MULTIPLY-INTERSECTING FAMILIES REVISITED
NORIHIDE TOKUSHIGE

ABSTRACT. Motivated by the Frankl’s results in [11] (“Multiply-intersecting families,”
J. Combin. Theory (B) 1991), we consider some problems concerning the maximum
size of multiply-intersecting families with additional conditions. Among other results,

we show the following version of the Hid—Ko—Rado theorem: for all> 8 and1 <t <

2'+1_3r — 1 there exist positive constargsandng such that ifn > ng and| 'ﬁ‘ — 2| < ethen

r-wise t-intersectingk-uniform families onn vertices have size at mostax{ (Ej)(t +
n—t—r n—t—r
N ) + (o) b

1. INTRODUCTION

A family (or hypergraphy¢ c 2I" is calledr-wiset-intersecting if|Gy N --- NG| > t
holds for allGy,...,G, € 4. The aim of this paper is to find largestwiset-intersecting
families with some additional conditions, which extends some of Frankl’s results and his
proof technique developed in [11]. Let us define a typicalise t-intersecting family
% (n,r,t) and itsk-uniform subfamily.%;(n,k,r,t) as follows:

“G(nrt) = {GcCn:|GN[t+ri]| >t+(r—1)i},
Zi(nkrt) = %(n,r,t)m([ﬂ).

An r-wiset-intersecting family is callednon-trivialif | ¥ | <t, whereN¥ := gy G.
Two families?,%’ 2" are said to be isomorphic and denoted$g: ¢’ if there exists
a vertex permutatiom on [n] such that?’ = {{1(g) :g€ G} : Ge ¥}.

Let m(n,k,r,t) be the maximal size ok-uniform r-wise t-intersecting families om
vertices. To determinen(n,k,r,t) is one of the oldest problems in extremal set theory,
which is still widely open. The cage= 2 was observed by Eé—Ko—Rado[6], FranklI[9],
Wilson[34], and therm(n,k, 2,t) = max |.%i(n,k,2,t)| was finally proved by Ahlswede
and Khachatrian[2]. Frankl[8] showed(n,k,r,1) = |%o(n,k,r,1)| if (r —1)n>rk, see
also [20, 27]. Partial results for the cases 3 andt > 2 are found in [12, 14, 29, 30, 31,
32]. All known results suggest

m(n,k,r,t) = max|.Z(n,k,r,t)|
|
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in general, and we will consider the case when the maximum is attaingghloy .%;,. To
state our result let us define a IBbf acceptable parameters as follows.

A = {(rt):r>51<t<2*l_3r_1}
_{(571)’(572)7(573)7(5a4)7(6al>7(672)7(673)v(771)}' (1)

Theorem 1. Let (r,t) € A be fixed. Then there exist positive constants, such that

m(n,k,r,t) = max{|.Zo(n,k,r,t)|, | Z1(nk,rt)|}

holds for alln > ng andk with |§ - %| < €. MoreoverZy(n,k,r,t) and.#1(n,k,r,t) are the

only optimal configurations (up to isomorphism).

We note that|.Zo(n,k,r,t)| = (1) and | Zi(nkrt) = t+1)( ") + (ot r)-
Some computation shows that(ift) € A andr < k thenmax{|-%y|, |#1|} is attained
by

Fo(nkrt) if1<t<2—r—2o0ort=2"-r—21andn>2k—2"+[r/2] +3,
Finkrt) ift>2—r,ort=2"—r—landn<2k—2"+[r/2]+2.

Conjecture 1. Theorem 1 is true for afl > 3 and1 <t < 2'*+1 _3r —1.

Let m*(n,k,r,t) be the maximal size of non-trivi&duniform r-wiset-intersecting fam-
ilies on n vertices. Ahlswede and Khachatrian[1] determimadn,k,2,t) completely,
which included earlier results of Hilton—Milner[21] and FranklI[10]. In [33k-aniform
version of the Brace—Daykin theorem[4] is considerediiioim, k,r > 7,2) andk/n~ 1/2.
To state our result let us define some familieg-@iiform hypergraphs as follows.

Finkrt) = {Zc (V):.7 isr-wiset-intersecting,
Filnkrt) = {Zc ():.7 c 7 forsomeZ’ = .Z(nkrt)},
Yi(nkrt) = Fnkrt)— |J Fj(nkrt).

o<j<i

For fixedn, k,r,t, we clearly havés; C F. We are interested im* = max{|.#|: & € Y°}.

It seems that hypergraphskwith nearly largest size only come from soifag moreover
they are stable in a sense, namelgx{|.Z|: .# € Y1} < (1—y)m* for some fixed constant

y > 0. (See [16, 26] for more about stability type results.) We verify this phenomenon in
the case < 2'*1 —3r —1andk/n~ 1/2.

Theorem 2. Let (r,t) € A be fixed, whereA is defined by (1). Then there exist positive
constantsy, €,ng such that the following (i) and (i) are true for ail> ng andk with
kK_1l<e.

(i) m*(n,k,r,t) = |[Z1(n,k,r,t)].

(i) If Z € Yi(nkr,t) then|.Z| < (1—y)m*(nk,r,t).

The above result immediately implies Theorem 1. We also apply this result to get a
Sperner type inequality. A family c 2" is called a Sperner family & ¢ G’ holds for all
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distinctG,G’ € ¢. Lets(n,r,t) be the maximal size afwiset-intersecting Sperner fami-
lies onnvertices. Milner[25] proved(n,r =2,t) = ([(n+rt])/21)' Frankl[8] and Gronau[17,
18, 19, 20] determines{n,r = 3,t = 1) for n > 53. Gronau[18] also proves(n,r > 4,t =
1) = ([(nrl_l)l/ﬂ) for all n. For sufficiently largen, it was proved thas(n,r > 4,t = 2) =
([(nrl_Z)z/Zl) in [12], s(n,r,t) = ({ n—t ) forr >5and1<t<22log2—1in [29], and

(n—t)/2]
s(n,r = 3,t = 2) was determined in [12, 14]. Using Theorem 2 we prove the following.

Theorem 3. Letr > 7 and1 <t < 2t1_3r — 1. Then there exists, such that

s(n,rt) = | Fo(n,ko,r,t)| if 1<t<20—r—2
T |ﬁ1(n,k17r,t)| if 2r_r_1§t§2r+1—3r—1

for all n > no, whereko € {t+ [%5*],t+ | %' |} andky, =t+r — 1+ [™=5-"]. Moreover
Fo(n,ko,r,t) and.Z1(n,ky,r,t) are the only optimal configurations (up to isomorphism).

