families {F1, . . . ,Fr} with
Fs ⊂

(
[n]
ks

)
for 1 ≤ s ≤ r. If F ⊂

(
[n]
k

)
is r-wise t-intersecting, then {F , . . . ,F} (the set of

r copies of F) is clearly r-cross t-intersecting. This means

m(n, k, r, t)r ≤ m×(n, {k, . . . , k}, r, t).

Some values of m×(n,k, r, t) are known. For example, Pyber [20], Matsumoto and
the author [16], and Bey [2] proved the following:

m×(n, {a, b}, r = 2, t = 1) =
(
n−1
a−1

)(
n−1
b−1

)
for n ≥ max{2a, 2b}.

Frankl and the author [9] proved that

m×(n, {k, . . . , k}, r, t = 1) =
(
n−1
k−1

)r
for (r − 1)n ≥ rk.

In [28], it is proved that for all p, t with 0 < p < 0.11 and 1 ≤ t ≤ 1/(2p), there exists n0

such that for all n, k with n > n0 and k/n = p the following holds:

m×(n, {k, k}, r = 2, t) =
(
n−t
k−t

)2
.

Our first result is a generalization of these results for the case that k/n is bounded
and r is large enough. For x = (x1, . . . , xr) ∈ Rr, let ‖x‖ = (x2

1 + · · · + x2
r)

1/2, and let

τp,r,µ :=
(
1/p − µ

)r−1
/(1 − p) − 1.

Theorem 2. For all p, p′, µ ∈ (0, 1) with p ≥ p′, there exists r1 such that the following
holds. For all r ≥ r1, all t with 1 ≤ t ≤ τp,r,µ, and all p = (p1, . . . , pr) ∈ [p′, p]r, there
exist positive constants ε, n0 such that

m×(n,k, r, t) =
r∏

s=1

|A0(n, ks, r, t)| =
r∏

s=1

(
n−t
ks−t

)
holds for all n > n0 and all k = (k1, . . . , kr) ∈ Nr with ‖ 1

nk − p‖ < ε. Moreover
{A0(n, ks, r, t) : 1 ≤ s ≤ r} is the only set of optimal families (up to isomorphism).

By taking p = p′ and k1 = · · · = kr = k in Theorem 2, we get the following statement
appeared in the abstract, which is a cross intersecting extension of Theorem 1 with a
weaker bound for t.

Corollary 1. For every p, µ ∈ (0, 1) there exists r0 such that for all r > r0, all t with
1 ≤ t ≤ τp,r,µ, there exist n0 and ε so that if n > n0 and |k/n − p| < ε, then

m×(n, {k, . . . , k}, r, t) = |A0(n, k, r, t)|r =
(
n−t
k−t

)r
.
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For fixed p, µ, it is easy to see that τp,r,µ < tp,r if r is large enough. So we will assume
τp,r,µ < tp,r in the proof of Theorem 2, but the upper bound for t in Theorem 2 could
be possibly replaced with tp,r. If so, the bound tp,r would be tight. Theorem 1 says that
Corollary 1 is true for all 1 ≤ t ≤ tp,r if F1 = · · · = Fr.

Next we introduce a p-weight version of the Erdős–Ko–Rado problem. Throughout
this paper, p and q = 1 − p denote positive real numbers. For X ⊂ [n] and a family
G ⊂ 2X we define the p-weight of G, denoted by wp(G : X), as follows:

wp(G : X) =
∑
G∈G

p|G|q|X|−|G| =
|X|∑
i=0

∣∣∣G ∩
(
X
i

)∣∣∣ piq|X|−i.

We need this definition in the proof of Lemma 3, otherwise we simply write wp(G) for
the case X = [n]. For example, we have wp(B0(n, r, t)) = pt, and the p-weight version of
(4) is the following:

wp(B0(n, r, t)) ≥ wp(B1(n, r, t)) iff 1 ≤ t ≤ tp,r.

Let w(n, p, r, t) be the maximum p-weight of r-wise t-intersecting families on n ver-
tices. For fixed p = k/n, it follows that limn→∞ |A`(n, k, r, t)|/

(
n
k

)
= wp(B`(n, r, t)). In

fact, we will see that m(n, k, r, t)/
(
n
k

)
and w(n, p, r, t) are corresponding if p ≈ k/n, so it

might be natural to expect

w(n, p, r, t) = max
`

wp(B`(n, r, t)).

For example, Theorem 1 has the following p-weight version.

Theorem 3 ([27]). For all p ∈ (0, 1) there exists r0 such that for all r > r0, all t with
1 ≤ t ≤ tp,r, and all n ≥ t, we have

w(n, p, r, t) = wp(B0(n, r, t)) = pt.

