BRACE-DAYKIN TYPE INEQUALIES FOR INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

ABSTRACT. Let n,k andr > 8 be positive integers. Suppose that a fami#y C ([E])
satisfiedN---NK #Oforall Fy,...,F € .% andNgc# F = 0. We prove that there exist
& > 0 andn; such that

n-r-1 n—-r-1
7| <
|/_(r+1)( et )+(kr1)

holds for alln andk, satisfyingn > n and|& — 1| < &.

1. INTRODUCTION

Let n,r andt be positive integers. A family# of subsets ofin] = {1,2,...,n} is
calledr-wiset-intersecting if[FyN---NFK| >t holds for allF,...,F € #. An r-wise
l-intersecting family is also called anwise intersecting family for short. Anwiset-
intersecting family# is called non-trivial if| .#| < t, where.# = (gc# F.

Let&(n,r,t) ={E C [n:|[EN[r+t]| >r+t—1}. Thené& is a non-trivialr-wiset-
intersecting family. Two familie¢Z,%’ c 2I" are said to be isomorphic and denoted by
¢ ~ ¢’ if there exists a vertex permutatiaron [n] such that?’ = {{1(g) :ge G} : G €
¢}. Brace and Daykin proved the following.

Theorem 1([2]). Suppose that? c 2" is a non-trivialr-wise intersecting family. Then
|.#| <|&(n,r,1)|. Moreover& (n,r) is the only optimal configuration (up to isomorphism)
forr > 3.

Our first result is a uniform hypergraph version of Theorem 1 (cf. [1, 3]) ni‘¢h, k, r, t)
be the maximal size df-uniform non-trivialr-wiset-intersecting families om vertices,

and letZ (n,k,r,t) = &(n,r,t)N ([E]).
Theorem 2. Letr > 8. Then there exists > 0 andn, such that
m(nk,r,1) = |Z(nkr1)| =+ (" + (D)

holds for alln > n; andk with |& — 1| < &. Moreover.Z (n,k,r,1) is the only optimal
configuration (up to isomorphism).
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Our second result is an extension of Theorem 1 to a weighted version (cf. [4, 6]).
Throughout this papep andg denote positive real numbers wight- g = 1. For a family
@ < 2% we define thep-weight of ¢, denoted by, (¥ : X), as follows:

x| .
W (g . X) = p|G|q‘X|_\G| = <N X plq\X|—|'
i Gg% .;,‘ (')’

We simply writewp (%) for the caseX = [n]. Letw*(n, p,r,t) be the maximap-weight of
non-trivial r-wiset-intersecting families on vertices.
Theorem 3. Letr > 8. Then there exists > 0 such that

w(n, p,1,1) = wp(&(n,r,1)) = (r + 1)p'q+p**

holds for alln > r +1 andp with |p— %| < €. Moreover& (n,r,1) is the only optimal
configuration (up to isomorphism).

Theorem 2 and Theorem 3 are closely related. For comparison, it is natural to consider
the situatiom, k — oo for fixed p = 'ﬁ‘ andt in thek-uniform version. Then we have

| Z(nk,1r,1)|/ () =wp(&(n,r,t))+o0o(1).

See [13] for more about the relation betwest(n, k,r,t)/ () andw*(n, p,r,t).

Theorem 2 fails fo2 <r < 5. We give a Hilton—Milner[7] type construction for the
caser = 5 below. For integers andb, let [a,b] denote the sefa,a+1,...,b} if a<b,
and letja,b] =0if a > b.

Example 1. Fix % <p< % and letp = 'ﬁ( We construct a non-trividd-wise intersecting
family 72 c () as follows:

A = {H1,Ha,Ha} U{H € (V) : [3] ¢ H, [HN[4,k+ 1] > 523,

whereH;j = [k+ 1]\ {j} for 1 < j < 3. Then we havé%ﬂ =3+ 3k (2 (XD,
(We needn—k—1> k—3—/, which follows fromp < 3. 2)) Using standard bounds on
deviations of the hypergeometric distribution (see e.qg., [8]), we haug.o, |%|/(E) =
p3if p> 1/2. On the other hand, we halien_....7 (n.k,5,1)/(y) = 6p°q+ p°, which

is less tharp? if p < 1+ﬁ Therefore we haves?’| > | (n.k,5,1)| if 3 < p< 1+ﬂ
andn is sufficiently Iarge D

Using the fact tha([m]) is s-wiset-intersecting if(s— 1)m+ (t — 1) < s, we can extend
the above construction to get a lower boundrfofn, k, r t) as follows.

