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ABSTRACT. We prove that then-dimensional unit hypercube contains
ann-dimensional regular simplex of edge lengthc

√
n, wherec > 0 is a

constant independent ofn.

Let ℓ∆n be then-dimensional regular simplex of edge lengthℓ, and let
ℓQn be then-dimensional hypercube of edge lengthℓ. For simplicity, we
omit ℓ if ℓ = 1, e.g.,Qn denotes the unit hypercube. We are interested in the
maximum edge length of a regularn-dimensional simplex contained inQn.

Theorem. For everyε0 > 0 there is an N0 such that for every n> N0 one
has (

1− ε0

2

√
n

)
∆n ⊂ Qn.

On the other hand, ifℓ∆n ⊂ Qn, thenℓ ≤
√

(n+1)/2, which follows by
comparing the circumscribed balls ofℓ∆n andQn. (Recall that the circumra-
dius of∆n is

√
n/(2n+2).) This upper bound is reached iff there exists an

Hadamard matrix of ordern+1. Schoenberg [3] pointed out that this “read-
ily established fact” went back to Coxeter, see also§4 of [1]. Our lower
bound given by the theorem is approximately 1/

√
2 of the upper bound.

Proof of Theorem.For a matrix (or a vector)A= (ai j ), let us define its norm
by ∥A∥ := maxi j |ai j |. Let Jn be then×n all one matrix.

Lemma 1. Let A= (ai j ) be an n×n real orthogonal matrix, and let c> 0
be a constant. If

∥A∥ ≤ 1
c
√

n
(1)
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and

∥JnA∥ ≤ 1
c
, (2)

then we have(c
√

n/2)∆n ⊂ Qn.

Proof. Let pi = (ai1, . . . ,ain) be thei-th row of the matrixA. Then then
points p1, . . . , pn ∈ Rn form a

√
2∆n−1. By (1), we have∥pi∥ ≤ 1/(c

√
n)

for all 1≤ i ≤ n.
Let g = (g1, . . . ,gn) ∈ Rn be the barycenter of the above

√
2∆n−1, and let

pn+1 := (1−
√

n+1)g. Then a computation shows that thep+ 1 points
p1, . . . , pn, pn+1 ∈ Rn form a

√
2∆n. Moreover, it follows from (2) that

∥pn+1∥= ∥g∥(
√

n+1−1)≤1/(c
√

n). Thus we have
√

2∆n⊂ (2/(c
√

n))Qn,
as desired. ¤

Let us find orthogonal matrices satisfying (1) and (2). Letq be an odd
prime power, and letFq = {b0, . . . ,bq−1} (b0 = 0) be the finite field of order
q. Define a characterχ : Fq → {0,±1} by χ(0) = 0, χ(x) = 1 if x is a
square, andχ(x) = −1 if x is a nonsquare. Define anq× q matrix B =
(bi j ) by settingbi j := χ(bi −b j). Then this matrix satisfiesBBT = qIq−Jq,
BJq = JqB = O. (See pp. 202–203 in [2] for the proof and how to use this
matrix to construct an Hadamard matrix of Paley type.) Finally we define
an orthogonalq×q matrixAq by

Aq :=
1
√

q

(
B+

1
√

q
Jq

)
.

Then, it is easy to check thatAq satisfies∥Aq∥ ≤ 1√
q + 1

q andJqAq = Jq.

Thus the matrixAq satisfies (1) and (2) forc = 1−o(1), and this verifies
the theorem for the case when the dimension is an odd prime power. (By
using the fact that each entryai j of Aq satisfies|ai j −1/q| ≤ 1/

√
q, instead

of (1), we can remove theo(1), i.e., we actually get
√

q/2∆q ⊂ Qq.)
Now let q1, . . . ,qr be distinct odd prime powers, and letn = q1 · · ·qr and

An := Aq1 ⊗·· ·⊗Aqr . Then the matrixAn is orthogonal with

∥An∥ ≤
1√
n

r

∏
i=1

(
1+

1
√

qi

)
. (3)

Moreover,An satisfiesJnAn = Jn becauseJnAn = (Jq1⊗·· ·⊗Jqr )(Aq1⊗·· ·⊗
Aqr ) = (Jq1Aq1)⊗·· ·⊗ (Jqr Aqr ) = Jn. We notice that

r

∏
i=1

(
1+

1
√

qi

)
≤ ∏

p|n
(1+

1
√

p

)
= ∑

d|n

1√
d

=: g(n), (4)
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where the product in the middle term is taken for all primesp dividing n.
Thus (3) gives (1) withc = 1/g(n), and Lemma 1 implies that( √

n

g(n)
√

2

)
∆n ⊂ Qn (5)

for every odd integern.

Lemma 2. For everyε,δ > 0 there is an n0 with the following property.
For every integer n> n0 there are odd integers n1,n2 such that2n= n1+n2,
(1− ε)n≤ ni ≤ (1+ ε)n and g(ni) < 1+δ for each i= 1,2.

Proof. We will select anm, define

q = ∏
p≤m

p

as the product of the primes up tom and selectn1,n2 coprime toq. This
guarantees that they are odd.