Conjecture 2. Theorem 3 is true fof <r < 6 as well.

Due to the results mentioned above [18, 12], the conjecture is true=fat, 2. Our
proof of Theorem 3 is valid for allr,t) € A, and the conjecture is open fart) € {(4,t) :
3<t<19U{(5,3),(5,4),(6,3)}. The conjecture fails far = 3. In fact it is known from
[8, 17, 14] thats(n = 2m,3,1) = (" 1) + 1, s(n = 2m+1,3,2) = ("%) 42 (for n large
enough). The exact value fn, 3,3) is not known, whiles(n = 2m,3,3) > ("-3) + 3,

Finally we introduce a weighted version of Frankl's result in [11], which was a starting
point of this research. Throughout this pageandq= 1— p denote positive real numbers.
For a family% c 2* we define thep-weight of%, denoted bywp(¥ : X), as follows:

IX| _ .
W, g X)) = p|G|q‘X|_‘G| — gm X p'q‘x|_|'
(9= 3 3 [400)

We simply writew,(¢/) for the caseX = [n|.

Letw(n, p,r,t) be the maximap-weight ofr-wiset-intersecting families on vertices,
and letw*(n, p,r,t) be the maximap-weight of non-trivialr-wise t-intersecting families
onn vertices. It might be natural to expect

w(n, p,r,t) = maxwp(%(n,r,t)).
|

Ahlswede and Khachatrian proved that this is truerfer 2 in [3] (cf. [5, 7, 29]). This
includes the Katona theorem[22] abau(in,1/2,2,t). It is shown in [13] that

w(n, p,r,1) = Wp(#(n,r, 1)) = pfor p< (r—1)/r. (@)

Partial results fow*(n, p,r,1) are found in [15, 33], which extend the result of Brace—
Daykin[4]: w*(n,1/2,r,1) = wy5(¢1(n,r,1)). Let us define some families of hypergraphs
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as follows.
G(nrt) = {¥9C 2N s r-wiset-intersecting,
Gj(nrt) = {9 c2:9 c¥ forsomes’ =j(n,rt)},
Xi(nrt) = Gnrt)— |J Gj(nrt).
O<j<i

Now we state the main result in this paper, which will imply Theorem 2.

Theorem 4. Let (r,t) € A be fixed, whereA is defined by (1). Then there exist positive
constantsy, e such that the following (i) and (ii) are true for ail> r +t and p with
Ip—3| <e.

(i) wi(n,p,r,t) =wp(%1(n,r,t)).

(i) If 9 € X(n,rt) thenwp(¥) < (1—y)w*(n, p,r,t).

In [15] it is shown by construction that*(n, p,5,1) > wp(%1(n,5,1)) for all 1/2 <
p < (14++/21)/10. Theorem 4 could be true for all> 5 with only exceptiorr =5 and
t =1, and the same extension could be expected for Theorem 2. The upper botund for
set by (1) in Theorem 4 (and also Theorems 2 and 3) is best possible. In fact we have
Wp(%a(n,1,1)) > Wp(“1(n,r,t)) for t > 2+1 —3r, see Lemma 2 in the next section. We
emphasize that Frankl has already got a special case of (i) of Theorem 4 in [11] (Theo-
rem 6.4), where he proved

W (n,1/2,r,t) = wyp(%1(n,rt)) forr >5andl <t <2' —r -1 (3)
Our proof of (i) is based on his idea, but changing the weight fig@ito p is not straight-

forward. As we mentioned above, (3) is no longer true if we repla@awith 1/2 + € for
the case = 5 andt = 1. One of the main reasons comes from the fact

w*(n,1/2,3,2) < 0.773(1/2)%,
which Frankl used as a base case for his proof of (3), while in our case we only have
lim w*(n, p,3,2) = p?

N—oo

for p=1/2+¢, see [12]. We will use results from [12, 29, 32] for our base case, which
givew(n, p,r,t) forr = 4,5, see Lemma 5. Theorem 4 implies the following immediately.

Theorem 5. Let (r,t) € A be fixed. Then there exists positive constastich that
w(n, p,r,t) = max{wp(%(n,r,t)), wp(%1(n,r,t))}

holds for alln > r +t andp with |p— 3| < €. Moreovergy(n,r,t) and%(n,r,t) are the
only optimal configurations (up to isomorphism).

Comparingwp(%1) andwp(%>) (see Lemma 1 in the next section), we find that,if) ¢
Athenmax{wp(¥1), wp(¥2)} is attained by
Dnrt) f1<t<2'—r—20ort=2"—-r—1landp<1/2
g(nrt) ift>2"—r,ort=2"—-r—landp>1/2
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In Theorems 1 and 5, we focused on the case when the rangéor pis aroundl/2.
We can extend this range for the case 2" —r — 1 as follows.

Theorem 6. Let (r,t) € A andt < 2" —r —1. Then for alle > 0 there exist positive
constantsy,ng such thatm*(n,k,r,t) < (1—y)(_t) holds for alln > ng andk with X <
% — €. In particular, we haven(n,k,rt) = (Ej) and %o(n,k,r,t) is the only optimal
family (up to isomorphism).

Theorem 7. Let (r,t) € A andt <2'—r —1. Then for alle > O there exists positive
constanty such thaw*(n, p,r,t) < (1—y)p' holds for alln >t andp with p < %— €.
In particular, we havev(n, p,r,t) = pt, and%y(n,r,t) is the only optimal family (up to
isomorphism).

As the reader might expeat(n,k,r,t)/(;) andw(n, p,r,t) are closely related when
p ~ k/n. This was observed by Dinur and Safra in [7] for the case2. See also [29] for
more general setting. We will fully use this relation to prove our results.

In Section 2, we prepare some tools for the proofs. We prove Theorem 4 in Section 3.
In the last section, we prove the other theorems in the following implication.

Theorem 3« Theorem 2< Theorem 4= Theorem 6= Theorem 7

2. TooLs

2.1. Some inequalities. To find w(n, p,r,t) we need to knownax wp(% (n,r,t)). So let
us start with comparingvp(%o(n,r,t)) = pt andwp(%(n,r,t)) = (t +r)p+—1g+ p.
Then we havevy(%) > wp(%) iff t < (pt~"— p)/g—r =: f(p). We note thatf (1/2) =
2' —r—1, andf(p) is decreasing iflL — gr — p" < 0 (and this is so fop=1/2 andr > 2).
Thus we have the following.

Lemma 1. For everyr > 2 there existg > 0 such thatwy(4p(n,r,t)) > wp(¢41(n,r,t))

holds forp € (1/2—¢,1/2] iff 1 <t < 2" —r —1, andwp(“%(n,r,t)) > Wp(41(n,r1,t))
holds forp € (1/2,1/2+¢€) iff 1<t <2 —r—2.