Example 2. Leti € N,0<i<r—1, and™~=! K-andi,

we haveimp_. v (n,k,r,t)/(7) > pt.
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Proof. We will construct a non-triviat-wiset-intersecting family  ( ”) Let; be the
smallest integef which satisfiegr —i — 1)(k+t —it) + (t—1) < (r —i)L. Then(['t+1 km)
is (r —i)-wiset-intersecting for’ > ¢;. LetHj; = [k+t] - [(j —1t+1,jt] for 1 < j <i,
and define’# as follows:

A= {Hy,...,Hi}U{H € () : [it)  H, HN[it + L, k+1]| > 4}

Sincep > === ' 1 we havep(k+t — |t) > ¢; for n k sufficiently large. Thus we have

Mo 01/ () = Moo 3 g (47278 (250) /(2) = . N

The condition|'ﬁ‘ — %| < & in Theorem 2 can possibly be improved, but we need some
restriction on'ﬁ‘ as we will see below. Setting= 1 andi =r — 1 in Example 2, we have
liMne m*(n,k,1, 1)/ (1) > p'~* for all fixed p= X < 1 andn sufficiently large. On the
other hand, simple computation shog's® > (r +1)p'q+ p'*1iff p< Z. This means
m*(n,k,r,1) > |.Z (n,k,r)]| in this range, namely, Theorem 2 fails f§)r< %

Next we consider the cagse=8 andt = 1. Fix p= k By settingi 4 in Example 2,
we havelimp .. m*(n,k,8,1)/(¢) > p*for 3 < p< 5,whlle p* > |.Z(nk,8, 1)\/( ) for
p< O 77. Thus Theorem 2 fails fo% <p<0.77. For generat, by setting, e.gi,= and
Po = 7r , we havam*(n,k,r,1) > p' for p> po, andlim; . p' — ((r +1)p'q+ pr+1) =
;21’2}? > 0atp=po. Thus we can fing > 0 such thatm*(n,k,r,1) > [.Z(n,k,r,1)| if
po< K< pote.

Theorem 3 implies Theorem 1 by settipg= 3 5 forr > 8. On the other hand similarly
to Example 2, one can show thahy . w*(n, p,r,t) > p* if 52 < p< Lo Thus
Theorem 3 fails fo2 < r < 5 (cf. [6]). One can also show that Theorem 3 fails fox %
Orpp < p<po+E.

Conjecture 1. Theorem 2 and Theorem 3 is true for 6 andr = 7 as well.

We will deduce Theorem 2 and Theorem 3 from slightly stronger results (Theorem 4
and Theorem 5 below). The reduction is based on the following simple observation.

Lemma 1. If Z c 21" is a non-trivialr -wiset-intersecting family, then it is also a non-
trivial (r —1)-wise(t + 1)-intersecting family.

Proof. If .# is not (r — 1)-wise (t + 1)-intersecting, then we can firf,...,F_1 € F

such thatFN---NK_1| =t. But.Z is r-wiset-intersecting and so evefy € . must

containF1 N ---NF_1, which contradicts the fact tha£ is non-trivial, i.e.,|.Z#| <t. O
Lemma 1 gives

m*(n,k,r,t) <m*(n,k;r —1,t+1) andw*(n, p,r,t) <w*(n,p,r —1,t+1).

Let X(n,r,t) be the set of non-triviat-wise t-intersecting families¢ c 21 satisfying
4 ¢ 4'forany¥’ = &(n,r,t) = £(n,r — Lt + 1), and lety (n,k,r,t) = {F c (V) : 7 e
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X(n,r,t)}. We note thaX(n,r,t) C X(n,r —1,t+1) andY (n,kr,t) CY(nkr—1t+1).
Thus Theorem 2 and Theorem 3 immediately follow from the following results.

Theorem 4. Letr > 7. Then there exist positive constagtg,ng such that the following
(i) and (ii) are true for alh > ng andk with |& — 1| < .

() m'(nk,r2)=|F(nkr2)|=+2) (D) + (2.

(i) If # €Y(n,k,r,2) then.7| < (1—y)m*(n,k,r,2).
Theorem 5. Letr > 7. Then there exist positive constagtg such that the following (i)
and (i) are true for alh > r + 2 andp with |p— %| <E.

(i) w*(n,p,r,2) =wp(&(n,r,2)) = (r+2)p g+ p'*2.

(i) If < € X(n,r,2) thenwp(¥4) < (1—y)w*(n,p,r,2).

