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1. INTRODUCTION

For a given convex body, find a “small” wall hole through which the
convex body can pass. This type of problems goes back to ZintAgm
1920, who considered a convex polytope which can pass through a fairly
small circular holes. A related topic known as Prince Rupert’s problem can
be found in P]. Here we concentrate on the case when the convex body is
a regular tetrahedron or a regufasimplex.

For a compact convex body C R", letdiam(K) andwidth(K) denote the
diameter and width oK, respectively. Fod > 0 let dK denote the convex
body with diameted and homothetic t&K. Let S,, Qn, and B, denote
the n-dimensional regular simplex, thedimensional hypercube, and the
n-dimensional ball, respectively. Thuk$, has side lengtii, 1Q,, has side
length1/,/n, and1B, has radiud /2.

Let H ¢ R"! be a convex body, which we will call a hole. LBtbe
the hyperplane containintg, which dividesR" into I and two (open) half
spaced1™ andlM~. We want to pusiiS, from M to M~ throughH. In
this situation, we are interested in two types of “small” holes, namely,

y(n,H) := min{d : 1S, can pass through the hole®H in R"},

and
F(n,H):=min{d: 1S, C (dH) x R}.

Notice thaty(n,H) andl" (n,H) do not depend odiam(H ). For givenH, we
resizeH so thatlS, can pass through the hate We will try to find a hole
homethetic ta with minimum diameter, which will givey or I'. (Recall
thatdH is homothetic tdd anddiam(dH) = d.) By definition,1S, can pass
through a holéH by translation perpendicular to the hyperplane containing
the hole iffdiam(H) > I'(n,H). Thus we have/(n,H) < T (n,H).

We havewidth(1Q,) = 1/,/n andwidth(1By,) = 1. Steinhagen1?] de-
termined the width o8, as follows.

—2_ if nis odd

width(1S,) = { nil (1)

% if nis even
If 1S, can pass through a hatiH by translation, then
width(dH) > width(1S,) = (V2—0(1))/v/n. 2)

Letn> 3. If 1S, can pass through a hatéH, thend > width(1S;) = v/3/2.

This givesy(n,H) > v/3/2.
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Brandenberg and Theobalt] jproved the following.

20-1) it nis odd
r(n,Bn_1) = lel if nis even ©
2n(n+1)

2. IN THE 3-SPACE
Itoh, Tanoue, and Zamfiresc@][proved
y(37 QZ) = r(37 QZ) = 17 y(37 BZ) =2r= 089567 (4)

wherer € (0,1) is a unique root of the equati@1 6<® — 9x* +38x> —9 = 0.
We note thay/(3,B2) < I'(3,B2) =1.
In [9], the following is proved.

1++/2
V6

Zamfirescu'13] proved that most convex bodies can be held by a circular
frame. Using'4), one can show that a square frame of diagonal ledgth
can hold1S; iff 1/\/§ < d < 1, and a circular frame of diametdrcan hold
1S3 iff 1/v/2 < d < y(3,B3), seelp].

On the other hand, it is shown if][that

no triangular frame can hold a convex body. (5)

¥(3,$)=T(3,S) = —0.9855..

This is a special property for triangular frames, and in fact, we have the
following.

Theorem 1. [9] Every non-triangular frame holds some tetrahedroiRth

Debrunner and Mani-Levitsk&] proved that any section of a right cylin-
der by a plane contains a congruent copy of the base, see7lsdHis
together with §) implies the following: if a convex body, not necessarily
smooth, can pass through a triangular hole, then the convex body can pass
through the hole by translation perpendicular to the wall, Ske [

ltoh and Zamfiresctf] found a holeH C R? with diam(H) = width(1S,) =
v/3/2 andwidth(H) = width(1S3) = v/2/2, such thatlS; can pass through
H.

3. HIGHER DIMENSIONS

3.1. The holeS,_;. Recall that any plane section of a right triangular prism
contains a congruent copy of a base of the pri8m/[. The situation in
higher dimension is different. 18], it is proved that ifn > 3, then for any

right cylinder with convex polytope base, one can find a hyperplane section
which does not contain a congruent copy of the base. Nevertheless, we have

the following.
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Theorem 2. [9] LetK c R" be a compact convex body, and4gt ; be a
general(n— 1)-simplex. IfK can pass through the hols,_1, then this can
be done by translation only.

Problem 1. Is it possible to take the translation in Theor@mperpendicular
to the wall? Or equivalently, dg(n,S,-1) andl" (n,S,-1) coincide?

VNS, 1) > {,/1 - if nis odd

Theorem 3.

1 - .
1—m if nis even

Proof. Suppose thal$, can pass through the holea§, 1. By Theoren®,
this can be done by translation only. Thus we can af@)lwith (1), which
implies the desired inequality. O

The above result together witin, S,-1) < T'(n,S,-1) < 1 gives
lim y(n,S,-2) = lim F(n,S-1) = 1.

