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1. INTRODUCTION

For a given convex body, find a “small” wall hole through which the
convex body can pass. This type of problems goes back to Zindler [14] in
1920, who considered a convex polytope which can pass through a fairly
small circular holes. A related topic known as Prince Rupert’s problem can
be found in [2]. Here we concentrate on the case when the convex body is
a regular tetrahedron or a regularn-simplex.

For a compact convex bodyK⊂Rn, letdiam(K) andwidth(K) denote the
diameter and width ofK, respectively. Ford > 0 let dK denote the convex
body with diameterd and homothetic toK. Let Sn, Qn, andBn denote
the n-dimensional regular simplex, then-dimensional hypercube, and the
n-dimensional ball, respectively. Thus,1Sn has side length1, 1Qn has side
length1/

√
n, and1Bn has radius1/2.

Let H ⊂ Rn−1 be a convex body, which we will call a hole. LetΠ be
the hyperplane containingH, which dividesRn into Π and two (open) half
spacesΠ+ andΠ−. We want to push1Sn from Π+ to Π− throughH. In
this situation, we are interested in two types of “small” holes, namely,

γ(n,H) := min{d : 1Sn can pass through the hole ofdH in Rn},
and

Γ(n,H) := min{d : 1Sn⊂ (dH)×R}.
Notice thatγ(n,H) andΓ(n,H) do not depend ondiam(H). For givenH, we
resizeH so that1Sn can pass through the holeH. We will try to find a hole
homethetic toK with minimum diameter, which will giveγ or Γ. (Recall
thatdH is homothetic toH anddiam(dH) = d.) By definition,1Sn can pass
through a holeH by translation perpendicular to the hyperplane containing
the hole iffdiam(H)≥ Γ(n,H). Thus we haveγ(n,H)≤ Γ(n,H).

We havewidth(1Qn) = 1/
√

n andwidth(1Bn) = 1. Steinhagen [12] de-
termined the width ofSn as follows.

width(1Sn) =





√
2

n+1 if n is odd,√
2n+2

n(n+2) if n is even.
(1)

If 1Sn can pass through a holedH by translation, then

width(dH)≥ width(1Sn) = (
√

2−o(1))/
√

n. (2)

Let n≥ 3. If 1Sn can pass through a holedH, thend≥width(1S2) =
√

3/2.
This givesγ(n,H)≥√3/2.
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Brandenberg and Theobald [1] proved the following.

Γ(n,Bn−1) =





√
2(n−1)

n+1 if n is odd,
2n−1√
2n(n+1)

if n is even.
(3)

2. IN THE 3-SPACE

Itoh, Tanoue, and Zamfirescu [6] proved

γ(3,Q2) = Γ(3,Q2) = 1, γ(3,B2) = 2r = 0.8956..., (4)

wherer ∈ (0,1) is a unique root of the equation216x6−9x4+38x2−9= 0.
We note thatγ(3,B2) < Γ(3,B2) = 1.

In [9], the following is proved.

γ(3,S2) = Γ(3,S2) =
1+

√
2√

6
= 0.9855...

Zamfirescu [13] proved that most convex bodies can be held by a circular
frame. Using (4), one can show that a square frame of diagonal lengthd
can hold1S3 iff 1/

√
2 < d < 1, and a circular frame of diameterd can hold

1S3 iff 1/
√

2 < d < γ(3,B2), see [6].
On the other hand, it is shown in [9] that

no triangular frame can hold a convex body. (5)

This is a special property for triangular frames, and in fact, we have the
following.

Theorem 1. [9] Every non-triangular frame holds some tetrahedron inR3.

Debrunner and Mani-Levitska [3] proved that any section of a right cylin-
der by a plane contains a congruent copy of the base, see also [7]. This
together with (5) implies the following: if a convex body, not necessarily
smooth, can pass through a triangular hole, then the convex body can pass
through the hole by translation perpendicular to the wall, see [9].

Itoh and Zamfirescu [5] found a holeH ⊂R2 with diam(H)= width(1S2)=√
3/2 andwidth(H) = width(1S3) =

√
2/2, such that1S3 can pass through

H.

3. HIGHER DIMENSIONS

3.1. The holeSn−1. Recall that any plane section of a right triangular prism
contains a congruent copy of a base of the prism [3, 7]. The situation in
higher dimension is different. In [3], it is proved that ifn > 3, then for any
right cylinder with convex polytope base, one can find a hyperplane section
which does not contain a congruent copy of the base. Nevertheless, we have
the following.
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Theorem 2. [9] Let K ⊂ Rn be a compact convex body, and let∆n−1 be a
general(n−1)-simplex. IfK can pass through the hole∆n−1, then this can
be done by translation only.

Problem 1. Is it possible to take the translation in Theorem2 perpendicular
to the wall? Or equivalently, doγ(n,Sn−1) andΓ(n,Sn−1) coincide?

Theorem 3.

γ(n,Sn−1)≥




√
1− 1

n if n is odd,√
1− 1

n+2 if n is even.

Proof. Suppose that1Sn can pass through the hole ofdSn−1. By Theorem2,
this can be done by translation only. Thus we can apply (2) with (1), which
implies the desired inequality. ¤

The above result together withγ(n,Sn−1)≤ Γ(n,Sn−1)≤ 1 gives

lim
n→∞

γ(n,Sn−1) = lim
n→∞

Γ(n,Sn−1) = 1.