Lemma 2. For everyr > 3 there exists > 0 such thatwy(41(n,r,t)) > wp(42(n,r,t))
holds for allp with |p—1/2| < g iff 1 <t <2+1-3r — 1.

Proof. Sincewp(%) is a continuous function gb (for fixed ¢), it is sufficient to show the
casep=1/2. So setp=1/2 and let¥; = % (n,r,t) and% = %(n,r,t). First we note
thatwp(%1) > wp(942) iff Wp(%1\ %2) > wp(¥42\%1), and

N\% = {GCn:t+r]CcG,|GNt+r+1Lt+2r)|<r—2}
u{Gcin:|GNft+r]|=t+r—1|GNt+r+1t+2r]| <r—1},
D\ = {GcCn:|GN[t+r]|=t+r—2[t+r+1t+2r] C G}.
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Then we have

W%\ %) = P (35 () +t+n 35 ()
= pPr(t+r+1)2 -1-1-(y)
Wp(%\%) = Pt ().

Thus we havevy(41) = Wp(%) iff f(t):= (t+r+1)(2'—1-r)— (%) — (*3') =0, and this

quadratic equation dfhas only one positive root. We ha#€2'+% —3r —1) = 2" —r2/2—

r/2—1>0andf(2+1—3r) = —(r> —r +2)/2 < 0, which completes the proof. [
Similarly one can prove the following.

Lemma 3. Let j = 3,4. For everyr > j+ 2 there existg > 0 such thatvp(%j_1(n,r,t)) >
Wp(¥;(n,r,t)) holds for allp with |p—1/2| < € iff 1 <t < j(2"—2r4+1)+r—3.

Throughout this paper, let, , € (p,1) be the root of the equatiod = p+gX". We
write a; omitting p for the casep = 1/2. For later use, we record the numerical datg=
(vV5—1)/2~0.618 a4 ~ 0.543689 a5 ~ 0.51879 ag ~ 0.50866 a7 ~ 0.504138 We
listinequalities abouw(n, p,r,t) below, which will be used to prove Theorem 4. Lemma 6
follows from Lemma 4 and Lemma 5.

Lemma 4 ([33]). Letp,r,to,C be fixed constants. Suppose théh, p,r,tg) = ¢ holds for
alln>tg. Then we haveu(n, p,r,t) < cay pto for allt > tg andn > t.

Lemma 5 ([12, 29, 32]) Letr=3 and1l <t <2, orr=4andl <t <7,orr =5 and
1 <t <18 Then there exists > 0 such thatv(n, p,r,t) = p' holds for alln >t andp
with |p— 3| < €.

Lemma6. Lets> 2 andt > 7. Then there exists > 0 such that

2

w(n, p,3,s) < pPa3 > andw(n, p,4,t) < p’ay ]

hold for alin > s (resp.n > t) andp with |p— %| <E.

We will use Lemma 8 in our main reduction step to prove Theorem 4, see Claim 9.
To prove Lemma 8 we need the following lemma, which is essentially proved in [11], cf.
Proposition 2.8 and 7.7 of [11].

Lemma 7. We have (i)2a;)? " < 8 forr > 8, and (ii)1/(20;) < 1— (1/2)".

Proof. Recall thata, is the unique root of (x) = 0in (1/2,1), wheref (x) = X" — 2x+ 1.
We note thatf (1/2) > 0andf(1) = 0.

(i) is equivalent t®2a, < 8°, whereb = 1/2"+1. It is sufficient to showf (8°/2) < 0. We
usebr =r/2"+1 < 8/29 = 1/64, 2 x 81/%4 < 2.07 < log8, and8® = €"'°98 > 1+ blog8.
Then we have8P/2)" = 8% /2" < 81/64/2" < (log8)/2"*1 = blog8 < 8° — 1, as desired.

(ii) is equivalent toa, > B :=2""1/(2" — 1). Itis sufficient to showf (3) > 0, and this
follows from " = (3(;21))" = 3 (2) > 3 (%) = 5 =281 0
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Lemma 8. Letr > 9,t, =2"*1 —3r — 1 andp = 1/2. Then we have

Wp(#a(n,r = Lt 1)o7 < wp(@ (1) (4)
fort,_1 <t <t,, wherewp(%1(n,a,b)) = (a+b+ 1) p3*P.

Proof. Seta = a,_1,t =t, —i and we prove (4) by inductionan0 <i <t, —t;_; =2"-3.
First we show the case=0, i.e.,t =t;. In this case (4) is
(2" —2r +2) pzf—2r+1azr < (2r+1 —2r) p2f+1—2r—1
or equivalently,
o < 2r+1—2r p2r72
2 —2r+2

The RHS is more tha@p? ~2 = 8p?, and so it is sufficient to show? < 8p?, i.e.,
(20{r_1)2r < 8, which is true for > 9 by Lemma 7 (i).
To show the induction step, we assume that (4) is true, thiat is,

R(2a)? 1 < 2+t —2r i,
whereR = (2" — 2r +2) /4. Then, for the case+ 1, we have
R(2a)? ~1+Y) = R(2a)? 7 /(2a) < (2"t —2r —i)/(20).
We have to show that the RHS is less tan! — 2r — (i + 1), that is,

1<1_ 1
20 2+l 2r —i
By Lemma 7 (ii) and < 2" — 3 we have
1 1 1 1
1-——<1- o [ —
dap g o XISl _(r—3) - H_or|

as desired. O
We use Lemmas 9 and 10 to prove Theorems 4 and 7 respectively.

a

Lemma 9. w*(n, p,r,t) <w‘(n,p,r —1,t+1).

Proof. If 4 € XO(n,r,t) then? € X°(n,r —1,t +1). Infact, if 4 is not(r — 1)-wise (t 4 1)-
intersecting, then we can firf@y,...,G,_1 € 4 such thatG;N---NG;_1| =t. But¥ is
r-wiset-intersecting and so evefy € ¢ must contairG, N --- N Gy_1, which contradicts
the fact that? is non-trivial. O

Lemma 10. w*(n+1, p,r,t) > w*(n, p,r,t).

Proof. Choose? € XO(n,r,t) with wp(%) = w*(n, p,r,t). Then we haves’ := % U {GU
{n+1}:Ge 9} e XOn+1,r,t) andwp(¥’ : [n+1]) =wp(¥ : [n))(q+ p) = w*(n, p,T,t),
which meansv*(n+1, p,r,t) > w"(n, p,r,t). O
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2.2. Shifting and shadow. For integersl < i < j < nand a family% c 2", we define
the (i, j)-shift gj; as follows:

0ij(¢) ={aij(G) : Ge ¥},
where

otherwise.

