LARGE REGULAR SIMPLICES
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ABSTRACT. We prove that the-dimensional unit hypercube contains
ann-dimensional regular simplex of edge lengtjn, wherec > 0 is a
constant independent of

Let /A, be then-dimensional regular simplex of edge lendthand let
(Qy be then-dimensional hypercube of edge lengthFor simplicity, we
omit/if /=1, e.g.Q, denotes the unit hypercube. We are interested in the
maximum edge length of a reguladimensional simplex contained @,.

Theorem. For everygy > 0 there is an N such that for every n- Ny one
has

(1_2£°ﬁ)Aann.

On the other hand, Ay C Qn, then? < /(n+1)/2, which follows by
comparing the circumscribed balls&f,, andQ,. (Recall that the circumra-
dius ofA, is /n/(2n+2).) This upper bound is reached iff there exists an
Hadamard matrix of order+ 1. Schoenberg [3] pointed out that this “read-
ily established fact” went back to Coxeter, see dl4aof [1]. Our lower
bound given by the theorem is approximatef/2 of the upper bound.

Proof of TheoremFor a matrix (or a vecto\ = (& ), let us define its norm
by ||Al| := max; |aij|. LetJ, be then x nall one matrix.

Lemma 1. Let A= (&j) be an nx n real orthogonal matrix, and let & O
be a constant. If

1
Al<——= 1
Al < — @
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and

1
Al <, @

then we havéc,/n/2)A, C Qn.

Proof. Let p; = (&y,...,an) be thei-th row of the matrixA. Then then
points py,..., pn € R" form av/2A, 1. By (1), we have|pi| < 1/(cy/n)
forall1<i<n.

Letg=(d1,...,0n) € R" be the barycenter of the abov@A,,_1, and let
Pn+1 = (1—+/Nn+1)g. Then a computation shows that tper- 1 points
P1,...,Pn, Prst € R" form a v/2A,. Moreover, it follows from (2) that

IPnsall = llgll(vn+1-1) <1/(cy/n). ThuswehaVG/_ZAnC(Z/(C\/_))Qn,

as desired.

Let us find orthogonal matrices satisfying (1) and (2). gdte an odd
prime power, and lefq = {bo,...,bg—1} (bo = 0) be the finite field of order
g. Define a charactey : Fq — {0,£1} by x(0) =0, x(x) =1if xis a
square, ang((x) = —1 if x is a nonsquare. Define anx q matrix B =
(bij) by settingbij := x(bi — bj). Then this matrix satisfieBBT = qglq — Jq,
BJy, = JgB = O. (See pp. 202-203 in [2] for the proof and how to use this
matrix to construct an Hadamard matrix of Paley type.) Finally we define
an orthogonat| x g matrix Aq by

1
+
Lo+t
Then, it is easy to check tha satisfies|Aq|| < 75 + § andJgAq = Jq.

Thus the matrixA satisfies (1) and (2) foc = 1—o(1), and this verifies
the theorem for the case when the dimension is an odd prime power. (By
using the fact that each entay of Aq satisfie§a;; —1/q| <1/,/q, instead

of (1), we can remove the(1), i.e., we actually ge{/q/2Aq C Qq.)
Now letqs,...,qr be distinct odd prime powers, and le=q; --- g, and
An = Ag, ®---®Aqg,. Then the matrixd, is orthogonal with

Al < %H(H 7}) @3)

Moreover A, satisfieshAn = J, becausénAn = (Jg, ® - @Jg, ) (A ®@ -+ - @
Aq) = (JgAq) @ - ® (Jg Agq. ) = In. We notice that

1 1 1
il:l(l-F ﬁ) < !;l(lJr ﬁ) :%ﬁ =:g(n), 4)

Aqi=
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where the product in the middle term is taken for all prinpedividing n.
Thus (3) gives (1) witlt = 1/g(n), and Lemma 1 implies that

( VN
g(n)v'2

)An CQn (5)

for every odd integen.

Lemma 2. For everye,d > 0 there is an g with the following property.
For every integer n> ng there are odd integers;nn, such than = ny+ny,
(1—e)n<nm < (1+¢e)nanddn) <1+ foreachi=1,2.

Proof. We will select amm, define

q= p

1
as the product of the primes up toand selechy, n, coprime tog. This
guarantees that they are odd.