Moreover, B0(n, r, t) is the only optimal family for 1 ≤ t < tp,r, and B0(n, r, t) and
B1(n, r, t) are the only optimal families for t = tp,r (up to isomorphism).

To consider a p-weight product version, where p = (p1, . . . , pr) ∈ (0, 1)r, let us define

w×(n,p, r, t) = max
r∏

s=1

wps(Gs),

where the maximum is taken over all r-cross t-intersecting families {G1, . . . ,Gr} on n
vertices. We have

w(n, p, r, t)r ≤ w×(n, {p, . . . , p}, r, t).

Frankl studied the case p1 = · · · = pr = 1/2 in [7, 8], and he obtained

w×(n, {1/2, . . . , 1/2}, r, t) = (1/2)tr (5)

for r ≥ 3 and 1 ≤ t ≤ 2r − r − 2 = t1/2,r − 1. Our second result is an extension of (5) as
follows.
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Theorem 4. For all p, p′, µ ∈ (0, 1) with p ≥ p′, there exists r1 such that for all r ≥ r1,
all t with 1 ≤ t ≤ τp,r,µ, all p = (p1, . . . , pr) ∈ [p′, p]r, and all n ≥ t, we have

w×(n,p, r, t) =
r∏

s=1

wps(B0(n, r, t)) =
r∏

s=1

ps
t.

Moreover r copies of B0(n, r, t) are the only optimal families (up to isomorphism).

We conjecture that Theorem 4 is true for all p ∈ (0, p)r, all r ≥ 1/(1 − p), and all t
with 1 ≤ t ≤ tp,r.

Theorem 2 and Theorem 4 state essentially the same thing in a different way. It is
often the case that the p-weight version (such as Theorem 3 and Theorem 4) is tech-
nically easier to handle than the corresponding k-uniform version (such as Theorem 1
Theorem 2). So the basic strategy for proofs of these results is to show the p-weight ver-
sion first, and then to deduce the k-uniform version from the p-weight version. We will
take this strategy. Unfortunately, Theorem 4 is not strong enough to show Theorem 2.
So we will consider stronger, “stability” type results corresponding to both versions.

To explain what stability means, we start with Theorem 1. In this result, fam-
ilies isomorphic to A0(n, k, r, t) only attain m(n, k, r, t) =

(
n−t
k−t

)
. Let G(n, k, r, t) be

the set of all k-uniform r-wise t-intersecting families on n vertices. By choosing a sub-
family of A0(n, k, r, t), we get an F ∈ G(n, k, r, t) with size |F| as close to

(
n−t
k−t

)
as

we want. But if we choose F ∈ G(n, k, r, t) which is not a subfamily of a family iso-
morphic to A0(n, k, r, t), then the size |F| must be much smaller. To state more pre-
cisely, let m0(n, k, r, t) be the maximum size of F ∈ G(n, k, r, t) such that there is no
A ≈ A0(n, k, r, t) satisfying F ⊂ A. Then the stability version of Theorem 1 is as follows.

Theorem 5. For every p ∈ (0, 1) there exists r0 such that for all r > r0, all t with
1 ≤ t < tp,r, there exist positive constants n0 and γ so that if n > n0 and k/n ≤ p, then
m0(n, k, r, t) < (1 − γ)

(
n−t
k−t

)
.

In other words, if we have an F ∈ G(n, k, r, t) with size very close to
(
n−t
k−t

)
, then F

itself is close to A0(n, k, r, t) (or a family isomorphic to A0(n, k, r, t)). Indeed, we get a
family isomorphic to A0(n, k, r, t) by adding edges to F . In this case, we say that the
optimal configuration for the problem is stable. (See [3, 10, 14, 17, 18, 19] for some
related stability type results.) We also have a stability p-weight version corresponding
to Theorem 5 in [27]. As we will see, such a stability p-weight result is strong enough to
deduce the corresponding stability k-uniform result, cf. Theorem 8 in section 4.