(@)~ { (STUNVE 126 1<6 (G- {inuti £7.

A family ¢ c 2" is calledshiftedif ij(¥) =% forall 1<i< j <n, and¥ is called
tameif it is shifted and\ ¥ = 0. If ¢ is r-wiset-intersecting, then so igi; (¢). Note also
thatwp(¥) = wp(aij (¢)), namely, shifting operations keep theveight.

Lemma 11. Let¥ c 2" be a non-triviak -wiset-intersecting family with maximap-
weight. Then we can find a tamewiset-intersecting familys’ < 2" with wyp(4') =
Wp(9).

Proof. If ¢ € X%(n,r,t) then® € X%(n,r — 1,t + 1) (see Lemma 9). We apply all possible
shifting operations t¢/ to get a shifted familyg’ € X°(n,r — 1,t + 1) with the samep-
weight.

We have to show thgf)%’ = 0. Otherwise we may assume thhe N¥’ andH =
[2,n] € ¢4'. Since¥’ is p-weight maximal we can fins,...,G;_1 € 4’ such thaiGy N
---NGr_1NH| <t. Then we havéGyN---NG;_1| < t+ 1, which is a contradiction. [J

To prove Theorems 2, 3 and 6, we will use some basic facts about shadow. For a family
¢ 2" and a positive integef < n, let us define thé-th lower shadow o/, denoted by
0(9), as follows:

M) ={Fe("):Fc3acew).
Similarly, the/-th upper shadow o¥ is defined by1,(¥4) = {H € ([Q]) 'H>3Ge¥}.
We define the complement family &f c 2" by ¢¢:= {[n] — G : G € ¥}. We note that
0,(94) = (An_¢(¥°)) and s0o|Ty(9)| = |An_¢(9°)].
Lemma 12. LetO < a< b andd # %, C ([2}) Then we have

O6(%a)l - ()

el T ()

Moreover ifa+b < n then we havép(4a)| > |%al.

Proof. Choose a real < nso tha|%,| = (,,*,,). By the Kruskal-Katona Theorem[24, 23],

we have|Up(%a)| = [Bn-b(%5)| > (%), and|Do(%a)l/1%l > (,%)/ () = (6)/ Q).
where we used < n in the last inequality. la+b < nthen(})/(3) > 1 and the result
follows.

Lemma 13. Let.«7, % 2"l be Sperner families, and let- 1 be a real. Suppose that
o NN(B) =0, 5)
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whereA(#) = {C:C C 3B € #}. Then we have

cl | +[%] < c(n)2) + ((ny2) 1)
with equality holding iffe/ = () and# = (|, & ).
Proof. First suppose that is odd and leh = 2m+ 1. Then by the Sperner theorem[28],
</ and % have size at mogt,",) = (i), which gives the desired upper bound. Possible
optimal configurations for7 , % are(ngﬂl) and(ﬂ). Only the case? = (nﬂl) and% =
([rﬂ) satisfies (5).
Next suppose that is even and leh = 2m. Seta; = |« N ()|, b = |21 ()| and
X; = cg + bj. Using the Yamamoto[35] (or LYM) inequality, we have
X g bi
T =CY v+ ) v < C+ 1,
2072020

and
X Xm

2. W=ty

By (5) we haveay+ by < (1), and

(6)

Xm = Cam-+ bm < c(am+bm) < c(17)- (7)

Consequently we have

IZXa = Xm+i;mxi < Xm+ (mil)i;m(T)
< Xt <mil>(c+1—(XT:)) = (c+1)(mr_]1)+mxrl

< e, )= (0) = o0 ()

which is the desired inequality. For the equality, we ne@gh- bm = c(am+bm) = (/) in
(7), which impliesby, = 0 andam = (7). Sincey;ai/(}) < 1, we havesy =0if i #m, i.e.,
o = (). By (5) we haveb; = 0if i >m, andc|.«/| +|%| = c() + (") implies|#| =
Siembi = (,," 1) We also need equality in (6), which givEsbi/(}) = 1. Consequently
we have(";) = Sicmbi < (in"1) Ticmbi/ () = ("), and sobm-1 = (;,";), namely
B = ( ] ). O

m-1

3. PROOF OFTHEOREM4

First we show (i). Let(r,t) € A and let¥ c 2I" be a non-trivialr-wiset-intersecting
family with maximal p-weight. By Lemma 11 we may assume thats tame, namely, it
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is shifted and\¥ = 0. If 4 € G1(n,r,t) then there is nothing to prove. Thus we assume
that® < X1(n,r,t) and we will show that there exigte > 0 such that

Wp(¥4) < (1= y)wp(“1(n,r,t)) (8)

holds for alln > r 4+t andp with |p—1/2| < €. If 4 € X} — X% = G, UG3U G4 then (8)
follows from Lemmas 2 and 3. Thus we may assumehatX4(n,r,t). LetWw*(n, p,r,t)
be the maximap-weight of tame families ixX#(n,r,t). Then it suffices to show

Wp(¥) =W (n, p,r,t) < (1-y)wp(#1(n,rt)). 9)

Recall thatwy(#1(n,r,t)) = (t+1)p*" g+ p'*" and letw := wy p((n,1t)) = (t+
r+1)(1/2)'*". The following simple observation is useful.

Claim 1. Suppose thatip(¥) < f(p) holds for some continuous functiditp), and sup-
pose thatf (1/2) < w. Then there exisg, & > 0 such thatvy(¥4) < (1— y)wp(¥41(n,r,t))
forall |p—1/2| < e.

Lett) = max{j : 4 isi-wise j-intersecting, and lets =t("~Y. Since¥ is p-weight
maximal we have(") =t. Due to% € X°(n,r,t) we havet < sand

Wp(g) S V\fk(na par - 17 S) S W(n7 p7 r— 1> S)' (10)

After [11] leth:=min{i : |GN[t+i]| > tforall G € ¢4}. This is the maximum size of
“holes” in [t +h.

Claim2. 1<h<s-—t.

Proof. Since¥ is non-trivial, we havén > 1. By the definition ofs and the shiftedness of

¢, we haveGy,...,G,_1 € ¢ such thaGiN---NG,_1 = [g. Then it follows fromt(") =t

that|[g NG| >t forall G € 4, namelyt+h<s. O
Letb=t+h—1and letT = [b+ 1 —1i,b] be the right-most-set in[b]. ForA C [b] let

G(A) ={GN[b+1,n:Ge ¥, [0]\G=Al.
Since¥ is shifted, we have?(A) c #(T;) for all A € (), and thus we have

Z) PP~ g wp(¢4(Ti) : [b+1,n]). (11)

Claim3. ForO<i<hand2<j<r,¥4(T)isj-wise(ij + (r —1— j)h+1)-intersecting.

