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Abstract. Suppose that we are given a system of linear equations in k variables. We are
interested in the maximum size of a subset in the n-dimensional vector space over the p-element
field which contains no solution with k distinct elements. If the maximum size is less than (cp)n

for some constant 0 < c < 1, then we say that the system is moderate. We first show that
any system consisting of just one equation is moderate provided the coefficients sum to zero.
We then provide several moderate systems consisting of two or three equations. Our proofs are
based on Tao’s slice rank method [10] and its extension due to Sauermann [6].

1. Introduction

Let p be a fixed prime, and let Fn
p denote the n-dimensional vector space over the p-element

field Fp. We consider a subset A ⊂ Fn
p and a system of linear equations (S) in k variables

where no solution in A has k distinct elements. According to Ruzsa [8] let Rp(n, S) denote the
maximum size of A satisfying the condition. We assume that n is sufficiently large compared
with the fixed p and S, and we are interested in a system (S) satisfying Rp(n, S) < (cp)n for
some constant c = c(p, k) with 0 < c < 1. Let us call such a system (S) moderate. In this paper
we will give some moderate systems arising from the same polynomial.

Ellenberg and Gijswijt [4] proved that any system consisting of one equation in three variables
is moderate provided the coefficients sum to zero. We extend this results to more than three
variables.

Theorem 1. Let k ≥ 3 and let p be a prime. Let (S) be a system consisting of one equation

a1x1 + a2x2 + · · ·+ akxk = 0,

where the coefficients a1, . . . , ak ∈ Fp satisfy

a1 + a2 + · · ·+ ak = 0.

If n > n0(p, k) then Rp(n, S) < (Cp)n for some constant C = C(p, k) with 0 < C < 1.

If the coefficients (considered in Z instead of Fp) satisfy

0 < a1 ≤ a2 ≤ · · · ≤ ak−1 ≤ −ak < p,

then it is known from Behrend’s construction that Rp(n, S) ≥ (c′p)n where c′ := −1/ak > 0,
see, e.g., Theorem 5.4 in [7].

By applying the result of Ellenberg–Gijswijt to equation

x1 − 2x2 + x3 = 0,

we see that if A ⊂ Fn
p contains no 3-AP (an arithmetic progression of length three) then |A| <

(cp)n for some 0 < c < 1. Do we have a similar upper bound for 4-AP? This is a very interesting
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open problem. For this case we consider the system of two equations

(4-AP)

{
x1 − 2x2 + x3 = 0,

x2 − 2x3 + x4 = 0,

and we ask if (4-AP) is moderate or not (see [5] for some related results). This 4-AP problem
seems difficult, but we can find some other moderate systems, which are our main concern in
this paper. In fact by changing the definition of 4-AP slightly we get a moderate system, which
we call (T ):

(T )

{
x1 − 2x2 + x3 = 0,

x4 − 2x3 + x5 = 0.

Let us present some more examples of moderate systems. For this we introduce a polynomial
f in 5 variables:

(1) f(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 − 4x5.

Let (S0) denote the system consisting of one equation f = 0 only. Then, for fixed prime p ≥ 5,
we have (c′p)n < Rp(n, S0) < (cp)n for some 0 < c′ < c < 1. In particular, (S0) is a moderate
system, and this is a starting point. Then we define three systems (S1) in 9 variables, (S2) in 8
variables, and (S3) in 11 variables as follows.

(S1)


f(x1, x2, x3, x4, x5) = 0,

f(x1, x2, x3, x
′
4, x

′
5) = 0,

f(x1, x2, x3, x
′′
4, x

′′
5) = 0,

(S2)

{
f(x1, x2, x3, x4, x5) = 0,

f(x1, x2, x
′
3, x

′
4, x

′
5) = 0,

(S3)


f(x1, x2, x3, x4, x5) = 0,

f(x1, x2, x
′
3, x

′
4, x

′
5) = 0,

f(x1, x2, x
′′
3, x

′′
4, x

′′
5) = 0.

We will show that both (S1) and (S2) are moderate. The authors were unable to determine
whether system (S3) is moderate or not.