Now we return to our r-cross t-intersecting problem. To state our main results, let
us define some collections of cross intersecting families:

G×(n, r, t) = {{G1, . . . ,Gr} ⊂ 22[n]
: {G1, . . . ,Gr} is r-cross t-intersecting},

G×
j (n, r, t) = {{G1, . . . ,Gr} ∈ G×(n, r, t) : 1 ≤ ∀s ≤ r, ∃G′

s
∼= Bj(n, r, t) s.t. Gs ⊂ G′

s},
X×

` (n, r, t) = G×(n, r, t) \
∪

0≤j≤` G×
j (n, r, t),

Y×
` (n,k, r, t) = {{F1, . . . ,Fr} ∈ X×

` (n, r, t) : Fs ⊂
(
[n]
ks

)
for all 1 ≤ s ≤ r},

where k = (k1, . . . , kr) ∈ Nr. We remark that G′
1, . . . ,G′

r appeared in the definition of
G×

j (n, r, t) are all isomorphic to Bj(n, r, t), but we do not require G′
1 = · · · = G′

r. Finally
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let us define

m×
` (n,k, r, t) = max{

r∏
s=1

|Fs| : {F1, . . . ,Fr} ∈ Y×
` (n,k, r, t)},

w×
` (n,p, r, t) = max{

r∏
s=1

wps(Gs) : {G1, . . . ,Gr} ∈ X×
` (n, r, t)},

where p = (p1, . . . , pr) ∈ (0, 1)r. Our main results are the following.

Theorem 6. For all p, p′, µ ∈ (0, 1) with p ≥ p′, there exists r1 such that the following
holds. For all r ≥ r1, all t with 1 ≤ t ≤ τp,r,µ, and all p = (p1, . . . , pr) ∈ [p′, p]r, there
exist positive constants γ, ε, n0 such that

m×
0 (n,k, r, t) < (1 − γ)

r∏
s=1

(
n−t
ks−t

)
holds for all n > n0 and all k = (k1, . . . , kr) ∈ Nr with ‖ 1

nk − p‖ < ε.

Theorem 7. For all p, p′, µ ∈ (0, 1) with p ≥ p′, there exists r1 such that the following
holds. For all r ≥ r1, all t with 1 ≤ t ≤ τp,r,µ, and all p = (p1, . . . , pr) ∈ [p′, p]r, there
exist positive constants γ, ε such that

w×
0 (n, p̃, r, t) < (1 − γ)

r∏
s=1

p̃s
t

holds for all n ≥ t and all p̃ = (p̃1, . . . , p̃r) ∈ (0, 1)r with ‖p̃ − p‖ < ε.

We will prove Theorem 7 in section 3, where the main ingredient of the proof is a gen-
eralization of Frankl’s random walk method (Lemma 1). Then we will deduce Theorem 6
from Theorem 7 in section 4, where the key idea is simply that the binomial distribu-
tion B(n, p) is concentrated around pn. The other theorems follow from Theorem 6,
Theorem 7, and some results from [26, 27]. We include these easy proofs in Appendix.

2. Tools

For integers 1 ≤ i < j ≤ n and a family G ⊂ 2[n], we define the (i, j)-shift σij as
follows:

σij(G) = {σij(G) : G ∈ G},
where

σij(G) =

{
(G − {j}) ∪ {i} if i 6∈ G, j ∈ G, (G − {j}) ∪ {i} 6∈ G,

G otherwise.

A family G ⊂ 2[n] is called shifted if σij(G) = G for all 1 ≤ i < j ≤ n. If G is r-wise
t-intersecting, then so is σij(G), see [7]. Similarly, one can verify that

if {G1, . . . ,Gr} ∈ G×(n, r, t), then {σij(G1), . . . , σij(Gr)} ∈ G×(n, r, t)

as well. Repeating this process one can get a shifted r-cross t-intersecting families.
Now we introduce a key lemma to prove our main result Theorem 7. Let p ∈ (0, 1)

and q = 1−p. The equation qxr −x+p = 0 has a unique root in (p, 1), which is denoted
by αr,p. The next lemma enables us to bound w×(n,p, r, t) in terms of αr,p with p ∈ p.
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Lemma 1. w×(n,p, r, t) ≤ (αr,p1 · · ·αr,pr )
t, where p = (p1, . . . , pr) ∈ (0, 1)r.

To prove Theorem 7 we need to show w×(n,p, r, t) ≤ (p1 · · · pr)t. Since αr,p > p,
the above lemma does not give what we want directly. But, as we will see in the proof
of Theorem 7, inside an r-cross t-intersecting families, we will be able to find a nice
substructure such as (r − 1)-cross (t + 1)-intersecting families. Then Lemma 1 will be
very useful.

This result was essentially proved by Frankl in [7]. He considered the case p1 = · · · =
pr = 1/2, but one can extend his proof quite naturally to the general case p ∈ (0, 1)r.
For convenience we include a sketch of the proof here. See [7, 26] for more details. We
mention that Green and Tao used this fact in [11] as one of the tools for proving Freiman’s
theorem in finite fields.