In Section 2, we prepare some tools for the proofs. We prove Theorem 5 in Section 3.

In the last section we deduce Theorem 4 from Theorem 5.

2. TooLs

Here we list some known results to prove the theoremsni(etk,r,t) be the maximal
size ofk-uniform r-wise t-intersecting families om vertices and letv(n, p,r,t) be the
maximal p-weight of r-wise t-intersecting families om vertices. Trivialt-intersecting

families give tham(n,k,r,t) > (z_t) andw(n, p,r,t) > p.

—t
Lemma 2([4]). w(n, p,r,1) = p holds forp < r?—l
Lemma 3 ([5]). We havew(n, p,3,2) = p? for p < 0.501andn sufficiently large.

Lemma 4 ([12]). For1 <t < 7, there existg andng such tham(n,k,4,t) = (1) holds

for |X —1| < & andn > no.

Lemma 5([13]). Letr,t andpg be fixed constants. Then (M) implies (W).
(M) There existe > 0 andng such tham(n,k,r,t) = (Ej) holds for alln > ng andk
with |¥ — po| < €.
(W) There existE > 0 such thatv(n, p,r,t) = pt holds for alln >t andp with |p—
po| <.

For integerd <i < j <nand a family? c 2", we define théi, j)-shift g;; as follows:
aij(¥) ={0ij(G) : Ge ¥},
where

(@) { S UPU 126 ica G- Ui £,

otherwise.

A family ¢ c 2" is calledshiftedif i} (¢) = ¢ forall 1 <i < j <n, and¥ is calledtame
if it is shifted andN¥ = 0. If 4 is r-wiset-intersecting, then so is;j (¢). Thus, starting
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from anyr-wiset-intersecting family¥, one can get a shiftedwiset-intersecting family
¢’ with |4'| = |¢|. For the non-trivial intersecting case, we have the following.

Lemma 6. Let ¥ c 2" be a non-trivialr-wise t-intersecting family with maximap-
weight. Then we can find a tamewiset-intersecting family’ < 2I" with wyp(4") =
Wp(9).

Proof. By Lemma 1 is (r — 1)-wise (t 4 1)-intersecting. We apply all possible shifting
operations t¢ to get a shiftedr — 1)-wise (t + 1)-intersecting family%’.

We have to show thgf)%’ = 0. Otherwise we may assume thhe N¥’ andH =
[2,n] € ¢4'. Since¥’ is p-weight maximal we can fins,...,G;_1 € ¢’ such thaiGy N
---NGr_1NH| <t. Then we havéGyN---NG;_1| <t+ 1, which is a contradiction. [

Lemma 7. Let p,r,tp, C be fixed constants, and late (p,1) be the root of the equation
X = p+9gX". Suppose that(n, p,r,tp) < ¢ holds for alin > ty. Then we haveu(n, p,r,t) <
cat~ for allt >ty andn > t.

Proof. If ¢ c 2I" is trivial r-wisetg-intersecting, i.e.,¥| > to, then we have/ c {G c
[n] : [to] € G} andwp(¥) < p. Thus we may assume that- p°. Note also thap < a.

We prove the result by double induction se- n—t andt. One of the initial steps for
t =t follows from our assumption. For the other initial step $pwe prove the result for
the case® < s<r —1, or equivalentlyf < n<t-+r — 1. Suppose tha¥ c 2" satisfies
Wp(¥¢) = w(n, p,r,t). We may assume that is shifted and size maximal. # is trivial,
i.e., |N¥] >t, then we havevy(¥) < pt = pp!~ < ca'l~" and we are done. Otherwise
we haveG € ¢ such thaft] ¢ G, and we may assume th& = [n| — {t} € ¢ because
¢ is shifted and maximal. Then again by the shiftedness we Gave[n] — {i} € ¢ for
allt <i <n. This implies|;Gi| =t — 1. But this is impossible becauggis r-wise
t-intersectinganth—t+1<r.

Next we show the induction step. Let>r andt > tg. We show the casés;t). We
assume that the result holds fs,b) : b <t} U{(a,b) :a< s, b>tp}. In particular, we
can apply induction hypothesis to the cds¢ — 1) and(s—r,t +r —1).