First we averagg(n) over integers coprime tq. Let (q,r) = 1. Writel,
for the set of integer§j € [(1—¢e)n,(1+¢€)n]: j=r (modq)}. We have

. 1
j;r(g(n—l) :dglﬁNd;

whereNy is the number of multiples ad in our setl,. ClearlyNy = O if
(d,q) > 1. If (d,q) = 1, then the multiples ofl in this residue class form

an arithmetic progression with differengd, and we have the estimate
2¢en
Ng < — +1.
d < qd +

FurthermoreNg =0 if d > 2n.
Our choice ofg implies that wheneved > 1 and(d,q) = 1, thend > m,

so we have
1 /2&en
@)-n< 5 = (—+1).
jle m< <2n\/a qd

We use the easy estimates

dz d¥2<2/y/m, 22 dY2 < 2v2n<3yn
>m d<2n

to conclude
(0)-1) < 22 3y ©)
2, qum "V
Now we definer as follows. Take a prim@ <m. If 2n# 1 (mod p),
we putr =1 (mod p); if2n=1 (mod p), letr =2 (mod p). In this way
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bothr andr’ = 2n—r will be coprime tog. Applying (6) forr andr’ and
summing we get

8en
g(j)—1+(g@n—j)—-1)) < —=+6yn.
3 (@)~ D+ (@@~ 1) < g7

The number of summands in the above surir Bsn/q— 1 > en/q, as-
suming thag < en. Hence there is a valugsuch that

(9(j) — 1)+ (g(2n— )~ 1) < %ﬁf—%

If the right hand side is< &, we are done. To achieve this we make both
summands< &/2. First we choosen so that 8/m < d/2, that is,m >
(16/6)2. This determines the value of and we choose so large that
69/(gy/n) < 6/2, thatis,n > (12q/(£d))>. O

Lemma 3. Let/ > 0 be a real, and let s and t be positive integers with
2 <s<t. If ths C Qsand iy C Q, thenlAs i1 C Qsitr1.

Proof. Let po, p1, ..., ps be the vertices ofAs insideQs, and letgp, qs, . . . , G
be the vertices ofA; inside Q.. We may assume that the origin is the
centers of these regular simplices. Then the distance betyemd the
origin is given by/,/s/(2s+2). We will construct/As,,1 with vertices
Uo, - - -,Us,Vo,..., W as follows. Definay for 0 <i <sandv;for0<j <t
by

U= (pi,0,x) ERSxR' xR, vj=(0,qj,0) e RSx R' x R.

Choosex > 0 so thatiu; — vj| = ¢ for all i, j. This can be done by solving

2 S 9 t > 2 2
U — Vil = 14 Ve xe=0
Ui = Vil 25+ 2 +2t+2 + ’

which givesx = {(525 + 525)Y? < £/v/s+1 < 1. Namely, we have
Ui,Vj € Qs x Qt ¥ [0,1] = Qsy41,
foralli,j. O

We are ready to prove the theorem. legt> 0 be given. Set = &/2
and taked > 0 so that

l-e=v1-¢/(1+9). (7)
Plug theses and & into Lemma 2 to geky = ko(€,0) > 0 such that for
everyk > kg there areky, ko satisfying X = k; + ko, ki > (1 — ¢)k, and
g(ki) < 14 4. ChooseNg > 2kg so that
(1—&)vn—1> (1—&)y/n (8)

holds for alln > Np.



LARGE REGULAR SIMPLICES CONTAINED IN A HYPERCUBE 5

Now, letn > Ng be given. First assume thats odd, and writen = 2k + 1.
Lemma 2 gives a decompositiok 2 k; +ky. Then we havéiA,, C Qy, for
i =1,2, where

e vk _JI-ok@(l-gvk _1l-e ——©®1l-g
g'_g(k;)\/i>(1+6)\/§_ N vn—1> 5 V.

Applying Lemma 3 withs = kq,t = kp and? = 1522, /n, we have the desired
result/An C Q.

Next assume thatis even, and write = 2k. Lemma 2 gives R= k; + ko
and

g o) 140 @ V2 V2 1
A= R S JToek A-e)vn - (A-e)vi oy

Define am x n orthogonal matrixC by

A, O
C=|"A :
( 0 Akz)
Then we have|C|| < max||A || < 1/(cy/n) and ||I,C|| = max||IAx |l =

1. Thus, by Lemma 1, we have\/n/2)An = (1552/N)A, C Qn. This
completes the proof of the theorem. O
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