If the simplex does pass through a hole, then in particular the volume of
some central hyperplane section of that simplex is no bigger than the vol-
ume of the hole. After the RIMS workshopfiMatousek suggested show-
ing y(n,$,-1) — 1 by using this simple observation. He also told us the
information from Keith Ball: it is conjectured that the smallest central hy-
perplane section d, is obtained by a hyperplane parallel to a facet of the
simplex. According to Keith Ball's suggestion, we asked Matthieu Fradelizi
about the volume of central slices of a simplex. Then, Fradelizi told us that
a result in ] implies that the volume of the smallest central hyperplane
section ofS, is more tharvol(S,_1)/(2v/3), and this is enough for proving
y(n,S-1) — 1.

Since the diameter of circumspherel&, is \/2(n— 1) /n, we have

r(n,S-1) Z(nn_l) >T(n,Bp_1).

This together with3) implies

r(nvsﬂfl) > \/ 1_%_

for nodd. (Fomeven, Theorer gives a better lower bound for(n, S,-1).)
Actually S, can pass through a hole smaller than its facet.

Theorem 4.7 (n,S,-1) < 1foralln> 2.

Let us try the case= 3to getafeel. Le§, = AgA1A2, Ag=(0,1/2), A1 =

(0,—1/2),A, = (v/3/2,0), and letZ be the right triangular prism with base
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ApA1A2. We put the unit regular tetrahedr& = BoB1B»B3 in the prism,
namely, we set

Bo=(0,1/2,0),B1 = (0,—1/2,0),B,=(1/v/2,0,1/2),B3 = (1//2,0,—1/2).

Now we move the tetrahedron very slightly keeping it insigfeso that all
vertices are off the faces aP. This can be done by rotating the tetrahedron
along thex-axis, and push it in the direction gfaxis. This gives (3,S) <

1.

3.2. The holeQ,_1. In [8] the following is proved: for everg > 0 there
is anN such that for every > N one has

1S, C (24 €)Qn.
This gives

r|]|m r(n7 Qn—l) <2

Clearly we have (n,Qn-1) > I'(n,By_1), and we get a lower bound
for '(n,Qn_1) from (3). Here we include a simple proof of the following
slightly weaker bound.

Theorem 5. We have

2(n—1)

r ) > ——
(n7Qn 1)_ n+17

(6)

with equality holding iff there exists an Hadamard matrix of order 1.

Proof. Letd =T (n,Qn_1). ThenlS, can pass through a hole d€),_1 by
translation. So2) and (L) imply

width(dQn_1) = nd 12width(1sq)z,/%l,

which gives6). Moreover, if1S, C /Qy, then we have

VN /[ 2n
> > .
= n—lr(n’Qn_l)_ n+1

It is known that! = \/(2n)/(n+ 1) iff there exists an Hadamard matrix of
ordern+1, see e.g.,11]. O

Problem 2.
V(n,Qn—l) = r(ann—l) = \/é_ 0(1)’)
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3.3. The holeB,_1. We havel (n,B,_1) — v/2 by (3). On the other hand,
the following result showg(n,B,_1) — 3/(2v/2). Namely, “rotation” does
help for escaping from the ball hole.

Theorem 6. [10]
(i) For neven,

-1/2
y(n,Bn_l):Z—jz(l+%) :Zi\/é(l—z_];]‘f’%_%"_o(n_ll)).
(i) Letr? be a unique real root of the cubic equation
8(n+1)mX3 + X2+ ayX +-a9 =0,
where
a0 = —(9/256)(n°—1)2(n*—4n®+2n%+ 4n+13),
a; = (1/16)(n?>—1)(2n%—6n°—15n*+38n>+42n? + 4801 —29),
ap = (1/4)(8n°—8n°—41n*—28n*—10n2+ 36n+27).
Then, forn odd,

3 1 3 13
N=2r=_>(1- -4y > =
VnBna) =2r= 25 (1= 50+ 2~ 1o

3.4. Hole having minimum volume. In [5], the following problem is posed.

+0(n%)).

Problem 3. Find the minimum(n — 1)-dimensional volume of a compact
hole in a hyperplane dR" such thatlS, can pass through it.

The following variation seems to be easier.

Problem 4. Find the minimum(n — 1)-dimensional volume of a compact
hole in a hyperplane dR" such thatlS, can pass through it by translation
perpendicular to the hyperplane.

We list possible candidates. Pyf2S, in R"1 so that the vertices are
€1, ...,ens1, Whereg is thei-th standard base ",
Project they/2S, in the direction of
n—1
—
(1,-1,0,...,0).
Then the hole created by the shadow has volume

1 n+1
(n—1)! 2 0

Next suppose thatis odd and writen = 2k + 1. Project the\/2S, in the
direction of




Then the corresponding hole has volume

2
(n—1)1" ®)
Finally suppose that is even and writen = 2k. Project the/2S, in the
direction of ) 1
J’_

(k+1,....k+1,~k,...,—K).
In this case, the volume of the hole is

2 n
(n—1)! \/ n+2 ©)

Among the above examples, the smallest on&)isar n < 5. Forn=7, (7)
and B) coincide. For the other case8) @nd ©) give the smallest one.
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