Let% c 2" ber-wiset-intersecting. Defing/, 4, c 2127 as follows:

H={G—{1}:1€Ge ¥}, 4 ={G:1¢Ge¥9}.
Then%; is clearlyr-wise (t — 1)-intersecting. On the other harid; is r-wise (t +r — 1)-
intersecting. To see this fact suppose, on the contrary, that thereGexistG,,1 € ¥1
such than| 17 Gj = [2,t +r — 1]. By the shiftedness we ha® = {1} U (G — {i}) € ¥
forall 2 <i <r+1. But then we havg) "2 G/ = [t +r — 1] — [2,r + 1], which contradicts
r-wiset-intersecting property o¥.

Note thatsfor ¢; is (n—1) — (t—1) =sandsfor 4yis (n—1) — (t+r—1) =s—r.
Therefore using the induction hypothesis, we have

Wp(¥) = PwWp(%:[2,n])+awp(%1: [2,n]) < pea’ 0t goat T

cat ™ Y(p+qga")=cat 0. O
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Let apr € (p,1) be the root of the equatiod = p+ gX'. For later use, we record
a; 5= Y31 ~0.618anda; , ~ 0.543689

2 20
Lemma 8. Letl <s<2andl <t <7. Then there exists sond&> 0 such that

w(n, p,3,s) = p* andw(n,k,4,t) = p'
hold for|p— %\ < d andn > s (resp.n >t). For the case > 2 ort > 7 we have
w(n, p,3,s) < pass” andw(nk,4t) < play

for |p— 3| < & andn> s (resp.n >1).

Proof. Let 1 <t < 7. By Lemma 4 and Lemma 5, there exists sodne- 0 such that
w(n, p,4,t) = p' holds for|p— %\ < &. In particular we havev(n, p,4,7) = p’. This to-
gether with Lemma 7 gives(n, p,4,t) < p7agj47 fort > 7. One can prove the inequalities
for the case = 3 similarly using Lemma 2 and Lemma 3. O

Lemma 9 ([11]). Let positive integers andt be given. Letp € (0,1) be a fixed rational
number which satisfies < "2 and

(1-p)prit Y —pr4p<o.
Thenm(n,k,r,t) = (3_;) if X = p andn is sufficiently large.
Lemma 10. Letr > 5 andt be positive integers with<t+1 < 2'~2log2. Then there
existe > 0 andng such that(n,k,r,t) = (3_1) holds for|X — 1| < & andn > no.
Proof. Setp=1/2. By Lemma 9 it suffices to show that

(1-p)priY —pr14+p<o, (1)
or equivalently} +3(1)51(~Y < (1)1 and so

(14 e H e
Sincer <t + 1we have s (r — 1) > r —2and(3)m10~Y < ()2 < %92 Thys we have
:

=141
(1+ (%)m(r—l))t—i—l <(1+ |to+i12)t+1 <2

which is the desired inequality. Since the LHS of (1) is a continuous functignweé can
find € > 0so that (1) holds fofp— 3| < e. O
Lemma 5 and Lemma 10 give the following.

Lemma 11. Letr > 5 andt be positive integers with<t+ 1 < 2r*2Iog 2. Then there
existse > 0 such thawv(n, p,r,t) = pt holds for alln >t and|p— %\ < €. In particular, we
havew(n, p,r,r +1) = p"*1 forallr >6,n>r+1and|p—3| < e.
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3. PROOF OFTHEOREMS

3.1. Proof of (i). We prove (i) of Theorem 5 in a slightly stronger form, which we will use
in the proof of (ii). Letr > 7 and let# c 2" be a non-triviat-wise 2-intersecting family.
We may suppose tha¥ is p-weight maximal and tame by Lemma 6. # C &(n,r,2)
then there is nothing to prove. So we assume fhaf &'(n,r,2), and we shall prove the
following stronger inequality by induction an

Lemma 12. Letr > 7 and letZ c 2" be a tame-wise 2-intersecting family with? ¢
&(n,r,2). Then there exisy, € > 0 such thatvp(F) < (1—y)wp(&'(n,r,2)) holds for all
n>r+2andpwith|p—1/2| < ¢.

Proof. First we prove the initial step= 7. Letu be the maximai such thatF N[i+1]| > i

holds for allF € .7. If u> 8then.% C &(n,7,2). So we may assume that 7. Lett(¢)

be the maximat such thatZ is ¢-wiset-intersecting. Then we have<t(5) < t(4) by
Lemma 1. Seh(p) = wp(&(n,7,2)) = 9pBq+ p°. We compare th@-weight of # with

h(p). Note thath(1/2) = 10/2° > 0.0195 We will use the following fact.

Claim 1. Suppose thatvp(#) < f(p) holds for some continuous functiok(p), and

suppose further thet(1/2) < h(1/2). Then there exisy,& > 0 such thatvp(%) < (1—
Y)Wp(&(n,7,2)) holds for allp with |[p— 1| < e.

