
BRACE–DAYKIN TYPE INEQUALIES FOR INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

ABSTRACT. Let n,k and r ≥ 8 be positive integers. Suppose that a familyF ⊂ ([n]
k

)
satisfiesF1∩·· ·∩Fr 6= /0 for all F1, . . . ,Fr ∈F and

⋂
F∈F F = /0. We prove that there exist

εr > 0 andnr such that

|F | ≤ (r +1)
(

n− r−1
k− r

)
+

(
n− r−1
k− r−1

)

holds for alln andk, satisfyingn > nr and| kn− 1
2|< εr .

1. INTRODUCTION

Let n, r and t be positive integers. A familyF of subsets of[n] = {1,2, . . . ,n} is
called r-wise t-intersecting if|F1∩ ·· · ∩Fr | ≥ t holds for allF1, . . . ,Fr ∈ F . An r-wise
1-intersecting family is also called anr-wise intersecting family for short. Anr-wise t-
intersecting familyF is called non-trivial if|⋂F |< t, where

⋂
F =

⋂
F∈F F .

Let E (n, r, t) = {E ⊂ [n] : |E∩ [r + t]| ≥ r + t − 1}. ThenE is a non-trivialr-wise t-
intersecting family. Two familiesG ,G ′ ⊂ 2[n] are said to be isomorphic and denoted by
G ∼= G ′ if there exists a vertex permutationτ on [n] such thatG ′ = {{τ(g) : g∈G} : G∈
G }. Brace and Daykin proved the following.

Theorem 1([2]). Suppose thatF ⊂ 2[n] is a non-trivialr-wise intersecting family. Then
|F | ≤ |E (n, r,1)|. MoreoverE (n, r) is the only optimal configuration (up to isomorphism)
for r ≥ 3.

Our first result is a uniform hypergraph version of Theorem 1 (cf. [1, 3]). Letm∗(n,k, r, t)
be the maximal size ofk-uniform non-trivialr-wise t-intersecting families onn vertices,
and letF (n,k, r, t) = E (n, r, t)∩ ([n]

k

)
.

Theorem 2. Let r ≥ 8. Then there existsεr > 0 andnr such that

m∗(n,k, r,1) = |F (n,k, r,1)|= (r +1)
(n−r−1

k−r

)
+

(n−r−1
k−r−1

)

holds for alln > nr andk with | kn − 1
2| < εr . MoreoverF (n,k, r,1) is the only optimal

configuration (up to isomorphism).
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Our second result is an extension of Theorem 1 to a weighted version (cf. [4, 6]).
Throughout this paper,p andq denote positive real numbers withp+q = 1. For a family
G ⊂ 2X we define thep-weight ofG , denoted bywp(G : X), as follows:

wp(G : X) = ∑
G∈G

p|G|q|X|−|G| =
|X|
∑
i=0

∣∣∣G ∩
(X

i

)∣∣∣ piq|X|−i .

We simply writewp(G ) for the caseX = [n]. Let w∗(n, p, r, t) be the maximalp-weight of
non-trivial r-wiset-intersecting families onn vertices.

Theorem 3. Let r ≥ 8. Then there existsε > 0 such that

w∗(n, p, r,1) = wp(E (n, r,1)) = (r +1)prq+ pr+1

holds for alln≥ r + 1 and p with |p− 1
2| < ε. MoreoverE (n, r,1) is the only optimal

configuration (up to isomorphism).

Theorem 2 and Theorem 3 are closely related. For comparison, it is natural to consider
the situationn,k→ ∞ for fixed p = k

n andt in thek-uniform version. Then we have

|F (n,k, r, t)|/(n
k

)
= wp(E (n, r, t))+o(1).

See [13] for more about the relation betweenm∗(n,k, r, t)/
(n

k

)
andw∗(n, p, r, t).

Theorem 2 fails for2≤ r ≤ 5. We give a Hilton–Milner[7] type construction for the
caser = 5 below. For integersa andb, let [a,b] denote the set{a,a+ 1, . . . ,b} if a≤ b,
and let[a,b] = /0 if a > b.

Example 1. Fix 1
2 < p≤ 2

3 and letp = k
n. We construct a non-trivial5-wise intersecting

family H ⊂ ([n]
k

)
as follows:

H = {H1,H2,H3}∪{H ∈ ([n]
k

)
: [3]⊂ H, |H ∩ [4,k+1]|> k−2

2 },
whereH j = [k+ 1] \ { j} for 1≤ j ≤ 3. Then we have|H | = 3+ ∑`> k−2

2

(k−2
`

)(n−k−1
k−3−`

)
.

(We needn− k−1≥ k−3− `, which follows from p≤ 2
3.) Using standard bounds on

deviations of the hypergeometric distribution (see e.g., [8]), we havelimn→∞ |H |/(n
k

)
=

p3 if p > 1/2. On the other hand, we havelimn→∞ F (n,k,5,1)/
(n

k

)
= 6p5q+ p6, which

is less thanp3 if p < 1+
√

21
10 . Therefore we have|H | > |F (n,k,5,1)| if 1

2 < p < 1+
√

21
10

andn is sufficiently large. ¤

Using the fact that
([m]

`

)
is s-wiset-intersecting if(s−1)m+(t−1) < s̀ , we can extend

the above construction to get a lower bound form∗(n,k, r, t) as follows.