Proof of Lemma 1. First we show w(n, p, r, t) ≤ αt
r,p. For G ⊂ [n] we define the corre-

sponding n-step walk on Z2, denoted by walk(G), as follows. The walk is from (0, 0) to
(|G|, n − |G|), and the i-th step is one unit up (↑) if i ∈ G, or one unit to the right (→)
if i 6∈ G. Let G ⊂ 2[n] be r-wise t-intersecting. We can find a shifted r-wise t-intersecting
family G∗ ⊂ 2[n] with wp(G) = wp(G∗). Then a crucial observation is the following: for
each G ∈ G∗, walk(G) touches the line L : y = (r − 1)x + t. Thus we have G∗ ⊂ Wn,
where Wn = {W ⊂ [n] : walk(W ) touches L}. We note that Wn is not necessarily r-wise
t-intersecting.

Now consider an infinite random walk in Z2 starting from (0, 0), taking ↑ with prob-
ability p, and → with probability q = 1 − p at each step independently. Suppose that G
is r-cross t-intersecting with maximum p-weight. Then it follows that

w(n, p, r, t) =
∑
G∈G

p|G|qn−|G| ≤
∑

W∈Wn

p|W |qn−|W | ≤ lim
n→∞

∑
W∈Wn

p|W |qn−|W |

= Prob (the infinite random walk touches L) = αt
r,p.

Next we consider w×(n,p, r, t). Let {G1, . . . ,Gr} ∈ G×(n, r, t) be shifted with max-
imum p-weight. For Gs ∈ Gs (1 ≤ s ≤ r) let us define its characteristic vector
v(Gs) = (v(s)

1 , . . . , v
(s)
n ) ∈ {0, 1}n by v

(s)
i = 1 iff i ∈ Gs, and define

⊕r
s=1 Gs ∈ {0, 1}rn

by
(v(1)

1 , v
(2)
1 , . . . , v

(r)
1 , v

(1)
2 , v

(2)
2 , . . . , v

(r)
2 , . . . , v(1)

n , . . . , v(r)
n ).

Then one can check that walk(
⊕

Gs) touches the line L̃ : y = (r− 1)x+ rt. We consider
a new infinite random walk in Z2 starting from (0, 0), which takes ↑ with probability ps

and → with probability qs = 1−ps at the i-th step iff i ≡ s mod r. We will associate the
quantity 〈p,

⊕r
s=1 Gs〉 :=

∏r
s=1 p

|Gs|
s q

n−|Gs|
s with the first rn steps of the infinite random

walk. Namely, we have

w×(n,p, r, t) =
r∏

s=1

∑
Gs∈Gs

p|Gs|
s qn−|Gs|

s

=
∑

{〈p,
⊕

Gs〉 : (G1, . . . , Gr) ∈ G1 × · · · × Gr}

≤ Prob (the new infinite random walk touches L̃) = (αr,p1 · · ·αr,pr )
t.
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Lemma 2. Let p = (p1, . . . , pr) ∈ (0, 1)r and let {G1, . . . ,Gr} ∈ X×
0 (n, r, t) be p-weight

maximum, namely,
∏r

s=1 wps(Gs) = w×
0 (n,p, r, t). Then we can find a shifted families

{G′
1, . . . ,G′

r} ∈ X×
0 (n, r, t) with wps(G′

s) = wps(Gs) for all 1 ≤ s ≤ r, and I :=
∩
{G′ :

G′ ∈ G′
1 ∪ · · · ∪ G′

r} = ∅.
Proof. Since {G1, . . . ,Gr} ∈ X×

0 (n, r, t), one of the families is non-trivial, so we may
assume that |

∩
{G : G ∈ Gr}| < t. If there are Gi ∈ Gi for 1 ≤ i ≤ r − 1 such that

T := G1 ∩ · · · ∩ Gr−1 with |T | = t, then the r-cross t-intersecting property forces T ⊂ G
for all G ∈ Gr, which is a contradiction. This means {G1, . . . ,Gr−1} ∈ G×(n, r−1, t+1).
By shifting {G1, . . . ,Gr} simultaneously we get shifted families {G′

1, . . . ,G′
r} ∈ G×(n, r, t)

with wps(G′
s) = wps(Gs) for all 1 ≤ s ≤ r. Note that {G′

1, . . . ,G′
r−1} ∈ G×(n, r−1, t+1).

We have to show I = ∅. If this is not the case, then we may assume that 1 ∈ I and
[2, n] 6∈ G′

r. Since
∏r

s=1 wps(Gs) =
∏r

s=1 wps(G′
s) is maximum, adding [2, n] to G′

r will
destroy the r-cross t-intersecting property. This means we can find G′

s ∈ G′
s for 1 ≤ s < r

such that |G′
1 ∩ · · · ∩G′

r−1 ∩ [2, n]| < t and |G′
1 ∩ · · · ∩G′

r−1| < t + 1, a contradiction.