If .7 is 4-wise 6-intersecting then it follows from Lemma 8 thaj(.#) < pdif pis
sufficiently close tol/2. Sincep® < h(p) at p=1/2, we are done in this case by the
previous claim. Thus we may assume tl#atis not 4-wise 6-intersecting, i.e.(4) < 5.
This together withd <t(5) < t(4) givest(5) = 4 andt(4) = 5.

Claim 2. u> 4.

Proof. Since.# is shifted and(4) =5, there exist,...,Fs € . suchthaFiN---NF =

[5]. If there existsF € .# such that|lF N[5]| < 3, then|FNF N---NF4 < 3 and this

contradictst(5) = 4. Thus we must havé= N [5]| > 4 for all F € .# and this means

>
) _Cgﬁsequently we may assume that u < 7. Forl <i < u-+1define -
Fi)={FeZ :Fnu+1=(u+1\{i})},

and fori = 0 define.#(0) = {F € .7 : [u+1] C F}, and set
G(i)={FNu+2,n:FeZ(i)}

for 0 <i <u+1. Since.% is non-trivial intersecting, shifted and maximal, we have
0£9%(1)CY9(2)C---C¥Y9Uu+1l), (2)

and
u+1

wp(F) = p'q Z Vp(# (i) + P vp(%(0)), 3)
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wherevp(¥4) = wp(¥ : [u+2,n]). By the definition ofu, there existd € .# such that
|IF N[u+2]| <u. Since% is shifted and maximal, it follows that

Evii=[nN—{u+1lu+2}e.Z. (4)
By shifting Ey;1, we haveEy,j = [N —{u+i,u+i+1} e Fforl<i<n—-u-—1
Claim 3. ¢(i) is 3-wise (14— u—i)-intersecting fou — 2 <i < min{u+1,6}.
Proof. Suppose, on the contrary, tt#ti) is not3-wise (14— u—i)-intersecting. Then we
can findG;, Gj;1,Gj2 € 4(i) such thatG;NG; 1 NGj 2| < 13—u—i. By the shiftedness,
we may assume th& NG 11N G2 = [u+2,14—i]. Fori < j <i+2, letF/ = ([u+1] -
{iHuGj e Z(i). SinceZ is shifted we havé; := (F/ — {j}) U{i} € # fori < j <i+2,
SetF; = F’ and choos&;j € % (j) for 2< j <i arbitrarily. Then we have)\"5Fj ¢ {1} U
[i+3,14—i]. We also note thag6—i) edges;  3,Eis5,...,E13 i satisfy(ﬂ?;i1 Eit2j41) N

i+3,14—i] = 0. Namely we havéi+ 1)+ (6 —i) = 7 edges
FZ) F37 RS Fi+27 Ei+37 Ei+57 ey E13—i
of .# whose intersection i§1}. This contradicts tha# is 7-wise 2-intersecting. O

Claim 4. ¢(i) is4-wise (13— u—i)-intersecting fou — 3 <i < min{u+1,5}.

Proof. One can prove this claim similarly to the previous claim, and we only show the

caseu =5 andi = 2 here. Suppose th&(2) is not 4-wise 6-intersecting. Then we

can findGy, Gz, G4,Gs € ¥(2) such thatG, NG3NG4NGs = [7,11]. For2 < j <5let

F/=([6]-{2})UGj € #(2). Setl, =F;andfor3< j <5letFj = (F/ - {j})u{2} € 7.

Then we havé, NFsNF,NFsNEsNEgNEp = {1}, a contradiction O
Recall thad < u < 7. We deal with the hardest cage-= 5 first.

Case 1.u=>5.

Subcase 1.1GN[7,9] # 0 holds for allG € 4(0).
By Claim 3 (for¢4(4), 4(5), 4(6)) and Claim 4 (for¢(2) and¥(3)), we get the fol-
lowing table representing thiewiset-intersecting property of(i).

() [ 92) 9(3) 9(4) 95 ¥(6)
/-wise| 4 4 3 3 3
t-int. 6 5 5 4 3

Since?(2) c 2" is 4-wise 6-intersecting, it follows Lemma 8 tha(¢(2)) < 2p°.
This together with (2) givesp(¥ (1)) +Vp(¥4(2)) < 2vp(¥4(2)) < 2p°.
Similarly using Lemma 8 we have

Vp(%(3)) +Vp(9(4)) +Vp(#(5)) +Vp(¢((6)) < pP°+ P*(ap s+ Apa+ pa).
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Since% (0) c 2/ — 2110 we havevp(4(0)) < 1—g. Consequently using (3) we have
6
Wp(F) = p5q.Zle(g(i)) +pvp(¢4(0))
i=

< p°a(2p°+ p°+ pA(ad s+ adg+apa)) + pE(1— ).