Proof. Suppose tha¥ (T;) is not j-wise v-intersecting, where@ =ij + (r —1— j)h+ 1.
Then we can findsy,...,Gj € 4(T;) such thaiGyN---NGj| < v. Since¥ is shifted, we
may assume tha1N---NGj C [b+1,b+v—1]. By shifting (G, U [b]) — Ti € ¢, we get
G, :=(G,Ulb]) —[b+1+ (¢ —-1)i,b+li]cZforl<L< .

By the definition ofh we have soméd € ¢4 such that|H N [b]| <t and due to the
shiftedness o we may assume th&t = [n] — [t,b]. By shiftingH, we getG) := [n] —
b+ij+1+(—1—j)hb+ij+ (£ —j)h € ¥ for j <¢<r. Then we hav&siN---N
G,_,NH = [t — 1], which contradicts the-wiset-intersecting property o¥. OJ
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Claim 4. ¢4(Ty) isr-wise((r — 1)h+ 1)-intersecting, and i& ¢ “%(n,r,t) then? (Ty,) is
(r —1)-wise((r — 1)h+ 2)-intersecting.

Proof. First suppose thaf (Ty) is notr-wisev-intersecting, wherg = (r —1)h+ 1. Then
we can findGy,...,G; € 4(Ty) such thatGiN--- NG, C [b+1,b+v—1]. By shifting
(GeUb)) —Th € 4 we getG), ;= (GyU[b]) —t+ ({—1ht+¢h—1eGforl</i<r.
Then we havéG) N---NG;| < t, a contradiction.

Next suppose tha¥(Ty) is not (r — 1)-wise w-intersecting, wherev = (r —1)h+ 2.
Then we can findy,...,G,_1 € 4(T,) such thaGiN---NG;_1 C [b+1,b+w—1]. By
shifting (G, U [b]) — Th € ¢ we getG, := (G, U [b]) — [t + ({ —1)h,t +¢h—1] € & for
1</?¢<r. Since¥ ¢ % (n,r,t) we haveG, := [n|—[t+ (r —1)h,t +rh] € 4. Then we
have|GiN---NG| <t. O

Now we explain the outline of our proof for (9) (cf. Claims 5-9). sIfs large then
(9) follows from (10). Thus we may assunsas small, actually we will find that we
may assuma <t +4. Then we havel < h < 4 by Claim 2 and we can apply Claim 4
since? e X4(n,r,t). Using Claims 3 and 4 we define an upper bound funajidiip) for
Wp(%(T)) : [b+1,n]) by

(i) J min{w(n’,p,r —1,t"),w(n', p,r —2,t")} ifO<i<h
g7 (p) = min{w(n’, p,r, (r —1)h+1),w(n’,p,r —1,(r—1)h+2)} ifi=h,

wheren’ =n—b,t' = (r —1)i + 1 andt” = (r — 2)i + h+ 1. We will find continuous func-
tions () such thag® (p) < 10 (p) and3 4 (°) p°'d' fV(1/2) < w. Then this together
with (11) and Claim 1 will give (9). We will apply Claim 1 several times with different
(), and oure > 0 will be chosen sufficiently small to get through all the cases.

Letty :=2"*1—3r - 1.

Claim 5. Letr =5 and5 <t <t5 = 48. Then we have (9).

Proof. We show that (9) holds § >t + 5, and then we proceed the casewise analysis for
the cases<t+4,ie,1<h<4

First suppose tha =t¥ < 7. Sinces>t we havet < 6. By (10) and Lemma 5 it
follows wp(¥¢) <w(n, p,4,s) = p®°. To apply Claim 1 ad (p) = p°, we note thaf1/2)° <
w holds iff 21=5t°> < t + 6. This is true ift < 6 ands >t + 3, and we are done in this case.
Thus for the case< 6 we may assume that<t+ 2, i.e.,1 <h <2 by Claim 2.

Next suppose that> 8. By (10) and Lemma 6 we hawve, () <w(n, p,4,s) < p7aj;)7.
If s>t+5then the RHS is less thanat p=1/2for 1 <t <50. Thus we may assume
thats<t+4 and sol < h <4 by Claim 2.

Case 5-1.h = 1. We find that¥(To) is (r — 2)-wise 2-intersecting by Claim 3, and
4(Tq) is (r — 1)-wise (r + 1)-intersecting by Claim 4. Thew,(¥4(To) : [b+1,n]) < p?
andwy(4(Ty) : [b+1,n]) < p"** follow from Lemma 5. Thus using (11) we have

wp(4) < p'-p+tpig-ptY (12)
and the RHS is less thanatp=1/2fort > 2"~ —2r — 2. Then Claim 1 gives (9).



12 NORIHIDE TOKUSHIGE

Case 5-2h = 2. Since¥(To) is 3-wise 3-intersecting?(T;) is 4-wise 5-intersecting,
and¥(T,) is 4-wise 10-intersecting, we have
wp(9) < pHt-pPagp+ (t+1)plg- p°+ (5 pte?- plad

and the RHS is lessthanatp=1/2for 1 <t < 54.
Case 5-3h = 3. Since¥(To) is 3-wise 4-intersecting¥(T;) is 3-wise 7-intersecting,
9 (T,) is 4-wise 9-intersecting, ard(Ts) is 5-wise 13-intersecting, we have

wp(9) < pH2-pag  + (t+2)p - p?ag , + ('5) p'o? - plag o+ (7)1 ptd,

and the RHS is lessthanatp=1/2for 1 <t < 49,

Case 5-4h = 4. Since¥(To) is 3-wise 5-intersecting?(T;) is 3-wise 8-intersecting,
9 (T,) is 4-wise 9-intersecting?(T3) is 4-wise 13-intersecting, ard(T,) is 5-wise 17-
intersecting, we have

Wp(g) < pt+3‘p2033p (+3)pt+2q‘p203§p (t+3)pt+1q pC(2
(t+3)pq pa4p (t+3)p q p,

and the RHS is less thanatp=1/2for 1 <t <57. O
We note that similarly to Lemma 9 we have

Claim 6. Letr =6 and4 <t <tg =109 Then we have (9).
Proof. If 5 <t+ 1 <ts = 48then using (13) with Claim 5 we have

Vvk(na P; 67t) < Vv(na P, 57t + 1) < (1_ V)Wp<%1<na 57t + 1)) = (1_ V)Wp(gl(na 67t))
Thus we may assume that t + 1 > 49. By (10) and Lemma 4 with Claim 5 we have

Wp(%) < w(n,p,5,5) < Wp(#1(n,5,48))ag *°.
If s>t+4thenthe RHS is less thanatp=1/2fort < 124 Thus we may assume that
s<t+3andl<h<3.