Conjecture 1. System (S3) is moderate, that is, Rp(n, S3) < (cp)n for some 0 < c < 1.

By changing the definition of (S3) only slightly we get a moderate system (S−
3 ):

(S−
3 )


f(x1, x2, x3, x4, x5) = 0,

f(x1, x2, x
′
3, x

′
4, x

′
5) = 0,

f(x1, x2, x
′
3, x

′′
4, x

′′
5) = 0.

Note that x′′3 appears in S3 but not in S−
3 . Note also that the fact that S−

3 is moderate implies
that S1 and S2 are moderate as well.

To prove the results mentioned above we use Tao’s slice rank method [10]. We apply the
method, however, not in a straightforward way, but we apply a modified version developed by
Sauermann. In [9] she considered the system of one equation in p variables

(Tp) x1 + x2 + · · ·+ xp = 0,

and proved that

(2) Rp(n, Tp) < Cp(2
√
p)n

for some constant Cp depending p only. Note that in this case the number of variables coincides
with the number of elements of the base field. To prove (2) she showed that if A ⊂ Fn

p contains
no solution to (Tp) without repeated elements then one can delete only a small part of A to
make the remaining part applicable to the multicolored version of the Tao’s slice rank bound.
We employ the same process repeatedly and systematically.

In section 2 we prepare some tools for the proofs. As a warm-up we prove Theorem 1 in
section 3. Next we show in section 4 that system (T ) is moderate (Theorem 4). Then in



SOLVING LINEAR EQUATIONS IN A VECTOR SPACE II 3

sections 5 and 6 we prove our main results Theorems 5 and 6, respectively. These general
results contain the fact that (S1) and (S2) are moderate as special cases. In the last section we
show that system (S−

3 ) is also moderate (Theorem 7).

2. Preliminaries

For a given system of linear equations (S) in k variables, we call a solution an S-shape if
it consists of k distinct elements. So Rp(n, S) is the largest size of A ⊂ Fn

p which contains no
S-shape. We also call a solution which may have repeated elements an S-semishape. In this
paper we always assume that p is a fixed prime, and we are interested in the situation n → ∞.

2.1. Multicolored version of Tao’s slice rank method. In the rest of the paper, by an
equation we always mean a balanced linear equation, that is, an equation written in the form

a1x1 + a2x2 + · · ·+ akxk = 0,

where the coefficients satisfy

a1 + a2 + · · ·+ ak = 0.

Let (S) be a system of equations in k variables. Let xi = (x1,i, x2,i, . . . , xk,i) be a solution to
(S) for 1 ≤ i ≤ m. We say that M = {x1, . . . ,xm} is a matching of S-semishape of size m if
the solutions in M are disjoint, that is,

{x1,i1 , x2,i1 , . . . , xk,i1} ∩ {x1,i2 , x2,i2 , . . . , xk,i2} = ∅
for all 1 ≤ i < j ≤ m. (We call M a matching of S-shape if each solution has no repeated
elements.) Let Xj = {xj,1, xj,2, . . . , xj,m} for 1 ≤ j ≤ k, and let X = X1 × · · · × Xk. We call
X = X (M) the ground set of M . We say that the matching M is k-colored S-free if the following
holds:

(x1,i1 , x2,i2 , . . . , xk,ik) ∈ X is an S-semishape ⇐⇒ i1 = i2 = · · · = ik.

The following result is a consequence of Tao’s slice rank method. (For one equation, see, e.g.,
[2, 6, 9].)

Theorem 2 ([7]). Let p be a fixed prime. Let (S) be a system of L linear balanced equations in
k variables which take values in Fn

p , and let r be the number of variables which appear in only
one of the equations. Suppose that there is a k-colored S-free matching of size m. If

(3) 1
2r +

1
e (k − r) > L

then

m < (cp)n

for some constant c = c(p, k, L) with 0 < c < 1.

Let M = {x1, . . . ,xm} be a matching of S-semishape of size m. For I ⊂ [m] := {1, 2, . . . ,m}
let

M ′ = {xi : i ∈ I}
and we say that M ′ is the matching induced from M by I. By renumbering the indices we may
assume that I = [s] if |I| = s, and we will always do so.