For p = 1 we havewp(.#) < 0.01948< h(1/2), and we settle this subcase by Claim 1.
Subcase 1.2There exist$&g € ¢ (0) such thatGoN[7,9] = 0 butGN|[7,10] # 0 holds for
allGe ¥(0).

Since.Z is shifted, we hav&’, = [n| — [7,9] € .#, and we also havig/ = [n] — [i,i+2] €
& fori>7. Then it follows thatE; N Ej,N[7,12] = 0.

Claim 5. Fori =4,5,6,%(i) is 3-wise(15— 2i)-intersecting.

Proof. To prove the casé = 4, suppose, on the contrary, th&t(4) is not 3-wise 7-
intersecting. Then we can finGy4,Gs,Gg € ¥(4) such that|G4NGs N Gg| < 6. By
the shiftedness we may assume tatN Gs N Gg = [7,12]. For4 < j <6 letFj =
([6] = {i}) UG € #(j), and choosd~ € .7 (2) andF; € .% (3) arbitrarily. Then we
haveR> N ---NFgNE;NE]y = {1}, which contradicts tha# is 7-wise 2-intersecting.
To prove the casie= 5, suppose tha# (5) is not 3-wise 5-intersecting. Then we can find
GsNGeNGy € 4(5) suchthaGs NGgNG7 = [7,10. For5< j < 7letFj = ([7]—{j})U
Gj € .#,andfor2 < j <4choose € .Z () arbitrarily. Then we havé,N---NFNEg =
{1}, which is a contradiction.
For the last case, suppose tlt6) is not 3-wise 3-intersecting. Then we can find
GeNG7NGg € 4(6) such thalGeNG;NGg = [7,8]. For6 < j <8letFj = ([8 —{j})U
Gj € #,andfor2 < j <5chooseFj € .7 (j) arbitrarily. Then we havé,N---NFg = {1},
which is a contradiction. O
We get the following table from Claim 5.
9() |94 9(5) 9(6)
(-wise| 3 3 3
t-int. 7 5 3

Since% (0) c 2" — 21131 we havevy(¢(0)) < 1—g*. To boundvy(%(i)) for 1 <i <6
we use Lemma 8. Then we have
Wp(F) < p°a(p*(4ap 3+ aps+apa) +P°(L— ).
For p= 3 we havewp(.7) < 0.0194 and we are done.
Subcase 1.3There exist$s € ¢(0) such thatsN [7,10] = 0.
In this case we uskE’ = [n] —[i,i + 3] € .# fori > 7, and we get the following table.

(We omit the proof, which is similar to that of Claim 5.)

9(i) |94 9(5 9(6)

l-wise| 3 3 3

t-int. 9 6 3
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To boundvp(¥4(i)) for 1 <i < 6 we use Lemma 8. Fa¥(0) we use a trivial bound
vp(¥4(0)) < 1. Then we have

Wp(.F) < pPa(p?(4ag 3+ ap s+ apa)) + p°.

For p= 3, we havewp(#) < 0.0192
Case 2.u=6.

Subcase 2.1GN{8,9} # 0 holds for allG € 4 (7).
By Claim 3 and Claim 4, we get the following table.

9() [9(3) 9(4) 9(5 9(6)
/-wise| 4 3 3 3
t-int. 4 4 3 2

Since¥(7) c 2181 — 2110n " we havevp(4(7)) < 1— 2. To boundvy(¥4(i)) we use
Lemma 8 forl <i < 6, and we use the trivial bound fore= 0. Then we have

wp(F) < pPa(3p* + p*(af s+ aps+1)+ (1—0?)+p".

For p= 3, we havewp(.#) < 0.0191
Subcase 2.2There exist$s € 4(7) such thatGN {8,9} = 0.
We useE/” = [n] — [i,i + 2] € .# fori > 7 and we get the following table.

9() |94 9(5 ¥9(6)
/-wise| 3 3 3
t-int. 6 4 2

To boundw(%(i)) we use Lemma 8 fot <i < 6. and we use trivial bounds foe= 0, 7.
Then we have

wp(F) < pa(p*(4aps+ajz+1)+1)+p'.
For p= 3, we havewp(.#) < 0.01947
Case 3.u=7.