Case 6-1h = 1. Same as Case 5-1. (We need (12)tforts. This is true in general for
r > 6. In fact we have (12) for> 21 —2r —2andt,_; > 2"t —2r—2)

Case 6-2.h = 2. Since¥(Tp) is (r — 2)-wise 3-intersecting(Ty) is (r — 2)-wise
(r +1)-intersecting, an/(T) is (r — 1)-wise (2r)-intersecting, we have

Wp(#) < P pP o (t+ 1)p'g- pr o+ () p e p, (14)
and the RHS is less thanatp = 1/2fort,_; <t < 2'+1,

Case 6-3.h = 3. Since¥(Tp) is (r — 2)-wise 4-intersecting(Ty) is (r — 2)-wise
(r + 2)-intersecting,¥(Ty) is (r — 2)-wise (2r)-intersecting, and/(T3) is (r — 1)-wise
(3r — 1)-intersecting, we have

wp(9) < pH2- p*+ (t+2)p g plagp+ (B0 ple?- plag  + (57 PR pt, (15)

and the RHS is less thanatp=1/2fort,_; <t <21, O



MULTIPLY-INTERSECTING FAMILIES REVISITED 13

Claim 7. Letr =7 and2 <t <t; = 234. Then we have (9).

Proof. The case = 2 was proved in [33]. Using (13) with Claim 6 we have (9) for
4 <t+1<109 Thus we may assume th&et t+ 1 > 110 and we have

If s>t+4thenthe RHS is less thanatp=1/2fort < 278 Thus we may assume that
s<t+3andl < h<3. Then we repeat the casewise check as in Claim 6. In this case we
can replace (15) with the following:

Wp(%) < pt+2~ p4+ (t +2) p”lq- pr+2+ (t;Z) ptqz, p2r + (t;Z) pt‘1q3~ p3r—1.

Similarly we can prove the following.

Claim 8. Letr =8 andl <t <tg = 487. Then we have (9).
Finally we are ready to prove the general case9.

Claim 9. Letr > 9 andl <t <t,. Then we have (9).

Proof. We prove the result by induction an We have (9) foll <t+1 <t,_4 using (13)
with our induction hypothesis far— 1. Thus we may assume that-t+1 > t;,_1, and

we have
Wp(g) < W(nv p,r— 17 S) < Wp<gl<n7 r— 17tr—1))ars:§:})1-
If s>t+43thenthe RHS is lessthanatp=1/2fort,_; <t <t, by Lemma 8. Thus we
may assume that<t+2andl<h<2
Case 9-1h=1. Same as Case 5-1.
Case 9-2h = 2. We use the same estimation as in Case 6-2. Then the RHS of (14) is

less tharw at p=1/2 iff
(a—b)/2<t < (a+Db)/2, (16)

wherea=3-2"—-1,b= \/1+ 221+3 4 (8r +3)2' 1. Sincet;_; <t <t;, we have (16). [

This completes the proof of (i) of the theorem. Moreover we have proved the inequality
(8) if ¢ is tame and/ € X1(n,r,t).

Next we show (ii). We include the proof of this part from [33] for self-completeness. Set
G =4 (n,r,1). Let® c 2" be a (not necessarily shifted) non-trivialiset-intersecting
family, and suppose tha# ¢ X(n,r,t). By Lemma 11 we can find a tanrewise t-
intersecting family* with wp(¢*) = wp(¥). If ¥* ¢ ¢4 then we have already shown
thatwp(94*) < (1—y)wp(%41). Thus we may assume th&t' C ¢, and in particular (by
renaming the starting family if necessary) we may assume4hat oyy(¢) C %1, where
X=t+r,y=x+1. We note thaf[x NG| > x—2for all G € 4. Moreover if| X NG| =x—2
thenGN{x,y} = {y; and(G—{y}) U{x} ¢¥.

Foriec [x set9(i)={Ge¥:[y]\G=/{i}}, and forj € [x—1] andz € {x,y} let
() ={Ge 9 :y|\G={j,z}}. Sinceoy(¥) C 41 we have4(j)N%/(j) =0and so
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Wp(%(1)) +Wp(%(])) < P17, Setd(0) = {Ge ¥ : [ C G}, %y={G€¥:GNy =
[x— 1]} and lete = min;c [, Wp(¥(i)). Then we have

Wp(¥) = ZHWp(%)H[Z ](Wp(%x<i))+wp(%(j>))+Wp<%(0))+wp(%xy) (17)
i€[x jex—1

< e+ (x—1)pg+ (x—1)p P+ p+ pig? = e+ (n—1)p*g, (18)

wheren = %+ %. Note thate < p*g, and (18) coincidesvp(¢1) = np’q iff e = p*q.
If there is somej € [x— 1] such that%(j) U%(j) = 0, then by (17) we gewp(¥) <
Wp(%1) — P 1% = (1—a/(np))wp(%), and we are done. Thus we may assume that

() U%()) #0forall j € [x—1]. (19)

To provewp(¥¢) < (1—y)wp(¢4) by contradiction, let us assume that for gny 0 and
anyng there is soma > ng such that

Wp(4) > (1—y)Wp(%1) = (1—y)npa. (20)

By (18) and (20) we have> (1—yn)p*qg. This means, letting#’ (i) = {G\[y] : Ge ¥ (i)}
andY = [y+1,n],

Wp((i) 1Y) only misses at mogt p-weight for alli € [x]. (21)

Since¥ € X(n,r,t) both Ujex—1%(1) andUjeix—1%(i) are non-empty. Using this
with (19), we can choos8 € %(j) andG' € 4,(j’) with j # j’, say,j =x—1, ] =x—2.
LetL = [r — 2] and.7Z* =, -7 (¢). Then by (21) we have

Wp(H* 1Y) > 1—(r—2)yn. (22)

If s#* C 2" is not(r — 2)-wise 1-intersecting, then we can firtdy, € 7 for ¢ € L so that
Hin---NH;_2=0. SettingG, := ([y] — {¢})UH; € ¢ we havgG1N---NG,_2NGNG| =

t — 1, which contradicts the-wiset-intersecting property o¥. Thus.Z* is (r — 2)-wise
1-intersecting anwvp (27 1Y) < pby (2). But this contradicts (22) because we can choose
y so smallthap < 1—(r—2)yn. O