Lemma 3. For any ` ≥ 0, we have w×
` (n + 1,p, r, t) ≥ w×

` (n,p, r, t).

Proof. Choose {G1, . . . ,Gr} ∈ X×
` (n, r, t) with

∏
s wp(Gs) = w×

` (n,p, r, t). Set G′
s :=

Gs ∪ {G ∪ {n + 1} : G ∈ Gs} for 1 ≤ s ≤ r. Then {G′
1, . . . ,G′

r} ∈ X×
` (n + 1, r, t). Since

wps(G′
s : [n+1]) = wps(Gs : [n])(q +p), we have

∏
s wps(G′

s : [n+1]) =
∏

s wps(Gs : [n]) =
w×

` (n,p, r, t), which gives the desired inequality.

Lemma 4. For all p, ε ∈ (0, 1) there exists r0 such that

p−r − (qr/p) − ε < α−r
r,p < p−r − (qr/p)

holds for all r > r0.

Proof. We start with the representation

αm
r,p =

∑
i≥0

m

ri + m

(
ri + m

i

)
p(r−1)i+mqi, (6)

see e.g., [21]. Setting m = −r, this gives α−r
r,p = p−r − (qr/p) −

∑
i≥1 f(i), where

f(i) =
1
i

(
ri

i + 1

)
pri−i−1qi+1,

Since f(i) > 0 for all i ≥ 1, we get the upper bound.
For the lower bound, let z = max{p, q}. Then we have

f(i) ≤ 1
i

(
ri

i + 1

)
zri <

1
i

(ri)i+1

(i + 1)!
zri =

r(rizr)i

(i + 1)!
< r(rizr)i(e/i)i = r(rzre)i,

which gives
∑

f(i) < ε for r large enough.

Lemma 5. Let t > 0. Then αt+1
r,p /pt is an increasing function of p for 0 < p < r−1

r .

Proof. By (6) we have

αt+1
r,p /pt =

∑
i≥0

t + 1
ri + t + 1

(
ri + t + 1

i

)
(pr−1q)ip.

Since pr−1q is an increasing function of p, the result follows.
8



3. Proof of Theorem 7

Let p, p′, µ ∈ (0, 1) be given. Choose r1 sufficiently large. More specifically, we choose
r1 so that (11), (13), and (14) below will be satisfied for all r > r1. Choose r > r1,
t ≤ τp,r,µ, and p = (p1, . . . , pr) ∈ [p′, p]r. Set q = 1 − p and α = αr−1,p. Also set
qs = 1 − ps, αs = αr−1,ps

for 1 ≤ s ≤ r. By Lemma 3 we may assume that n is large
enough.

Let {G1, . . . ,Gr} ∈ X×
0 (n, r, t) be p-weight maximum, namely, w1 · · ·wr = w×

0 (n,p, r, t),
where ws = wps(Gs) for 1 ≤ s ≤ r. By Lemma 2 we may assume that each Gs is shifted
and

∩
{G : G ∈

∪
Gs} = ∅. Thus we can find some F ∈

∪
Gs such that t 6∈ F , and we

may assume that F ∈ Gr (by renaming families if necessary).
Let h be the maximum i such that |H ∩ [t + 1]| = (t + 1) − i holds for some H ∈ Gr.

Since F ∈ Gr we have 1 ≤ h ≤ t + 1. Then, {[t + 1] \ G : G ∈ Gr} ⊂
∪h

j=0

(
[t+1]

j

)
implies

wr ≤
h∑

j=0

(
t+1

j

)
pt+1−j

r qj
r . (7)

We may assume that Gr is co-complex, namely, if G ∈ Gr and G ⊂ G′ then G′ ∈ Gr. By
the definition of h and shiftedness of Gr, we have H := [n] \ [t + 2 − h, t + 1] ∈ Gr.

On the other hand, we have {G1, . . . ,Gr−1} ∈ G×(n, r−1, t+h). In fact, if this is not
the case, then we can find Gs ∈ Gs (1 ≤ s < r) such that G1 ∩ · · · ∩ Gr−1 = [t + h − 1].
By choosing Gr = F ∈ Gr if h = 1, or Gr = H ∈ Gr if h ≥ 2, we have |G1 ∩ · · · ∩Gr| < t,
a contradiction. Thus Lemma 1 implies

w1 · · ·wr−1 ≤ (α1 · · ·αr−1)t+h. (8)

By (7) and (8) we have w1 · · ·wr ≤ fh(p), where

fh(p) := (α1 · · ·αr−1)t+h
h∑

j=0

(
t+1

j

)
pt+1−j

r qj
r .