Let X = X1 × · · · × Xk be the ground set of M . We say that (xa,la , xb,lb) ∈ Xa × Xb is
(a, b)-extendable in X to mean that there exist complementing elements xj,lj (j ∈ [k] \ {a, b})
such that (x1,l1 , x2,l2 , . . . , xk,lk) ∈ X is an S-semishape. This extendability is introduced by
Sauermann in [9], which will play an important role in this paper. Let

B = {(xa,la , xb,lb) ∈ Xa ×Xb : (xa,la , xb,lb) is (a, b)-extendable in X .}
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Then a graph G = (V,E) corresponding to (M,B) is defined by V = [m], and two vertices
u and v in V are adjacent if (xa,lu , xb,lv) ∈ B and u ̸= v. Note that for all u ∈ V we have
(xa,lu , xb,lu) ∈ B because M is a matching, but {u, u} ̸∈ E by definition. Thus we have

(4) |E| ≤ |B| − |V |.

2.2. Independence number of a graph. Let G = (V,E) be a graph, and let α denote the
independence number of G. Then, it is easy to see that

α ≥ |V |
1 + ∆

,

where ∆ denotes the maximum degree of the graph. It is also known that this inequality is still
valid if we replace ∆ with the average degree, see, e.g., [1] Probabilistic Lens: Turán’s Theorem.

Theorem 3 (Caro [3], Wei [11]).

α ≥ |V |
1 + (2|E|/|V |)

3. A system consisting of one equation

In this section we prove Theorem 1 by induction on k, the number of variables. The base case
k = 3 is exactly the result of Ellenberg and Gijswijt [4]. (This case also follows from Theorem 2
directly.)

Let k ≥ 3. We assume that the statement of the theorem holds for all systems of k variables,
and we prove the case k + 1 variables. Let (Sk+1) be a given system consisting of a balanced
equation in k + 1 variables.

(Sk+1) a1x1 + · · ·+ ak−1xk−1 + bkxk + bk+1xk+1 = 0.

Define a system (Sk) in k variables by

(Sk) a1x1 + · · ·+ ak−1xk−1 + akxk = 0,

where ak = bk + bk+1.
Suppose that A ⊂ Fn

p contains no Sk+1-shape. Our aim is to show that |A| < (Cp)n for some
0 < C < 1. Fix a constant c with 1/3k < c < 1/2k, and let t := ⌈c|A|⌉. For simplicity we write
S for Sk.

(CASE I) A does not contain t disjoint S-shapes.
In this case take disjoint S’s as many as possible, say, t′ of S, and delete all elements of them.

Let A′ be the resulting subset of A. Noting that t′ ≤ t− 1 < c|A| we have

|A′| = |A| − t′k > (1− ck)|A| > |A|/2.
On the other hand, A′ contains no S-shape, and it follows from the induction hypothesis that
|A′| < (c′p)n for some 0 < c′ < 1, and so |A| < (c′′p)n for some 0 < c′′ < 1 provided n >
n0(p, k + 1).

(CASE II) A contains t disjoint S-shapes.
Let Mk = {xi = (x1,i, . . . , xk,i) : 1 ≤ i ≤ t} be a matching of S-shape of size t, and let

X = X1 × · · · ×Xk be the ground set of Mk, that is, Xj = {xj,1, . . . , xj,t} for 1 ≤ j ≤ k. Then
for each i, (xi, xk,i) is a semishape of Sk+1. So we can define a matching of Sk+1-semishape M
of size t by

M = {yi = (y1,i, . . . , yk+1,i) : 1 ≤ i ≤ t},
where yi = (xi, xk,i). Let Y = Y1 × · · · × Yk+1 = X ×Xk be the ground set of M . Note that k
sets Y1, Y2, . . . , Yk = Yk+1 are pairwise disjoint.
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Claim 1. If (y1,i1 , . . . , yk,ik , yk+1,ik+1
) ∈ Y is an Sk+1-semishape, then ik = ik+1.

Proof. If not, then we get an Sk+1-shape, a contradiction. □

For 1 ≤ j < k let Bj,k = {(y, z) ∈ Yj × Yk : (y, z) is (j, k)-extendable in Y}.