Example 2. Let i ∈ N, 0≤ i ≤ r−1, and r−i−1
r−i < p≤ r−i

r−i+1. Then, for fixedp = k
n andi,

we havelimn→∞ m∗(n,k, r, t)/
(n

k

)≥ pit .
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Proof. We will construct a non-trivialr-wiset-intersecting familyHi ⊂
([n]

k

)
. Let `i be the

smallest integer̀ which satisfies(r− i−1)(k+t− it )+(t−1) < (r− i)`. Then
([it+1,k+t]

`

)
is (r − i)-wise t-intersecting for̀ ≥ `i . Let H j = [k+ t]− [( j −1)t + 1, jt ] for 1≤ j ≤ i,
and defineHi as follows:

Hi = {H1, . . . ,Hi}∪{H ∈ ([n]
k

)
: [it ]⊂ H, |H ∩ [it +1,k+ t]|> `i}.

Since p > r−i−1
r−i we havep(k + t − it ) > `i for n,k sufficiently large. Thus we have

limn→∞ |Hi |/
(n

k

)
= limn→∞ ∑`≥`i

(k+t−it
`

)(n−k−t
k−it−`

)
/
(n

k

)
= pit . ¤

The condition| kn− 1
2| < εr in Theorem 2 can possibly be improved, but we need some

restriction onk
n as we will see below. Settingt = 1 andi = r−1 in Example 2, we have

limn→∞ m∗(n,k, r,1)/
(n

k

) ≥ pr−1 for all fixed p = k
n ≤ 1

2 andn sufficiently large. On the
other hand, simple computation showspr−1 > (r + 1)prq+ pr+1 iff p < 1

r . This means
m∗(n,k, r,1) > |F (n,k, r)| in this range, namely, Theorem 2 fails fork

n < 1
r .

Next we consider the caser = 8 andt = 1. Fix p = k
n. By settingi = 4 in Example 2,

we havelimn→∞ m∗(n,k,8,1)/
(n

k

) ≥ p4 for 3
4 < p≤ 4

5, while p4 > |F (n,k,8,1)|/(n
k

)
for

p≤ 0.77. Thus Theorem 2 fails for34 < p≤ 0.77. For generalr, by setting, e.g.,i = 5r
12 and

p0 = 1− 12
7r , we havem∗(n,k, r,1)≥ pi for p> p0, andlimr→∞ pi− ((r +1)prq+ pr+1) =

7e−19
7e12/7 > 0 at p = p0. Thus we can findε > 0 such thatm∗(n,k, r,1) > |F (n,k, r,1)| if

p0 < k
n < p0 + ε.

Theorem 3 implies Theorem 1 by settingp = 1
2 for r ≥ 8. On the other hand, similarly

to Example 2, one can show thatlimn→∞ w∗(n, p, r, t) ≥ pit if r−i−1
r−i < p≤ r−i

r−i+1. Thus
Theorem 3 fails for2≤ r ≤ 5 (cf. [6]). One can also show that Theorem 3 fails forp < 1

r
or p0 < p < p0 + ε.

Conjecture 1. Theorem 2 and Theorem 3 is true forr = 6 andr = 7 as well.

We will deduce Theorem 2 and Theorem 3 from slightly stronger results (Theorem 4
and Theorem 5 below). The reduction is based on the following simple observation.

Lemma 1. If F ⊂ 2[n] is a non-trivialr-wise t-intersecting family, then it is also a non-
trivial (r−1)-wise(t +1)-intersecting family.

Proof. If F is not (r − 1)-wise (t + 1)-intersecting, then we can findF1, . . . ,Fr−1 ∈ F
such that|F1∩ ·· · ∩Fr−1| = t. But F is r-wise t-intersecting and so everyF ∈F must
containF1∩·· ·∩Fr−1, which contradicts the fact thatF is non-trivial, i.e.,|⋂F |< t. ¤

Lemma 1 gives

m∗(n,k, r, t)≤m∗(n,k, r−1, t +1) andw∗(n, p, r, t)≤ w∗(n, p, r−1, t +1).

Let X(n, r, t) be the set of non-trivialr-wise t-intersecting familiesG ⊂ 2[n] satisfying
G 6⊂ G ′ for anyG ′ ∼= E (n, r, t) = E (n, r−1, t +1), and letY(n,k, r, t) = {F ⊂ ([n]

k

)
: F ∈
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X(n, r, t)}. We note thatX(n, r, t)⊂ X(n, r−1, t +1) andY(n,k, r, t)⊂ Y(n,k, r−1, t +1).
Thus Theorem 2 and Theorem 3 immediately follow from the following results.

Theorem 4. Let r ≥ 7. Then there exist positive constantsγ ,ε,n0 such that the following
(i) and (ii) are true for alln > n0 andk with | kn− 1

2|< ε.

(i) m∗(n,k, r,2) = |F (n,k, r,2)|= (r +2)
(n−r−2

k−r−1

)
+

(n−r−2
k−r−2

)
.

(ii) If F ∈ Y(n,k, r,2) then|F |< (1− γ)m∗(n,k, r,2).

Theorem 5. Let r ≥ 7. Then there exist positive constantsγ,ε such that the following (i)
and (ii) are true for alln≥ r +2 andp with |p− 1

2|< ε.