Thus we have w×
0 (n,p, r, t) ≤ max{fh(p) : 1 ≤ h ≤ t + 1}. We will show

max
h

{fh(p)} = f1(p) < (p1 · · · pr)t. (9)

Since f1(p) is a continuous function of p, Theorem 7 follows from (9) with the following
simple observation.

Lemma 6. Let r and t be fixed. Let p = (p1, . . . , pr) ∈ (0, 1)r. Suppose that
∏

s wps(Gs) ≤
f(p) < (p1 · · · pr)t holds for some continuous function f(x). Then there exist γ, ε > 0
such that

∏
s wp̃s(Gs) < (1−γ)(p̃1 · · · p̃r)t for all p̃ = (p̃1, . . . , p̃r) ∈ (0, 1)r with ‖p̃−p‖ <

ε.

Fix p and let fh := fh(p). The following two lemmas can be proved using standard
calculus only, and then (9) follows immediately.

Lemma 7. maxh{fh} = f1 > f2 > · · · > ft+1.

9



Proof. Let h ≥ 1 and we will show that fh > fh+1, or equivalently,

1 +

(
t+1
h+1

)
( qr

pr
)h+1∑h

j=0

(
t+1

j

)
( qr

pr
)j

< (α1 · · ·αr−1)−1.

The LHS is less than

1 +

(
t+1
h+1

)
( qr

pr
)h+1(

t+1
h

)
( qr

pr
)h

= 1 +
(t + 1 − h)qr

(h + 1)pr
≤ 1 +

tqr

2pr
< 1 +

1
2p′

(
1
p
− µ)r−1,

where we used p′ ≤ pr and t ≤ τp,r,µ in the last inequality. On the other hand, applying
Lemma 4 (with r − 1 instead of r, and ε = 1), we have

p1−r − q(r − 1)/p − 1 < α1−r ≤ (α1 · · ·αr−1)−1. (10)

Thus it suffices to show that

1 +
1

2p′
(
1
p
− µ)r−1 < p1−r − q(r − 1)/p − 1, (11)

which is true for sufficiently large r.

Lemma 8. f1 < (p1 · · · pr)t.

Proof. We have to show (α1 · · ·αr−1)t+1(pt+1
r +(t+1)pt

rqr) < (p1 · · · pr)t, that is, tqr+1 <
(p1 · · · pr−1)t/(α1 · · ·αr−1)t+1. By Lemma 5 the RHS is at least (pt/αt+1)r−1. Thus it
suffices to show t + 1 < (pt/αt+1)r−1, or equivalently,

α < p

(
p1−r

t + 1

) 1
(t+1)(r−1)

.

Using (10) it suffices to show

(
p1−r − q

p
(r − 1) − 1

)− 1
r−1 < p

(
p1−r

t + 1

) 1
(t+1)(r−1)

,

that is,

1 <
(
1 − pr−1(

q

p
(r − 1) + 1)

)( p1−r

t + 1

) 1
t+1

. (12)

Since t ≤ τp,r,µ, we have a := 1
t+1 ≥ b := q( 1

p − µ)1−r > 0. Using (p1−ra)a ≥ (p1−rb)b,
we see that the RHS of (12) is at least

A :=
(
1 − pr−1(

q

p
(r − 1) + 1)

)(
p1−rq(

1
p
− µ)1−r

)q( 1
p−µ)1−r

.

So it suffices to show that log A > 0. Now we generously use log(1 − x) > −2x for, say,
0 < x < 1/2. Since r is large enough, we have

x := pr−1
(q

p
(r − 1) + 1

)
< 1/2 (13)
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and
log A > −2pr−1

(q

p
(r − 1) + 1

)
+ q(

1
p
− µ)1−r log q(1 − pµ)1−r.

Consequently we need to show

q(
1
p
− µ)1−r(r − 1) log

( q
1

r−1

1 − pµ

)
> 2pr−1(

q

p
(r − 1) + 1),

or equivalently,
q

(1 − pµ)r−1
log

( q
1

r−1

1 − pµ

)
> 2

(q

p
+

1
r − 1

)
, (14)

which is certainly true for r sufficiently large.

4. Proof of Theorem 6

We derive Theorem 6 from Theorem 7. This can be done by setting ` = 0 in the next
theorem. (We formally define A−1(n, k, r, t) = B−1(n, r, t) = ∅.)

Theorem 8. Let r, t, ` ∈ N and p = (p1, . . . , pr) ∈ (0, 1)r be given. Then (W) implies
(M).