4. APPLICATION

4.1. Proof of Theorem 2. We deduce (ii) from Theorem 4, then (i) follows from (ii). We
include the proof of this part from [33] for self-completeness. Assuming the negation of
Theorem 2 for some fixed,t) € A, we will construct a counterexample to Theorem 4 (ii).
For realdd < b < awe writea=+ b to mean the open intervéh— b,a+ b) andn(a+b)
meang (a—b)n, (a+b)n) NN. FiX yo := Yrhma andep := Ernma from Theorem 4. For fixed
r andt we note thaff (p) :=w*(n, p,r,t) = (t+r)p™"~1g+ p*" is a uniformly continuous
function ofpon3 £ eo. Lety=% =2 andl = +¢.
Chooset; « € so that

(1-3y)f(p) > (1-4y)f(p+9) (23)
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holds for allp € | and all0 < ¢ < &;. Choosen; so that
Z (1) Po(L—po)™" > (1—3y)/(1—2y) (24)
i€

holds for alln > ny and allpg € I := %i 3—2? whereJ = n(pp + £1). Choosen, so that

(1=y)|7a(nkrt)| > (1-2y)f(k/n) (i) (25)
holds for alln > np andk with k/n € |. Finally setnp = max{nz,n}.

Suppose that Theorem 2 fails. Then for our choicey,@&f andng, we can find some
n,kand.Z € Yi(nkrt) with |.#| > (1—y)|.Z1(n,k,r1,t)|, wheren > ng and'ﬁ‘ el. We
fix n,k and.Z, and letp = X. By (25) we have.Z| > c(})), wherec = (1 - 2y)f(p).
Let¥ = Uk<i<n(0i(.:#)) be the collection of all upper shadows.&f, which belongs to
X1(n,rt). Let po= p+ &1 € lo.

Claim 10. |Ti(#)| > ¢(]) fori € J.

Proof. Choose a reat < nso thatc(E) = (,,%})- SincelZ| > c(}) = (,,*,) the Kruskal—

Katona Theorem implies th@lfli (% )| > (). Thus it suffices to show thdt* ) > c(7),
or equivalently,

> . 26

AR =

Sincei € J we havei > n(po— €1) = np=k, and (26) is equivalent to--- (k+ 1) >

(X—n+i)---(X—n+k+ 1), which follows fromx < n. O
By the claim we have

Wpo(4) >'S |Oi( (1—po)" " >c (M) ph(1—po)™ . 27

po (¢ Z| )| po(L— po) I;(.)po( Po) (27)

Using (24) and (23), the RHS of (27) is more than

c(1-3y)/(1-2y)=(1-3y)f(p) > (1—-4y)f(p+é&1) = (1Y) f(Po).

This meanswp,(¥) > (1— yo)w*(n po,r,t), which contradicts Theorem 4 (ii) because
poclo=2+3%=1430clig O
4.2. Proof of Theorem 3. For the cases= 1,2, it follows from [18, 12] thats(n,r,t) <
s(n,4,t) < |.Zo(n,ko,r,t)| with the only optimal family.%o(n, ko, r,t). So we may assume
thatt > 3, though our proof will be valid for al(r,t) € A. We are going to prove

s(n,r,t) = max{|-Zo(n,ko,r,t)|,|-Z1(n, kg, r,1)|}.
Let% c 21 be arr-wiset-intersecting Sperner family with maximal size|{%| > t, say
tlcNY, then%’ {G [t]: [t] C Ge ¢} is Sperner, and by the Sperner theorem we have
9] = 19| < (1"} /21) = | Pol with equality holdingiffeg” = (/1 "5%) or (1747 ), that
is,9 = Zp(n, ko rt).

So we assume thaf)¥¢| < t. Let
u¥@)=maxi:|GN[i+1]| >iforall Ge ¥}.
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For a permutatiormr on [n] let 7(¥) = {1(G) : G € ¥}, and defindi(¥) = max u(1(¥)),
where the max is taken over all possible vertex permutations. We further assume that this
max is attained when is the identity, that is{i(¢) = u(¥¢). Setx =t +r.
First suppose thali(¥) > x—1, i.e,[GN[x]| > x—1forall Ge ¥. Foric [x let
G(i)={GNx+1nl:igGe¥},andlet¥y(0) = {GN[x+1n|:[x C Ge¥}. Choose
ip such that¥ (ig)| = max |4(i)|. Then we havé¥?| < x|¥(io)|+ |4 (0)|. Seter =Y (ip),
% =4 (D), where both andZ are Sperner i2*+1". Moreover we haves NA(2) = 0.
Thus by Lemma 13 we have

n—x n—x
91 <167 +121 <X{ [y )+ (e ) = B,
bl 71 -1
with equality holding iff¢ = .%1(n,ky,r,t). This completes the proof for the ca%gs) >
x—1
From now on we assume thaf¥) < x— 1. We will show that

] < (1~ 3)max{| Fo|. |71}
for someé > 0. Let¥, =¥ n ([;ﬂ) andL = {/:9, # 0}.
Claim 11. L c [[3],n].

Proof. Let a andb be the least and second least elemerit odspectively, and let? =

(Y —4,) U0p(%). Then? is r-wiset-intersecting Sperner. H+ b < n then we have

|Op(%a)| > |4 by Lemma 12, which means#’| > |¢|. Thus we may assumig N

0, [5] —1]| < 1. If this number is one, then we repeat the same exchange operation for

a=minL andb= |5|. Consequently. C [| 5|, n] follows from the maximality of/. [
Chooses > 0from Theorem 2 and set=min (LN[[ 3], (3 +€)n)). We choose a vertex

permutatiorp so thatli(¥4,) = u(p(%a)). Sincel(¥) < x—1we still haveu(p(¥¢)) < x—1.

We rearrange the vertex set so tjpais the identity. For a regb € (0,1), let f1(p) = p',

fo(p) = xpL(1— p) + p*and f(p) = max{ f1(p), f2(p)}. We note that

max{|Fo(n, ko, UL, [ Z2(n kU1 = (F(2)+0(1)(,7)- (28)
Claim 12. There exist€ > 0 such that¥,| < (1—2&)f(2)(}).

Proof. First suppose tha#, is trivial and[t] C G for all G € ¥4,. Since¥ is non-trivial
we can findH € ¢ such that[t] "H| <t. Thus¥, ;== {G—[t] : G€ %} is (r — 1)-wise
l-intersecting and

%8| = |9} <mh—ta—tr—11)= (Q:Ej)
= ((a/m"+0(1)(3) < (1—y)fr(a/n) ().