(i) w∗(n, p, r,2) = wp(E (n, r,2)) = (r +2)pr+1q+ pr+2.
(ii) If G ∈ X(n, r,2) thenwp(G ) < (1− γ)w∗(n, p, r,2).

In Section 2, we prepare some tools for the proofs. We prove Theorem 5 in Section 3.
In the last section we deduce Theorem 4 from Theorem 5.

2. TOOLS

Here we list some known results to prove the theorems. Letm(n,k, r, t) be the maximal
size of k-uniform r-wise t-intersecting families onn vertices and letw(n, p, r, t) be the
maximal p-weight of r-wise t-intersecting families onn vertices. Trivialt-intersecting
families give thatm(n,k, r, t)≥ (n−t

k−t

)
andw(n, p, r, t)≥ pt .

Lemma 2 ([4]). w(n, p, r,1) = p holds forp≤ r−1
r .

Lemma 3 ([5]). We havew(n, p,3,2) = p2 for p < 0.501andn sufficiently large.

Lemma 4 ([12]). For 1≤ t ≤ 7, there existsε andn0 such thatm(n,k,4, t) =
(n−t

k−t

)
holds

for | kn− 1
2|< ε andn > n0.

Lemma 5 ([13]). Let r, t andp0 be fixed constants. Then (M) implies (W).
(M) There existε > 0 andn0 such thatm(n,k, r, t) =

(n−t
k−t

)
holds for alln > n0 andk

with | kn− p0|< ε.
(W) There existsε > 0 such thatw(n, p, r, t) = pt holds for alln≥ t and p with |p−

p0|< ε.

For integers1≤ i < j ≤ n and a familyG ⊂ 2[n], we define the(i, j)-shift σi j as follows:

σi j (G ) = {σi j (G) : G∈ G },
where

σi j (G) =
{

(G−{ j})∪{i} if i 6∈G, j ∈G, (G−{ j})∪{i} 6∈ G ,
G otherwise.

A family G ⊂ 2[n] is calledshiftedif σi j (G ) = G for all 1≤ i < j ≤ n, andG is calledtame
if it is shifted and

⋂
G = /0. If G is r-wiset-intersecting, then so isσi j (G ). Thus, starting
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from anyr-wiset-intersecting familyG , one can get a shiftedr-wiset-intersecting family
G ′ with |G ′|= |G |. For the non-trivial intersecting case, we have the following.

Lemma 6. Let G ⊂ 2[n] be a non-trivialr-wise t-intersecting family with maximalp-
weight. Then we can find a tamer-wise t-intersecting familyG ′ ⊂ 2[n] with wp(G ′) =
wp(G ).

Proof. By Lemma 1,G is (r−1)-wise(t +1)-intersecting. We apply all possible shifting
operations toG to get a shifted(r−1)-wise(t +1)-intersecting familyG ′.

We have to show that
⋂

G ′ = /0. Otherwise we may assume that1 ∈ ⋂
G ′ andH =

[2,n] 6∈ G ′. SinceG ′ is p-weight maximal we can findG1, . . . ,Gr−1 ∈ G ′ such that|G1∩
·· ·∩Gr−1∩H|< t. Then we have|G1∩·· ·∩Gr−1|< t +1, which is a contradiction. ¤
Lemma 7. Let p, r, t0,c be fixed constants, and letα ∈ (p,1) be the root of the equation
X = p+qXr . Suppose thatw(n, p, r, t0)≤ cholds for alln≥ t0. Then we havew(n, p, r, t)≤
cα t−t0 for all t ≥ t0 andn≥ t.

Proof. If G ⊂ 2[n] is trivial r-wiset0-intersecting, i.e.,|⋂G | ≥ t0, then we haveG ⊂ {G⊂
[n] : [t0]⊂G} andwp(G )≤ pt0. Thus we may assume thatc≥ pt0. Note also thatp < α .

We prove the result by double induction ons= n− t andt. One of the initial steps for
t = t0 follows from our assumption. For the other initial step fors, we prove the result for
the cases0≤ s≤ r−1, or equivalently,t ≤ n≤ t + r−1. Suppose thatG ⊂ 2[n] satisfies
wp(G ) = w(n, p, r, t). We may assume thatG is shifted and size maximal. IfG is trivial,
i.e., |⋂G | ≥ t, then we havewp(G )≤ pt = pt0 pt−t0 < cα t−t0 and we are done. Otherwise
we haveG ∈ G such that[t] 6⊂ G, and we may assume thatGt = [n]−{t} ∈ G because
G is shifted and maximal. Then again by the shiftedness we haveGi = [n]−{i} ∈ G for
all t ≤ i ≤ n. This implies|⋂n

i=t Gi | = t−1. But this is impossible becauseG is r-wise
t-intersecting andn− t +1≤ r.

Next we show the induction step. Lets≥ r andt > t0. We show the case(s, t). We
assume that the result holds for{(s,b) : b < t}∪{(a,b) : a < s, b≥ t0}. In particular, we
can apply induction hypothesis to the case(s, t−1) and(s− r, t + r−1).