If the simplex does pass through a hole, then in particular the volume of
some central hyperplane section of that simplex is no bigger than the vol-
ume of the hole. After the RIMS workshop, Jiřı́ Matoǔsek suggested show-
ing γ(n,Sn−1) → 1 by using this simple observation. He also told us the
information from Keith Ball: it is conjectured that the smallest central hy-
perplane section ofSn is obtained by a hyperplane parallel to a facet of the
simplex. According to Keith Ball’s suggestion, we asked Matthieu Fradelizi
about the volume of central slices of a simplex. Then, Fradelizi told us that
a result in [4] implies that the volume of the smallest central hyperplane
section ofSn is more thanvol(Sn−1)/(2

√
3), and this is enough for proving

γ(n,Sn−1)→ 1.
Since the diameter of circumsphere of1Sn is

√
2(n−1)/n, we have

Γ(n,Sn−1)
√

2(n−1)
n ≥ Γ(n,Bn−1).

This together with (3) implies

Γ(n,Sn−1)≥
√

1− 1
n+1

for nodd. (Forneven, Theorem3gives a better lower bound forΓ(n,Sn−1).)
Actually Sn can pass through a hole smaller than its facet.

Theorem 4. Γ(n,Sn−1) < 1 for all n≥ 2.

Let us try the casen= 3 to get a feel. LetS2 = A0A1A2, A0 =(0,1/2),A1 =
(0,−1/2),A2 = (

√
3/2,0), and letP be the right triangular prism with base
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A0A1A2. We put the unit regular tetrahedronS3 = B0B1B2B3 in the prism,
namely, we set

B0 =(0,1/2,0),B1 =(0,−1/2,0),B2 =(1/
√

2,0,1/2),B3 =(1/
√

2,0,−1/2).

Now we move the tetrahedron very slightly keeping it insideP so that all
vertices are off the faces ofP. This can be done by rotating the tetrahedron
along thex-axis, and push it in the direction ofx-axis. This givesΓ(3,S2) <
1.

3.2. The holeQn−1. In [8] the following is proved: for everyε > 0 there
is anN such that for everyn > N one has

1Sn⊂ (2+ ε)Qn.

This gives

lim
n→∞

Γ(n,Qn−1)≤ 2.

Clearly we haveΓ(n,Qn−1) ≥ Γ(n,Bn−1), and we get a lower bound
for Γ(n,Qn−1) from (3). Here we include a simple proof of the following
slightly weaker bound.

Theorem 5. We have

Γ(n,Qn−1)≥
√

2(n−1)
n+1

, (6)

with equality holding iff there exists an Hadamard matrix of ordern+1.

Proof. Let d = Γ(n,Qn−1). Then1Sn can pass through a hole ofdQn−1 by
translation. So (2) and (1) imply

width(dQn−1) =
d√

n−1
≥ width(1Sn)≥

√
2

n+1
,

which gives (6). Moreover, if1Sn⊂ `Qn, then we have

`≥
√

n√
n−1

Γ(n,Qn−1)≥
√

2n
n+1

.

It is known that̀ =
√

(2n)/(n+1) iff there exists an Hadamard matrix of
ordern+1, see e.g., [11]. ¤

Problem 2.

γ(n,Qn−1) = Γ(n,Qn−1) =
√

2−o(1)?
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3.3. The holeBn−1. We haveΓ(n,Bn−1)→
√

2 by (3). On the other hand,
the following result showsγ(n,Bn−1)→ 3/(2

√
2). Namely, “rotation” does

help for escaping from the ball hole.

Theorem 6. [10]
(i) For n even,

γ(n,Bn−1) =
3

2
√

2

(
1+

1
n

)−1/2

=
3

2
√

2

(
1− 1

2n
+

3
8n2 −

5
16n3 +O(n−4)

)
.

(ii) Let r2 be a unique real root of the cubic equation

8(n+1)n3X3 +a2X2 +a1X +a0 = 0,

where

a0 = −(9/256)(n2−1)2(n4−4n3 +2n2 +4n+13),

a1 = (1/16)(n2−1)(2n6−6n5−15n4 +38n3 +42n2 +48n−29),

a2 = (1/4)(8n6−8n5−41n4−28n3−10n2 +36n+27).

Then, forn odd,

γ(n,Bn−1) = 2r =
3

2
√

2

(
1− 1

2n
+

3
8n2 −

13
16n3 +O(n−4)

)
.

3.4. Hole having minimum volume. In [5], the following problem is posed.

Problem 3. Find the minimum(n− 1)-dimensional volume of a compact
hole in a hyperplane ofRn such that1Sn can pass through it.

The following variation seems to be easier.

Problem 4. Find the minimum(n− 1)-dimensional volume of a compact
hole in a hyperplane ofRn such that1Sn can pass through it by translation
perpendicular to the hyperplane.

We list possible candidates. Put
√

2Sn in Rn+1 so that the vertices are
e1, . . . ,en+1, whereei is thei-th standard base ofRn+1.

Project the
√

2Sn in the direction of

(1,−1,

n−1︷ ︸︸ ︷
0, . . . ,0).

Then the hole created by the shadow has volume

1
(n−1)!

√
n+1

2
. (7)

Next suppose thatn is odd and writen = 2k+1. Project the
√

2Sn in the
direction of

(
k+1︷ ︸︸ ︷

1, . . . ,1,

k+1︷ ︸︸ ︷
−1, . . . ,−1).
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Then the corresponding hole has volume
2

(n−1)!
. (8)

Finally suppose thatn is even and writen = 2k. Project the
√

2Sn in the
direction of

(
k︷ ︸︸ ︷

k+1, . . . ,k+1,

k+1︷ ︸︸ ︷
−k, . . . ,−k).

In this case, the volume of the hole is

2
(n−1)!

√
n

n+2
. (9)

Among the above examples, the smallest one is (7) for n≤ 5. Forn= 7, (7)
and (8) coincide. For the other cases, (8) and (9) give the smallest one.
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