First we averageg(n) over integers coprime toq. Let (q, r) = 1. Write Ir
for the set of integers{ j ∈ [(1− ε)n,(1+ ε)n] : j ≡ r (mod q)}. We have

∑
j∈Ir

(g( j)−1) = ∑
d>1

1√
d

Nd,

whereNd is the number of multiples ofd in our setIr . ClearlyNd = 0 if
(d,q) > 1. If (d,q) = 1, then the multiples ofd in this residue class form
an arithmetic progression with differenceqd, and we have the estimate

Nd ≤ 2εn
qd

+1.

FurthermoreNd = 0 if d ≥ 2n.
Our choice ofq implies that wheneverd > 1 and(d,q) = 1, thend > m,

so we have

∑
j∈Ir

(g( j)−1) ≤ ∑
m<d<2n

1√
d

(
2εn
qd

+1

)
.

We use the easy estimates

∑
d>m

d−3/2 < 2/
√

m, ∑
d<2n

d−1/2 < 2
√

2n < 3
√

n

to conclude

∑
j∈Ir

(g( j)−1) <
4εn
q
√

m
+3

√
n. (6)

Now we definer as follows. Take a primep ≤ m. If 2n ̸≡ 1 (mod p),
we putr ≡ 1 (mod p); if 2n≡ 1 (mod p), let r ≡ 2 (mod p). In this way



4 HIROSHI MAEHARA, IMRE Z. RUZSA, AND NORIHIDE TOKUSHIGE

both r andr ′ = 2n− r will be coprime toq. Applying (6) for r andr ′ and
summing we get

∑
j∈Ir

(
(g( j)−1)+(g(2n− j)−1)

)
<

8εn
q
√

m
+6

√
n.

The number of summands in the above sum is≥ 2εn/q−1 > εn/q, as-
suming thatq < εn. Hence there is a valuej such that

(g( j)−1)+(g(2n− j)−1) <
8√
m

+
6q

ε
√

n
.

If the right hand side is< δ , we are done. To achieve this we make both
summands< δ/2. First we choosem so that 8/

√
m < δ/2, that is,m >

(16/δ )2. This determines the value ofq, and we choosen so large that
6q/(ε

√
n) < δ/2, that is,n > (12q/(εδ ))2. ¤

Lemma 3. Let ℓ > 0 be a real, and let s and t be positive integers with
ℓ2 ≤ s≤ t. If ℓ∆s ⊂ Qs andℓ∆t ⊂ Qt , thenℓ∆s+t+1 ⊂ Qs+t+1.

Proof. Let p0, p1, . . . , ps be the vertices ofℓ∆s insideQs, and letq0,q1, . . . ,qt
be the vertices ofℓ∆t inside Qt . We may assume that the origin is the
centers of these regular simplices. Then the distance betweenpi and the
origin is given byℓ

√
s/(2s+2). We will constructℓ∆s+t+1 with vertices

u0, . . . ,us,v0, . . . ,vt as follows. Defineui for 0≤ i ≤ s andv j for 0≤ j ≤ t
by

ui = (pi ,⃗0,x) ∈ Rs×Rt ×R, v j = (⃗0,q j ,0) ∈ Rs×Rt ×R.

Choosex > 0 so that|ui −v j | = ℓ for all i, j. This can be done by solving

|ui −v j |2 =
s

2s+2
ℓ2 +

t
2t +2

ℓ2 +x2 = ℓ2,

which givesx = ℓ( 1
2s+2 + 1

2t+2)1/2 < ℓ/
√

s+1 < 1. Namely, we have

ui ,v j ∈ Qs×Qt × [0,1] = Qs+t+1,

for all i, j. ¤
We are ready to prove the theorem. Letε0 > 0 be given. Setε = ε0/2

and takeδ > 0 so that

1− ε =
√

1− ε/(1+δ ). (7)

Plug theseε and δ into Lemma 2 to getk0 = k0(ε,δ ) > 0 such that for
every k > k0 there arek1,k2 satisfying 2k = k1 + k2, ki ≥ (1− ε)k, and
g(ki) < 1+δ . ChooseN0 ≥ 2k0 so that

(1− ε)
√

n−1 > (1− ε0)
√

n (8)

holds for alln > N0.
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Now, letn> N0 be given. First assume thatn is odd, and writen= 2k+1.
Lemma 2 gives a decomposition 2k = k1+k2. Then we haveℓi∆ki ⊂ Qki for
i = 1,2, where

ℓi
(5)
=

√
ki

g(ki)
√

2
>

√
(1− ε)k

(1+δ )
√

2

(7)
=

(1− ε)
√

k√
2

=
1− ε

2

√
n−1

(8)
>

1− ε0

2

√
n.

Applying Lemma 3 withs= k1, t = k2 andℓ = 1−ε0
2

√
n, we have the desired

resultℓ∆n ⊂ Qn.
Next assume thatn is even, and writen= 2k. Lemma 2 gives 2k= k1+k2

and

∥Aki∥
(3)(4)
≤ g(ki)√

ki
<

1+δ√
(1− ε)k

(7)
=

√
2

(1− ε)
√

n
<

√
2

(1− ε0)
√

n
=:

1
c
√

n
.

Define ann×n orthogonal matrixC by

C =
(

Ak1 0
0 Ak2

)
.

Then we have∥C∥ ≤ max∥Aki∥ < 1/(c
√

n) and∥JnC∥ = max∥Jki Aki∥ =
1. Thus, by Lemma 1, we have(c

√
n/2)∆n = (1−ε0

2

√
n)∆n ⊂ Qn. This

completes the proof of the theorem. ¤
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