Let G ⊂ 2[n] ber-wiset-intersecting. DefineG1,G1̄⊂ 2[2,n] as follows:

G1 = {G−{1} : 1∈G∈ G }, G1̄ = {G : 1 6∈G∈ G }.
ThenG1 is clearlyr-wise(t−1)-intersecting. On the other hand,G1̄ is r-wise(t + r−1)-
intersecting. To see this fact suppose, on the contrary, that there existG2 . . .Gr+1 ∈ G1̄
such that

⋂r+1
i=2 Gi = [2, t + r−1]. By the shiftedness we haveG′i = {1}∪ (Gi −{i}) ∈ G

for all 2≤ i ≤ r +1. But then we have
⋂r+1

i=2 G′i = [t + r−1]− [2, r +1], which contradicts
r-wiset-intersecting property ofG .

Note thats for G1 is (n−1)− (t−1) = s ands for G1̄ is (n−1)− (t + r −1) = s− r.
Therefore using the induction hypothesis, we have

wp(G ) = pwp(G1 : [2,n])+qwp(G1̄ : [2,n])≤ pcα t−t0−1 +qcα t+r−t0−1

= cα t−t0−1(p+qα r) = cα t−t0. ¤
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Let αp,r ∈ (p,1) be the root of the equationX = p+ qXr . For later use, we record

α 1
2 ,3 =

√
5−1
2 ≈ 0.618andα 1

2 ,4≈ 0.543689.

Lemma 8. Let 1≤ s≤ 2 and1≤ t ≤ 7. Then there exists someδ > 0 such that

w(n, p,3,s) = ps and w(n,k,4, t) = pt

hold for |p− 1
2|< δ andn≥ s (resp.n≥ t). For the cases> 2 or t > 7 we have

w(n, p,3,s)≤ p2αs−2
p,3 and w(n,k,4, t)≤ p7α t−7

p,4

for |p− 1
2|< δ andn≥ s (resp.n≥ t).

Proof. Let 1 ≤ t ≤ 7. By Lemma 4 and Lemma 5, there exists someδ > 0 such that
w(n, p,4, t) = pt holds for|p− 1

2| < δ . In particular we havew(n, p,4,7) = p7. This to-
gether with Lemma 7 givesw(n, p,4, t)≤ p7α t−7

p,4 for t ≥ 7. One can prove the inequalities
for the caser = 3 similarly using Lemma 2 and Lemma 3. ¤

Lemma 9 ([11]). Let positive integersr andt be given. Letp∈ (0,1) be a fixed rational
number which satisfiesp < r−2

r and

(1− p)p
t

t+1(r−1)− p
t

t+1 + p < 0.

Thenm(n,k, r, t) =
(n−t

k−t

)
if k

n = p andn is sufficiently large.

Lemma 10. Let r ≥ 5 andt be positive integers withr ≤ t + 1≤ 2r−2 log2. Then there
existε > 0 andn0 such thatm(n,k, r, t) =

(n−t
k−t

)
holds for| kn− 1

2|< ε andn > n0.

Proof. Setp = 1/2. By Lemma 9 it suffices to show that

(1− p)p
t

t+1(r−1)− p
t

t+1 + p < 0, (1)

or equivalently,12 + 1
2(1

2)
t

t+1(r−1) < (1
2)

t
t+1 and so

(
1+(1

2)
t

t+1(r−1))t+1
< 2.

Sincer ≤ t +1 we have t
t+1(r−1) > r−2 and(1

2)
t

t+1(r−1) < (1
2)r−2≤ log2

t+1 . Thus we have
(
1+(1

2)
t

t+1(r−1))t+1
<

(
1+ log2

t+1

)t+1
< 2,

which is the desired inequality. Since the LHS of (1) is a continuous function ofp, we can
find ε > 0 so that (1) holds for|p− 1

2|< ε. ¤
Lemma 5 and Lemma 10 give the following.

Lemma 11. Let r ≥ 5 andt be positive integers withr ≤ t + 1≤ 2r−2 log2. Then there
existsε > 0 such thatw(n, p, r, t) = pt holds for alln≥ t and|p− 1

2|< ε. In particular, we
havew(n, p, r, r +1) = pr+1 for all r ≥ 6, n≥ r +1 and|p− 1

2|< ε.
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3. PROOF OFTHEOREM 5

3.1. Proof of (i). We prove (i) of Theorem 5 in a slightly stronger form, which we will use
in the proof of (ii). Letr ≥ 7 and letF ⊂ 2[n] be a non-trivialr-wise 2-intersecting family.
We may suppose thatF is p-weight maximal and tame by Lemma 6. IfF ⊂ E (n, r,2)
then there is nothing to prove. So we assume thatF 6⊂ E (n, r,2), and we shall prove the
following stronger inequality by induction onr.

Lemma 12. Let r ≥ 7 and letF ⊂ 2[n] be a tamer-wise 2-intersecting family withF 6⊂
E (n, r,2). Then there existγ,ε > 0 such thatwp(F ) < (1− γ)wp(E (n, r,2)) holds for all
n≥ r +2 andp with |p−1/2|< ε.

Proof. First we prove the initial stepr = 7. Letu be the maximali such that|F∩ [i +1]| ≥ i
holds for allF ∈F . If u≥ 8 thenF ⊂ E (n,7,2). So we may assume thatu≤ 7. Let t(`)
be the maximalt such thatF is `-wise t-intersecting. Then we have4≤ t(5) < t(4) by
Lemma 1. Seth(p) = wp(E (n,7,2)) = 9p8q+ p9. We compare thep-weight ofF with
h(p). Note thath(1/2) = 10/29 > 0.0195. We will use the following fact.