(W) There exist positive constants γ0, ε0, n0 such that

w×
` (n, p̃, r, t) < (1 − γ0)

r∏
s=1

max{wp̃s(B`−1(n, r, t)), wp̃s(B`(n, r, t))}

holds for all p̃ = (p̃1, . . . , p̃r) ∈ (0, 1)r with ‖p̃ − p‖ < ε0 and all n with n ≥ n0.

(M) There exist positive constants γ, ε,N such that

m×
` (n,k, r, t) < (1 − γ)

r∏
s=1

max{|A`−1(n, ks, r, t)|, |A`(n, ks, r, t)|}

holds for all n > N and all k = (k1, . . . , kr) ∈ Nr with ‖ 1
nk − p‖ < ε.

For reals 0 < ε < p we write p ± ε to mean the open interval (p − ε, p + ε), and
for n ∈ N, n(p ± ε) means ((p − ε)n, (p + ε)n) ∩ N. For p = (p1, . . . , pr) ∈ (0, 1)r let
p ± ε =

∏r
s=1(ps ± ε) ⊂ Rr.

Proof. Let r, t, ` and p be given. To show (W) → (M), we prove that (W)∧¬(M) is false.
Namely, we assume both (W) and the negation of (M), then we will derive a contradiction
by constructing a counterexample to (W).

If n ≥ t + r`, then wp(B`(n, r, t)) is independent of n. So, let n ≥ t + r` and let
g`(p, r, t) = wp(B`(n, r, t)). Now (W) provides some γ0, ε0 and n0 ≥ t + r` such that
w×

` (n, p̃, r, t) < (1 − γ0)f(p̃) holds for all p̃ with ‖p̃ − p‖ < ε0 and all n ≥ n0, where

f(p̃) :=
r∏

s=1

max{g`−1(p̃s, r, t), g`(p̃s, r, t)}.

11



Let ε = ε0
2 , γ = γ0

4 , and Ĩ = p ± ε. We are going to define N . Since f(p̃) is a
uniformly continuous function of p̃ = (p̃1, . . . , p̃r) on p ± ε0, we can choose ε1 � ε/2 so
that

(1 − 3γ)f(p̃) > (1 − 4γ)f(p̃ + δ) (15)

holds for all p̃ ∈ Ĩ and all 0 < δ ≤ ε1. As the binomial distribution B(n, p) is concentrated
around pn, we can choose n1 so that

r∏
s=1

∑
j∈Js

(
n
j

)
(p′s)

j(1 − p′s)n−j > (1 − 3γ)/(1 − 2γ) (16)

holds for all n > n1 and all p′ = (p′1, . . . , p
′
r) ∈ I := p ± 3ε

2 , where Js = n(p′s ± ε1). We
note that Ĩ ± ε1 ⊂ Ĩ ± ε

2 = I. For fixed p = k/n, we have |A`(n, k, r, t)|/
(
n
k

)
→ g`(p, r, t)

as n → ∞. With this in mind, a little computation shows that we can choose n2 so that

(1 − γ)
r∏

s=1

max{|A`−1(n, ks, r, t)|, |A`(n, ks, r, t)|} > (1 − 2γ)f( 1
nk)

r∏
s=1

(
n
ks

)
(17)

holds for all n > n2 and all k = (k1, . . . , kr) with 1
nk ∈ Ĩ. Finally set N = max{n0, n1, n2}.

For our choice of ε, γ and N , the negation of (M) gives us some n,k and {F1, . . . ,Fr} ∈
Y×

` (n,k, r, t) such that

r∏
s=1

|Fs| ≥ (1 − γ)
r∏

s=1

max{|A`−1(n, ks, r, t)|, |A`(n, ks, r, t)|}, (18)

where n > N and 1
nk ∈ Ĩ. We fix these n,k and {F1, . . . ,Fr}, and set p̃ = 1

nk. By (17)
and (18) we have

∏r
s=1 |Fs| > (1 − 2γ)f(p̃)

∏r
s=1

(
n
ks

)
, or equivalently,

r∏
s=1

cs > (1 − 2γ)f(p̃) (19)

where cs = |Fs|/
(

n
ks

)
. For 1 ≤ s ≤ r, let Gs =

∪
k≤j≤n(∇j(Fs)) be the collection

of all upper shadows of Fs, where ∇j(Fs) = {H ∈
(
[n]
j

)
: H ⊃ ∃F ∈ Fs}. Then,

{G1, . . . ,Gr} ∈ X×
` (n, r, t). Let p′ = p̃+ ε1 ∈ I, and Js = n(p′s ± ε1) = n((p̃s + ε1)± ε1) =

n((ks

n + ε1) ± ε1) = (ks, ks + 2ε1n) ∩ N for 1 ≤ s ≤ r.