By Claim 3 we find tha® (5) is 3-wise 2-intersecting ard(6) is 3-wise 1-intersecting.
To boundvp(%(i)) we use Lemma 8 fat <i < 6, and we use trivial bounds foe= 0,7, 8.
Then we have

Wp(Z) < p'q(5p*+ p+1+1) + pb.
For p= 3, we havewp(.#) < 0.0186
Case4.u=4.

Claim 6. 4(0) is 3-wise 2-intersecting.
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Proof. Suppose tha¥ (0) is not 3-wise 2-intersecting. Then by the shiftedness we can
find Ge,G7,Gg € ¢4(0) such thatGgNG7NGg = {6}. For j = 2,3,4 chooseFj € .7 (j)
arbitrarily, for j = 6,7,8 let Fj = [5]UG;j € .#, and recall thaEs = [k+ 2] — {5,6} € .7
by (4). Then we havé; "FsNFsNEsNFsNF N Fg = {1}, which is a contradiction. [J

By Claim 3 and Claim 6, we find th& (5) is 3-wise 5-intersecting ard(0) is 3-wise
2-intersecting. To boundp(%(i)) for 0 <i < 5we use Lemma 8. Then we have

wp(F) < p*a(sp®ays) + p°p*.

Forp= % and sufficiently large, we havewp(.%#) < 0.0171 This completes the proof of
the initial stepr = 7 of Lemma 12.

Next we show the induction step. Let> 7 and let.# c 2" be a tamer-wise 2-
intersecting family with# ¢ &(n,r,2). Let us define

glz{F_{l}iléFeg}CZ[z’n], ﬁI:{FEgZ:lgF}CZ[Z,n]?

and we consider thp-weights of these families ial2".

We may assume tha¥ is p-weight maximal. SinceZ is tame, we havén| — {i} € &
for 1 <i <n. Thus.#; is also tame an@r — 1)-wise 2-intersecting. Sinc& ¢ &(n,r,2)
we haveln] — {r+1,r+2} € .# and so%; ¢ &(n—1,r —1,2). Then using the induction
hypothesis we have sonye> 0 and

Wp(Z1: [2,0) < (1= y)Wp(&(n—1r—1,2)) = (1—y)(r+1)p'g+p*).

On the other hand#7y is r-wise (r + 1)-intersecting. To see this fact, suppose on the
contrary, that there exi$y, ..., F € .#7suchthatF N---NFK| <r+1. SinceZ is shifted,
we may assume th& N---NF = [2,r + 1]. Then we havdy’ = (K —{i})U{1} € #
for2<i<r,andFiNFN---NF = {r +1}, a contradiction. Therefor&7 is r-wise
(r +1)-intersecting and using Lemma 11 we hawg .77 : [2,n]) < p'*1. Consequently it
follows that

Wp(ﬁ) = pr(ng : [27 n]) +qu(‘74I [27 n])
< pA=Y(r+1p'a+p ) +ap™t = (1-V)((r+2)p " a+p" ),
which completes the proof of Lemma 12, and also (i) of Theorem 5. O

3.2. Proof of (ii). Set& = &(n,r,2). Let¥ c 2" be a (not necessarily shifted) non-
trivial r-wise 2-intersecting family, and suppose tiétc X (n,r,2). By Lemma 6 we can
find a tamer-wise 2-intersecting familyg* with wp(¥4*) = wp(¥4). If ¥* ¢ &1 then we
have already shown that,(¢*) < (1—y)wp(61). Thus we may assume th&t' C &1,
and in particular (by renaming the starting family if necessary) we may assuni¢‘that
Oxy(¥) C &1, wherex=r+2,y=r+3. We note thaf[x] NG| > r for all G € 4. Moreover
if [XNG|=rthenGN{xy} ={y}and(G—{y})U{x} £¥9.