Claim 1. Suppose thatwp(F ) ≤ f (p) holds for some continuous functionf (p), and
suppose further thatf (1/2) < h(1/2). Then there existγ ,ε > 0 such thatwp(F ) < (1−
γ)wp(E (n,7,2)) holds for allp with |p− 1

2|< ε.

If F is 4-wise 6-intersecting then it follows from Lemma 8 thatwp(F ) ≤ p6 if p is
sufficiently close to1/2. Sincep6 < h(p) at p = 1/2, we are done in this case by the
previous claim. Thus we may assume thatF is not 4-wise 6-intersecting, i.e.,t(4) ≤ 5.
This together with4≤ t(5) < t(4) givest(5) = 4 andt(4) = 5.

Claim 2. u≥ 4.

Proof. SinceF is shifted andt(4) = 5, there existF1, . . . ,F4 ∈F such thatF1∩·· ·∩F4 =
[5]. If there existsF ∈ F such that|F ∩ [5]| ≤ 3, then |F ∩F1∩ ·· · ∩F4| ≤ 3 and this
contradictst(5) = 4. Thus we must have|F ∩ [5]| ≥ 4 for all F ∈ F and this means
u≥ 4. ¤

Consequently we may assume that4≤ u≤ 7. For1≤ i ≤ u+1 define

F (i) = {F ∈F : F ∩ [u+1] = ([u+1]\{i})},
and fori = 0 defineF (0) = {F ∈F : [u+1]⊂ F}, and set

G (i) = {F ∩ [u+2,n] : F ∈F (i)}
for 0≤ i ≤ u+1. SinceF is non-trivial intersecting, shifted and maximal, we have

/0 6= G (1)⊂ G (2)⊂ ·· · ⊂ G (u+1), (2)

and

wp(F ) = puq
u+1

∑
i=1

vp(G (i))+ pu+1vp(G (0)), (3)
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wherevp(G ) = wp(G : [u+ 2,n]). By the definition ofu, there existsF ∈ F such that
|F ∩ [u+2]| ≤ u. SinceF is shifted and maximal, it follows that

Eu+1 = [n]−{u+1,u+2} ∈F . (4)

By shifting Eu+1, we haveEu+i = [n]−{u+ i,u+ i +1} ∈F for 1≤ i ≤ n−u−1.

Claim 3. G (i) is 3-wise(14−u− i)-intersecting foru−2≤ i ≤min{u+1,6}.
Proof. Suppose, on the contrary, thatG (i) is not3-wise(14−u− i)-intersecting. Then we
can findGi ,Gi+1,Gi+2∈G (i) such that|Gi∩Gi+1∩Gi+2| ≤ 13−u− i. By the shiftedness,
we may assume thatGi∩Gi+1∩Gi+2 = [u+2,14− i]. For i ≤ j ≤ i +2, letF ′j = ([u+1]−
{i})∪G j ∈F (i). SinceF is shifted we haveFj := (F ′j −{ j})∪{i} ∈F for i < j ≤ i +2.

SetFi = F ′i and chooseFj ∈F ( j) for 2≤ j < i arbitrarily. Then we have
⋂i+2

j=2Fj ⊂ {1}∪
[i+3,14− i]. We also note that(6− i) edgesEi+3,Ei+5, . . . ,E13−i satisfy

(⋂6−i
j=1Ei+2 j+1

)∩
[i +3,14− i] = /0. Namely we have(i +1)+(6− i) = 7 edges

F2,F3, . . . ,Fi+2,Ei+3,Ei+5, . . . ,E13−i

of F whose intersection is{1}. This contradicts thatF is 7-wise 2-intersecting. ¤

Claim 4. G (i) is 4-wise(13−u− i)-intersecting foru−3≤ i ≤min{u+1,5}.
Proof. One can prove this claim similarly to the previous claim, and we only show the
caseu = 5 and i = 2 here. Suppose thatG (2) is not 4-wise 6-intersecting. Then we
can findG2,G3,G4,G5 ∈ G (2) such thatG2∩G3∩G4∩G5 = [7,11]. For 2≤ j ≤ 5 let
F ′j = ([6]−{2})∪G j ∈F (2). SetF2 = F ′2 and for3≤ j ≤ 5 let Fj = (F ′j −{ j})∪{2} ∈F .
Then we haveF2∩F3∩F4∩F5∩E6∩E8∩E10 = {1}, a contradiction ¤

Recall that4≤ u≤ 7. We deal with the hardest caseu = 5 first.

Case 1.u = 5.

Subcase 1.1.G∩ [7,9] 6= /0 holds for allG∈ G (0).
By Claim 3 (forG (4), G (5), G (6)) and Claim 4 (forG (2) andG (3)), we get the fol-

lowing table representing thè-wiset-intersecting property ofG (i).

G (i) G (2) G (3) G (4) G (5) G (6)
`-wise 4 4 3 3 3
t-int. 6 5 5 4 3

SinceG (2) ⊂ 2[7,n] is 4-wise 6-intersecting, it follows Lemma 8 thatvp(G (2)) ≤ 2p6.
This together with (2) givesvp(G (1))+vp(G (2))≤ 2vp(G (2))≤ 2p6.