Next suppose tha¥, is non-trivial, i.e.,|%| <t. If (%) < x—1, namely, if
2 € Yl(n,art), then|%| < (1— ) fo(a/n) (D) follows from Theorem 2. Thus we may
assume thali(¥%,) = u(%) > x— 1.
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Let (i) = {GN[x+1n i €GC e %} and%(0) = {G— X : [X] C G € %}. Set
e= MiNicy [Ya(i)]- Since|%a| = 31, |%a(i)| +|%a(0)| we have

[%al < e+ (x=1) (% F) + (- (29)

Suppose thatga| > (1—ys) f2(a/n) (3) = (1— y8) (1+0(1)) (x(,",) + (5=%)) holds for
any y3 > 0. Then by (29) we have > (1— ys(x+2))(," ;). This means%(i) only

a—x+1
misses at mogi(x+ 2) portion of(gjxlfl]) foralli € [x]. Sinceu(¢) < x— 1 we can find
SOmMeG € ¥ — %, such thalGN [X]| < x—2, say,G # x— 1,x. Let¥; = N _{%(i). Then
we have
Gal > (1= (r=1)ya(x+2)) (/1) (30)

If 95 C (g‘leJr”l]) is not(r — 1)-wise 1-intersecting, then we can fir@" € ¢, fori e [r — 1]

sothatG;N---NG’_; = 0. SettingG; := ([x| — {i}) UG € 4 we have|GiN---NGr_1N

G| =t — 1, which contradicts the-wiset-intersecting property o¥. Thus¥ is (r —1)-

wise L-intersecting and¥;| < ("X, %), which contradicts (30) because we can choose

y3 > Oarbitrarily small. Therefore there is some> 0 such that%,| < (1—ys) f2(a/n) (3).
Finally we get the claim by setting = (1/2) max{ 1, 2, Y5} O

Sincef is continuous, we can chose a constand < u < &, so that
(1-28)f(3+u) < (1-&E)F(3).
SetM =M(¥) = {ke [[5], (3 +H)n) : % # 0}

Claim 13. Syem |%d/([) < (1— &) (D).

Proof. It will be shown by induction oom = |M|. The caseM = {k} follows from

Claim 12; in fact noting thatf is increasing oﬂj%, % + u] we have

G/ (F) < (1=28)F(K) < (1-28)F(3+ 1) < (1-E)F(3).
Next we assume that our claim holds for— 1. Let a andb be the least and second

least element oM, and let?Z = (¥ — %) Up(%a). Thens?Z is r-wise t-intersecting
Sperner and(#’) = M(¢) — {a}. By Lemma 12, we havé4a|/(3) < |Op(“a)l/(p),

which means
; 1% _ A
keM(9)

m — ny >
W ke ()
and the RHS is less thai — E)f(%) by the induction hypothesis. O
By Claim 13 we have

a-atd>y P Loy

n =— n
keM (k) (Ln/ZJ) keM
On the other hand, by the Yamamoto inequality, we have

|%| 1
1> > ‘gk’,
I i PR
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where we usetl — M C [(l + p)n,n] by Claim 11. Consequently we have

1= Set 194 < (1= E)FE) (1) + (2. hn) < A= 5 TR (1]a)):
and the RHS is less thanax{|-%o|, |-#1|} by (28). O

4.3. Proof of Theorem 6. Let r andt be fixed. Assuming the negation of Theorem 6,

we will construct a counterexample to (i) of Theorem 4. Eix= &rnmg4 from Theorem 4

and letpp = 3 — §. Sincepp < 3 andt < 2" —r — 1 we havewp(%(n,r,t)) = ph >

Wpo(#1(n,1,t)) by Lemma 1. Thus we can chooge- 0 so that
(1—2y)ph > Wp, (%a(n,r,t)). (31)
Then choose@g so that

Z (70 Ph(1— po)™ > ph(1—-2y)/(1-y) (32)

holds for alln > np, whered = ((po— §)n, (po+ 5)n) NN.

Suppose that Theorem 6 fails. Then for our choice& gf andng, we can find some
n,kand.Z € YO(nk,r,t) with | #| > (1-y)(;_;), wheren > ng andX < I — & = py—&.
We fixn,kand.Z. Let¥ = Ux<i<n(0i(#)) be the collection of all upper shadows.&f,
which is non-trivialr-wiset-intersecting, i.e% € X%(n,r,t).

Claim 14. |0i(.F)| > (1—y) (") fori € J.

Proof. Choose a reak < n—t so that(1 — )(E )= (). Since|Z|> () the

Kruskal-Katona Theorem implies thdfl(.%)| > ( ) Thus it suffices to show that
(%) = @-y) (7)), or equivalently,
(%) . =90
()~ A=vED)

(33)

Sincei € J we havei > (pp— §)n >k, and (33) is equivalent tG —t)--- (k—t+1) >
(X—n+1i)--- (X—n+k+1), which follows fromx < n—t. O
By the claim we have
Wpo(¥) > Z|D ) Po(1—po)™ ' > (1—-y) Z(?tt) Po(1—po)™. (34)
le
By (32) and (31), the RHS of (34) is more théin—y) - ph(1—2y)/(1—y) = ph(1—2y) >
Wpo (1(n, 1,t)), which contradicts Theorem 4 (j). O

4.4. Proof of Theorem 7. Let e > 0 andp < % — & be given. By Theorem 6 we can
find 0 < y < 1/4 andng so thatm*(n,k,r,t) < (1—2y)(;_t) for all n > ny andk with
'ﬁ‘ < %— £. Choosed < d < e so that(p— 0, p+9) C (0, % —0). Choosen; so that

(1-2y) S (o)pka™ ™+ g (PP < (1-y)p (35)
ked k&J
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holds for alln > n;, whereJ = ((p—d)n, (p+ d)n) NN. Letn > max{ng, n; } and choose
4 & XO(n,r,t) with wp(%) =w*(n, p,r,t). Let% = n () fork € J.

If % € YO(n,k,r,t) then by Theorem 6 we havgh| < (1—2y)(7;). If % fixest
vertices, sayt], then¥ := {G—[t] : Ge ¢} is (r — 1)-wise l-intersecting. (Otherwis®
fixes[t].) Thus we havé4| = |%/| < (R_i_7). Consequently, in both cases, we have

% < (1-2y) (1) (36)
Using (36) and (35), we have

wp(%) < Zlgklpkq”‘k+ ; Qg™ < (1-y)p,
ke kgJ
and this is true for alh >t by Lemma 10. O
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