Claim 2. Define a map B1,k → Fn
p by (y, z) 7→ (a1y + bkz). Then this map is injective, and

|B1,k| ≤ pn.

Proof. Suppose the contrary, that is, there exist distinct (1, k)-extendable pairs (y1,i1 , yk,ik) and
(y1,i′1 , yk,i′k) in Y1 × Yk such that

(5) a1y1,i1 + bkyk,ik = a1y1,i′1 + bkyk,i′k

with ik ̸= i′k. By the definition of extendability there are two corresponding Sk+1-semishapes

y := (y1,i1 , y2,i2 , . . . , yk,ik , yk+1,ik+1
),

y′ := (y1,i′1 , y2,i′2 , . . . , yk,i′k , yk+1,i′k+1
),

and, by the previous claim, ik = ik+1 and i′k = i′k+1. From y and y′ we get another Sk+1-
semishape

y′′ := (y1,i′1 , y2,i2 , . . . , yk,i′k , yk+1,ik+1
),

where i′ appears only in the first and the k-th entry. Indeed, by (5), we have

a1y1,i′1 + a2y2,i2 + · · ·+ bkyk,i′k + bk+1yk+1,ik+1

= a1y1,i1 + a2y2,i2 + · · ·+ bkyk,ik + bk+1yk+1,ik+1
= 0.

But in y′′ we have i′k ̸= ik+1 because i′k ̸= ik and ik = ik+1. This contradicts the previous
claim. □

In the same way we have |Bj,k| ≤ pn for 2 ≤ j < k as well.

Let G = (V,E) be the graph corresponding to (M,
∪k−1

j=1 Bj,k), that is, V = [|M |] = [t], and

two vertices u and v in V are adjacent if (yu,iu , yv,iv) ∈ Bj,k for some 1 ≤ j < k and u ̸= v. By
(4) we have

|E| ≤ (k − 1)pn − t.

Then it follows from Theorem 3 that there exists an independent set I ⊂ V such that

s := |I| ≥ |V |2

|V |+ 2|E|
>

t2

2kpn
.

Let M ′ be the matching induced from M by I. By the construction M ′ is (k+1)-colored S-free.
Thus by Theorem 2 we have |M ′| < (c′p)n for some 0 < c′ < 1. Consequently we have

(c|A|)2

2kpn
≤ t2

2kpn
< s = |M ′| < (c′p)n,

and, noting that 1/c < 3k, we have

|A| <
√

2k/c (
√
c′ p)n <

√
6 k(

√
c′ p)n < (Cp)n

for some C = C(p, k + 1) with 0 < C < 1 provided n > n0(p, k + 1). □
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4. T

Recall that T -shape is defined by the following equations.

(T )

{
x1 − 2x2 + x3 = 0,

x4 − 2x3 + x5 = 0.

In this section we show the following result.

Theorem 4. Let p ≥ 3 be a prime. If n > n0(p) then there exists a constant C = C(p) with
0 < C < 1 such that Rp(n, T ) < (Cp)n.

For the proof we assume that A ⊂ Fn
p contains no T -shape and bound the size of A. If there

is no element x ∈ A such that x is the middle term of a 3-AP in A, and moreover x is the first
or third term of another 3-AP in A, then we can bound the size of A easily (see Case III below).
But there are two obstacles of T -semishapes for the non-existence of such x. One is the case
when x2 = x5 in T -semishape, which we call P -shape. This configuration consists of 4 elements
and defined by the following equations.

(P )

{
x1 − 2x2 + x3 = 0,

x4 − 2x3 + x2 = 0.

Actually P -shape is a 4-AP. The other is the case when x1 = x5 in T -semishape, which we call
Q-shape. This is also 4-element configuration defined by the following equations.

(Q)

{
x1 − 2x2 + x3 = 0,

x4 − 2x3 + x1 = 0.

Proof of Theorem 4. Suppose that A ⊂ Fn
p contains no T -shape. Let c be a fixed constant with

0 < c < 1
8 and let

(6) t := ⌈c|A|⌉ .