Similarly using Lemma 8 we have

vp(G (3))+vp(G (4))+vp(G (5))+vp(G ((6))≤ p5 + p2(α3
p,3 +α2

p,3 +αp,3).
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SinceG (0)⊂ 2[7,n]−2[10,n] we havevp(G (0))≤ 1−q3. Consequently using (3) we have

wp(F ) = p5q
6

∑
i=1

vp(G (i))+ p6vp(G (0))

≤ p5q
(
2p6 + p5 + p2(α3

p,3 +α2
p,3 +αp,3)

)
+ p6(1−q3).

For p = 1
2 we havewp(F ) < 0.01948< h(1/2), and we settle this subcase by Claim 1.

Subcase 1.2.There existsG0 ∈ G (0) such thatG0∩ [7,9] = /0 butG∩ [7,10] 6= /0 holds for
all G∈ G (0).

SinceF is shifted, we haveE′7 = [n]− [7,9]∈F , and we also haveE′i = [n]− [i, i +2]∈
F for i ≥ 7. Then it follows thatE′7∩E′10∩ [7,12] = /0.

Claim 5. For i = 4,5,6, G (i) is 3-wise(15−2i)-intersecting.

Proof. To prove the casei = 4, suppose, on the contrary, thatG (4) is not 3-wise 7-
intersecting. Then we can findG4,G5,G6 ∈ G (4) such that|G4∩G5∩G6| ≤ 6. By
the shiftedness we may assume thatG4∩G5∩G6 = [7,12]. For 4 ≤ j ≤ 6 let Fj =
([6]−{ j})∪G j ∈ F ( j), and chooseF2 ∈ F (2) and F3 ∈ F (3) arbitrarily. Then we
haveF2∩·· ·∩F6∩E′7∩E′10 = {1}, which contradicts thatF is 7-wise 2-intersecting.

To prove the casei = 5, suppose thatG (5) is not 3-wise 5-intersecting. Then we can find
G5∩G6∩G7 ∈ G (5) such thatG5∩G6∩G7 = [7,10]. For5≤ j ≤ 7 let Fj = ([7]−{ j})∪
G j ∈F , and for2≤ j ≤ 4 chooseFj ∈F ( j) arbitrarily. Then we haveF2∩·· ·∩F7∩E′8 =
{1}, which is a contradiction.

For the last case, suppose thatG (6) is not 3-wise 3-intersecting. Then we can find
G6∩G7∩G8 ∈ G (6) such thatG6∩G7∩G8 = [7,8]. For6≤ j ≤ 8 let Fj = ([8]−{ j})∪
G j ∈F , and for2≤ j ≤ 5 chooseFj ∈F ( j) arbitrarily. Then we haveF2∩·· ·∩F8 = {1},
which is a contradiction. ¤

We get the following table from Claim 5.

G (i) G (4) G (5) G (6)
`-wise 3 3 3
t-int. 7 5 3

SinceG (0)⊂ 2[7,n]−2[11,n] we havevp(G (0))≤ 1−q4. To boundvp(G (i)) for 1≤ i ≤ 6
we use Lemma 8. Then we have

wp(F )≤ p5q(p2(4α5
p,3 +α3

p,3 +αp,3))+ p6(1−q4).

For p = 1
2 we havewp(F ) < 0.0194, and we are done.

Subcase 1.3.There existsG∈ G (0) such thatG∩ [7,10] = /0.
In this case we useE′′i = [n]− [i, i + 3] ∈F for i ≥ 7, and we get the following table.

(We omit the proof, which is similar to that of Claim 5.)

G (i) G (4) G (5) G (6)
`-wise 3 3 3
t-int. 9 6 3
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To boundvp(G (i)) for 1 ≤ i ≤ 6 we use Lemma 8. ForG (0) we use a trivial bound
vp(G (0))≤ 1. Then we have

wp(F )≤ p5q(p2(4α7
p,3 +α4

p,3 +αp,3))+ p6.

For p = 1
2, we havewp(F ) < 0.0192.

Case 2.u = 6.

Subcase 2.1.G∩{8,9} 6= /0 holds for allG∈ G (7).
By Claim 3 and Claim 4, we get the following table.

G (i) G (3) G (4) G (5) G (6)
`-wise 4 3 3 3
t-int. 4 4 3 2

SinceG (7) ⊂ 2[8,n] − 2[10,n], we havevp(G (7)) ≤ 1− q2. To boundvp(G (i)) we use
Lemma 8 for1≤ i ≤ 6, and we use the trivial bound fori = 0. Then we have

wp(F )≤ p6q(3p4 + p2(α2
p,3 +αp,3 +1)+(1−q2))+ p7.

For p = 1
2, we havewp(F ) < 0.0191.

Subcase 2.2.There existsG∈ G (7) such thatG∩{8,9}= /0.
We useE′′′i = [n]− [i, i +2] ∈F for i ≥ 7 and we get the following table.

G (i) G (4) G (5) G (6)
`-wise 3 3 3
t-int. 6 4 2

To boundwp(G (i)) we use Lemma 8 for1≤ i ≤ 6. and we use trivial bounds fori = 0,7.
Then we have

wp(F )≤ p6q(p2(4α4
p,3 +α2

p,3 +1)+1)+ p7.

For p = 1
2, we havewp(F ) < 0.01947.

Case 3.u = 7.