Foric [x set9(i) ={Ge¥:[y]\G=/i}}, and forj € [x—1] andz € {x,y} let
() ={G e 9 :y]\G={],z}}. Sinceoyy(¥) C &1 we have(j)N%/(j) =0 and so
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Wp(%(1)) +Wp(%(])) < P17, Setd(0) = {Ge ¥ : [ C G}, %y={G€¥:GNy =
[x— 1]} and lete = min;c [, Wp(¥(i)). Then we have

Wp(¥) = pr(%(i))Jr[Z }(Wp(%(j))Jer(%(j)))+Wp(€4<0>)+wp(%xy> (5)
i€[x] jex—1

< e+ (x—1)pg+(x—1)p i+ p+ plg? = e+ (n-1)p*a, (6)

wheren = %4— é. Note thate < p*q, and (6) coincidewp(&1) = n p*qiff e= p*q. If there
is somej € [x— 1] such that4(j) U4(j) = 0, then by (5) we gewp(¥) < wp(é1) —
Pl = (1—q/(np))wp(¢1), and we are done. Thus we may assume that

U()U%()) #0forall j € [x—1]. (7)

To provewp(¥) < (1—y)wp(&1) by contradiction, let us assume that for gny 0 and
anyng there is soma > ng such that

Wp(4) > (1—y)wp(é1) = (1—y)np'a. (8)

By (6) and (8) we have > (1— yn)p*q. This means, letting?’(i) = {G\ [y] : G ¥(i)}
andY = [y+1,n|,

Wp(2(i) 1Y) only misses at mostn p-weight for alli € [x]. 9)

Since € X(n,r,2) bothUjcx—1 %) andUjex—1 %/(j) are non-empty. Using this with
(7), we can choos6 € %(j) andG' € 4,(j’) with j # |/, say,j =x—1,j =x—2. Let
L=[r—2]andsZ* = e € (¢). Then by (9) we have

Wp(H* 1Y) > 1—(r—2)yn. (10)

If s#* c 2¥ is not(r — 2)-wise 1-intersecting, then we can fird, € .2#* for £ € L so that
HiN---NH,_2=0. SettingG, := ([y| — {¢{}) UH, € 4 we havgG1N- - - NGr_2NGNG|=

1, which contradicts the-wise 2-intersecting property . Thus #* is (r — 2)-wise 1-
intersecting anavp(2* 1Y) < p by Lemma 2. But this contradicts (10) because we can
choosey so small thap < 1— (r —2)yn. O

4. PROOF OFTHEOREM4

We deduce (ii) from Theorem 5, then (i) follows from (ii). Assuming the negation of
Theorem 4, we will construct a counterexample to Theorem 5.

For real0 < b < awe writea+ b to mean the open intervéh— b, a+ b) andn(a+b)
means((a— b)n,(a+b)n) NN. FiX yp := Yrhms and & := &rnms from Theorem 5. For
fixedr we note thatf (p) :=w*(n, p,r,2) = (r +2)p't1q+ p'*2 is a uniformly continuous
function ofponi ey Lete =2, y=% andl =3 te.

Choosex; « € so that

(1-3y)f(p) > (1-4y)f(p+9) (11)
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holds for allp € I and all0 < ¢ < &1. Choosen; so that
> (1) Po(1—po)™ > (1-3y)/(1-2y) (12)
ic

holds for alln > ny and allpg € lp := 2 & 3, whereJ = n(pg & &1). Choosen; so that

1=y)Z (nkr,2)| > (1-2y)f(k/n) () (13)
holds for alln > ny andk with k/n € I. Finally setnp = max{ny, nz}.

Suppose that Theorem 4 fails. Then for our choice& gf andng, we can find some
nkand.Z € Y(nk,r,2) with | #| > (1—y)|#(n,k,r,2)|, wheren > ng and'ﬁ‘ el. We
fix n,k and.Z, and letp = X. By (13) we have.Z| > c(}), wherec = (1 2y)f(p). Let
¢ = Uk<i<n([i(:#)) be the collection of all upper shadows.&f, wherel; (%) = {H ¢
(") : H > 3F € #}. Then we have/ € X(n,1,2). Let po= p+é&1 € lo.

Claim 7. |Di(.#)] > c(?) fori € J.

Proof. Choose a reat < nso thatc(}) = (%, ). Since|.Z| > c(}) = (,,*,) the Kruskal-
Katona Theorem[10, 9] implies thdfi(.%)| > (,X;). Thus it suffices to show th&}*.) >
c(!"), or equivalently,

() )
- n\ °

()~ c(®)
Usingi > k this is equivalent té- - - (k4 1) > (Xx—n+i)--- (x—n+k+ 1), which follows
fromx <n. O

By the claim we have
Weol) 2 3 [Gi(F )l Po(1— po)" '>CZ(?)Dio(1—po)n_i~ (14)
le

Using (12) and (11), the RHS of (14) is more than

c(1-3y)/(1-2y)=(1-3y)f(p) > (1 -4y)f(p+&1) = (1-10)f(Po)-
This meansvp,(¢) > (1— yo) W*(n, po, T, 2), which contradicts Theorem 5 (ii). O
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