Lemma 9. |∇j(Fs)| ≥ cs

(
n
j

)
for j ∈ Js.

Proof. Choose a real x ≤ n so that cs

(
n
ks

)
=

(
x

n−ks

)
. Since |Fs| = cs

(
n
ks

)
=

(
x

n−ks

)
and

j ≥ ks, the Kruskal–Katona Theorem [15, 13] implies that |∇j(Fs)| ≥
(

x
n−j

)
. Thus it

suffices to show that
(

x
n−j

)
≥ cs

(
n
j

)
, or equivalently,(

x
n−j

)(
x

n−ks

) ≥
cs

(
n
j

)
cs

(
n
ks

) .

Using j ≥ ks this is equivalent to j · · · (ks + 1) ≥ (x − n + j) · · · (x − n + ks + 1), which
follows from x ≤ n.

12



By Lemma 9 we have

wp′
s
(Gs) ≥

∑
j∈Js

|∇j(Fs)| (p′s)j(1 − p′s)
n−j ≥ cs

∑
j∈Js

(
n
j

)
(p′s)

j(1 − p′s)
n−j . (20)

Therefore we have
r∏

s=1

wp′
s
(Gs) >

(20)

r∏
s=1

(
cs

∑
j∈Js

(
n
j

)
(p′s)

j(1 − p′s)
n−j

)
>

(19),(16)
(1 − 2γ)f(p̃) × (1 − 3γ)/(1 − 2γ) = (1 − 3γ)f(p̃)

>
(15)

(1 − 4γ)f(p̃ + ε1) = (1 − γ0)f(p′),

which contradicts (W) because p′ ∈ I = p ± 3ε
2 = p ± 3ε0

4 ⊂ p ± ε0.

We only need the case ` = 0 in Theorem 8 to show Theorem 6. But Theorem 8 would
be useful to prove (2) (if true) or its product version for the cases ` ≥ 1 as well. In fact,
this technique was used in [25, 26, 27] to get partial results of (2).

Appendix

The following result is an immediate consequence of Theorem 3 in [27] and Theorem 11
in [26].

Theorem 9. For every p ∈ (0, 1) there exists r0 such that for all r > r0, all t with
1 ≤ t ≤ tp,r, there exist positive constants n0, ε and γ so that if n > n0 and k/n < p + ε,
then m0(n, k, r, t) = (1 − γ)max{|A0(n, k, r, t)|, |A1(n, k, r, t)|}.

We need one more easy computation.

Lemma 10. Let p ∈ (0, 1)∩Q and r ∈ N be fixed, and let 1 ≤ t < tp,r. Then there exists
n0 such that for all n > n0 and k with p = k/n, we have |A0(n, k, r, t)| > |A1(n, k, r, t)|.

Proof. We can rewrite |A0(n, k, r, t)| > |A1(n, k, r, t)| as(
n − t

k − t

)
> (t + r)

(
n − t − r

k − t − r + 1

)
+

(
n − t − r

k − t − r

)
,

that is,

1 >
(k − t) · · · (k − t − r + 1)
(n − t) · · · (n − t − r + 1)

(
(t + r)(n − k)
k − t − r + 1

+ 1
)

,

or equivalently,

(n− t) · · · (n− t− r + 1) > (k− t) · · · (k− t− r + 2){(t + r)(n− k) + k− t− r + 1}. (21)

Both sides of (21) are polynomials in the variable n of degree r. We fix p and r, and
consider the situation that n, k → ∞ with keeping k = pn. By comparing the coefficients
of nr of (21), we can conclude that (21) holds if

1 > pr−1((t + r)(1 − p) + p),

that is t < tp,r.
13



Now Theorem 5 and Theorem 1 follow from Theorem 9 and Lemma 10.

Proof of Theorem 4. Choose {G1, . . . ,Gr} ∈ G×(n, r, t) with w×(n,p, r, t) =
∏r

s=1 wps(Gs).
By Theorem 7, if w×(n,p, r, t) ≥ (1−γ)pt

s, then {G1, . . . ,Gr} ∈ G×
0 (n, r, t), namely, each

Gs is a subfamily of a family isomorphic to B0(n, r, t). Thus we have

w×(n,p, r, t) ≤
r∏

s=1

wps
(B0(n, r, t)) =

r∏
s=1

pt
s.

Moreover, if equality holds in the above inequality, then Gs
∼= B0(n, r, t) for all 1 ≤ s ≤ r.

In this case, G1 = · · · = Gr must hold by the r-cross t-intersecting property.

In the same way, one can prove Theorem 2 using Theorem 6.
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