By Claim 3 we find thatG (5) is 3-wise 2-intersecting andG (6) is 3-wise 1-intersecting.
To boundvp(G (i)) we use Lemma 8 for1≤ i ≤ 6, and we use trivial bounds fori = 0,7,8.
Then we have

wp(F )≤ p7q(5p2 + p+1+1)+ p8.

For p = 1
2, we havewp(F ) < 0.0186.

Case 4.u = 4.

Claim 6. G (0) is 3-wise 2-intersecting.
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Proof. Suppose thatG (0) is not 3-wise 2-intersecting. Then by the shiftedness we can
find G6,G7,G8 ∈ G (0) such thatG6∩G7∩G8 = {6}. For j = 2,3,4 chooseFj ∈F ( j)
arbitrarily, for j = 6,7,8 let Fj = [5]∪G j ∈F , and recall thatE5 = [k+2]−{5,6} ∈F
by (4). Then we haveF2∩F3∩F4∩E5∩F6∩F7∩F8 = {1}, which is a contradiction. ¤

By Claim 3 and Claim 6, we find thatG (5) is 3-wise 5-intersecting andG (0) is 3-wise
2-intersecting. To boundwp(G (i)) for 0≤ i ≤ 5 we use Lemma 8. Then we have

wp(F )≤ p4q(5p2α3
p,3)+ p5p2.

For p = 1
2 and sufficiently largen, we havewp(F ) < 0.0171. This completes the proof of

the initial stepr = 7 of Lemma 12.

Next we show the induction step. Letr > 7 and letF ⊂ 2[n] be a tamer-wise 2-
intersecting family withF 6⊂ E (n, r,2). Let us define

F1 = {F−{1} : 1∈ F ∈F} ⊂ 2[2,n], F1̄ = {F ∈F : 1 6∈ F} ⊂ 2[2,n],

and we consider thep-weights of these families in2[2,n].
We may assume thatF is p-weight maximal. SinceF is tame, we have[n]−{i} ∈F

for 1≤ i ≤ n. ThusF1 is also tame and(r−1)-wise 2-intersecting. SinceF 6⊂ E (n, r,2)
we have[n]−{r +1, r +2} ∈F and soF1 6⊂ E (n−1, r−1,2). Then using the induction
hypothesis we have someγ > 0 and

wp(F1 : [2,n]) < (1− γ)wp(E (n−1, r−1,2)) = (1− γ)
(
(r +1)prq+ pr+1).

On the other hand,F1̄ is r-wise (r + 1)-intersecting. To see this fact, suppose on the
contrary, that there existF1, . . . ,Fr ∈F1̄ such that|F1∩·· ·∩Fr |< r +1. SinceF is shifted,
we may assume thatF1∩ ·· · ∩Fr = [2, r + 1]. Then we haveF ′i = (Fi −{i})∪{1} ∈ F
for 2≤ i ≤ r, andF1∩F ′2∩ ·· · ∩F ′r = {r + 1}, a contradiction. ThereforeF1̄ is r-wise
(r +1)-intersecting and using Lemma 11 we havewp(F1̄ : [2,n])≤ pr+1. Consequently it
follows that

wp(F ) = pwp(F1 : [2,n])+qwp(F1̄ : [2,n])

< p(1− γ)
(
(r +1)prq+ pr+1)+qpr+1 = (1− γ ′)

(
(r +2)pr+1q+ pr+2),

which completes the proof of Lemma 12, and also (i) of Theorem 5. ¤

3.2. Proof of (ii). SetE1 = E (n, r,2). Let G ⊂ 2[n] be a (not necessarily shifted) non-
trivial r-wise2-intersecting family, and suppose thatG ∈ X(n, r,2). By Lemma 6 we can
find a tamer-wise2-intersecting familyG ∗ with wp(G ∗) = wp(G ). If G ∗ 6⊂ E1 then we
have already shown thatwp(G ∗) < (1− γ)wp(E1). Thus we may assume thatG ∗ ⊂ E1,
and in particular (by renaming the starting family if necessary) we may assume thatG ∗ =
σxy(G )⊂ E1, wherex= r +2, y= r +3. We note that|[x]∩G| ≥ r for all G∈ G . Moreover
if |[x]∩G|= r thenG∩{x,y}= {y} and(G−{y})∪{x} 6∈ G .

For i ∈ [x] setG (i) = {G ∈ G : [y] \G = {i}}, and for j ∈ [x− 1] andz∈ {x,y} let
Gz( j) = {G∈ G : [y]\G = { j,z}}. Sinceσxy(G )⊂ E1 we haveGx( j)∩Gy( j) = /0 and so
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wp(Gx( j))+wp(Gy( j))≤ px−1q2. SetG ( /0) = {G∈ G : [x]⊂G}, Gxy = {G∈ G : G∩ [y] =
[x−1]} and lete= mini∈[x] wp(G (i)). Then we have

wp(G ) = ∑
i∈[x]

wp(G (i))+ ∑
j∈[x−1]

(
wp(Gx( j))+wp(Gy( j))

)
+wp(G ( /0))+wp(Gxy) (5)

≤ e+(x−1)pxq+(x−1)px−1q2 + px + px−1q2 = e+(η−1)pxq, (6)

whereη = x
p + 1

q. Note thate≤ pxq, and (6) coincideswp(E1) = η pxq iff e= pxq. If there
is some j ∈ [x− 1] such thatGx( j)∪Gy( j) = /0, then by (5) we getwp(G ) ≤ wp(E1)−
px−1q2 =

(
1−q/(η p)

)
wp(E1), and we are done. Thus we may assume that

Gx( j)∪Gy( j) 6= /0 for all j ∈ [x−1]. (7)

To provewp(G ) < (1− γ)wp(E1) by contradiction, let us assume that for anyγ > 0 and
anyn0 there is somen > n0 such that

wp(G ) > (1− γ)wp(E1) = (1− γ)η pxq. (8)

By (6) and (8) we havee> (1− γη)pxq. This means, lettingH (i) = {G\ [y] : G∈ G (i)}
andY = [y+1,n],

wp(H (i) : Y) only misses at mostγη p-weight for all i ∈ [x]. (9)

SinceG ∈X(n, r,2) both
⋃

j∈[x−1] Gx( j) and
⋃

j∈[x−1] Gy( j) are non-empty. Using this with
(7), we can chooseG∈ Gx( j) andG′ ∈ Gy( j ′) with j 6= j ′, say, j = x−1, j ′ = x−2. Let
L = [r−2] andH ∗ =

⋂
`∈L H (`). Then by (9) we have

wp(H ∗ : Y) > 1− (r−2)γη . (10)

If H ∗ ⊂ 2Y is not(r−2)-wise1-intersecting, then we can findH` ∈H ∗ for ` ∈ L so that
H1∩·· ·∩Hr−2 = /0. SettingG` := ([y]−{`})∪H` ∈G we have|G1∩·· ·∩Gr−2∩G∩G′|=
1, which contradicts ther-wise2-intersecting property ofG . ThusH ∗ is (r−2)-wise1-
intersecting andwp(H ∗ : Y) ≤ p by Lemma 2. But this contradicts (10) because we can
chooseγ so small thatp¿ 1− (r−2)γη . ¤

4. PROOF OFTHEOREM 4

We deduce (ii) from Theorem 5, then (i) follows from (ii). Assuming the negation of
Theorem 4, we will construct a counterexample to Theorem 5.

For reals0 < b < a we writea±b to mean the open interval(a−b,a+b) andn(a±b)
means((a− b)n,(a+ b)n)∩N. Fix γ0 := γThm5 andε0 := εThm5 from Theorem 5. For
fixed r we note thatf (p) := w∗(n, p, r,2) = (r +2)pr+1q+ pr+2 is a uniformly continuous
function of p on 1

2± ε0. Let ε = ε0
2 , γ = γ0

4 , andI = 1
2± ε.

Chooseε1¿ ε so that

(1−3γ) f (p) > (1−4γ) f (p+δ ) (11)
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holds for allp∈ I and all0 < δ ≤ ε1. Choosen1 so that

∑
i∈J

(n
i

)
pi

0(1− p0)n−i > (1−3γ)/(1−2γ) (12)

holds for alln > n1 and allp0 ∈ I0 := 1
2± 3ε

2 , whereJ = n(p0± ε1). Choosen2 so that

(1− γ)|F (n,k, r,2)|> (1−2γ) f (k/n)
(n

k

)
(13)

holds for alln > n2 andk with k/n∈ I . Finally setn0 = max{n1,n2}.
Suppose that Theorem 4 fails. Then for our choice ofε,γ andn0, we can find some

n,k andF ∈ Y(n,k, r,2) with |F | ≥ (1− γ)|F (n,k, r,2)|, wheren > n0 and k
n ∈ I . We

fix n,k andF , and letp = k
n. By (13) we have|F |> c

(n
k

)
, wherec = (1−2γ) f (p). Let

G =
⋃

k≤i≤n(∇i(F )) be the collection of all upper shadows ofF , where∇i(F ) = {H ∈([n]
i

)
: H ⊃ ∃F ∈F}. Then we haveG ∈ X(n, r,2). Let p0 = p+ ε1 ∈ I0.

Claim 7. |∇i(F )| ≥ c
(n

i

)
for i ∈ J.

Proof. Choose a realx≤ n so thatc
(n

k

)
=

( x
n−k

)
. Since|F | > c

(n
k

)
=

( x
n−k

)
the Kruskal–

Katona Theorem[10, 9] implies that|∇i(F )| ≥ ( x
n−i

)
. Thus it suffices to show that

( x
n−i

)≥
c
(n

i

)
, or equivalently, ( x

n−i

)
( x

n−k

) ≥ c
(n

i

)

c
(n

k

) .

Using i ≥ k this is equivalent toi · · ·(k+1)≥ (x−n+ i) · · ·(x−n+k+1), which follows
from x≤ n. ¤

By the claim we have

wp0(G )≥∑
i∈J
|∇i(F )| pi

0(1− p0)n−i ≥ c∑
i∈J

(n
i

)
pi

0(1− p0)n−i . (14)

Using (12) and (11), the RHS of (14) is more than

c(1−3γ)/(1−2γ) = (1−3γ) f (p) > (1−4γ) f (p+ ε1) = (1− γ0) f (p0).

This meanswp0(G ) > (1− γ0)w∗(n, p0, r,2), which contradicts Theorem 5 (ii). ¤
Acknowledgment. The author would like to thank the referee for careful reading and
valuable comments.
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