(CASE I) A contains t disjoint P -shapes.
Let MP be a matching of P -shape of size t:

MP = {(x1,i, x2,i, x3,i, x4,i) : 1 ≤ i ≤ t}.
Let XP = X1 × · · · ×X4 be the ground set. Then we can define a matching of T -semishape of
size t by

M = {(x1,i, x2,i, x3,i, x4,i, x2,i) : (x1,i, x2,i, x3,i, x4,i) ∈ MP , 1 ≤ i ≤ t}
on the ground set X := XP ×X5, where X5 := X2. Note that the four sets X1, X2 = X5, X3, X4

are pairwise disjoint.

Claim 3. If (x1,i1 , x2,i2 , . . . , x5,i5) ∈ X is a T -semishape, then i2 = i5, that is, x2,i2 = x5,i5.

Proof. If not, then we get a T -shape, a contradiction. □
Let B := {(x, y) ∈ X1 ×X2 : (x, y) is (1, 2)-extendable in X}.

Claim 4. Define a map B → Fn
p by (x, y) 7→ x− 2y. Then this map is injective, and |B| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct pairs (x, y) and (x′, y′) in B such that
x−2y = x′−2y′. In this case y ̸= y′ and there are two corresponding T -semishapes (x, y, x3, x4, y)
and (x′, y′, x′3, x

′
4, y

′). Then we have another T -semishape (x′, y′, x3, x4, y). Indeed we have
x′ − 2y′ + x3 = x − 2y + x3 = 0 and x4 − 2x3 + y = 0. But this contradicts Claim 3 because
y′ ̸= y. □
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In the same way we can show that |B′| ≤ pt, where B′ is the set of (4, 5)-extendable pairs in
X .

Let G = (V,E) be the graph corresponding to (M,B ∪ B′). By (4) we have |E| ≤ 2pn − t.
By Theorem 3 there is an independent set I ⊂ V with

(7) |I| ≥ |V |2

2|E|+ |V |
>

t2

2pn
.

Let M ′ be the matching induced from M by I.

Claim 5. M ′ is 5-colored T -free.

Proof. Let X ′ be the ground set of M ′. Suppose that (x1,i1 , x2,i2 , . . . , x5,i5) ∈ X ′ is an T -
semishape. Then by construction it follows that i2 = i5, i1 = i2, and i4 = i5. So let i := i1 =
i2 = i4 = i5. Moreover it follows from x1,i − 2x2,i + x3,i3 = 0 that i3 = i. □

By Theorem 2 we have |I| = |M ′| < (µp)n for some µ < 1. Then by (6) and (7) we get

|A| ≤ t
c ≤

√
2
c (

√
µp)n < (Cp)n

for some C < 1 provided n > n0.

(CASE II) A contains t disjoint Q-shapes.
One can show that |A| < (Cp)n for some C < 1 in almost the same way as in CASE I. So

we just give a sketch of the proof. By extending a matching of Q-shape we get a matching of
T -semishape on the ground set X = XQ ×X1. Then we can show the following.

• If (x1,i1 , x2,i2 , . . . , x5,i5) ∈ X is a T -semishape, then i1 = i5.
• The size of the set of (1, 2)-extendable pairs in X is at most pt.
• The size of the set of (4, 5)-extendable pairs in X is at most pt.

The remaining part is exactly the same as Case I.

(CASE III) A contains less than t disjoint P -shapes and less than t disjoint Q-shapes.
By deleting at most 4(t− 1)+ 4(t− 1) < 8t elements from A we can destroy all P -shapes and

Q-shapes. Let A′ ⊂ A be the resulting subset with |A′| > |A| − 8t. Let

A′
1 := {x ∈ A′ : x is the middle term of a 3-AP in A′},

A′
2 := {x ∈ A′ : x is the first or third term of a 3-AP in A′}.

Since A′ contains no T -shape, no P -shape, no Q-shape, it follows that A′
1 ∩ A′

2 = ∅. Let A′′ be
one of A′ \ A′

1 and A′ \ A′
2 such that |A′′| ≥ 1

2 |A
′|. Since A′′ contains no 3-AP it follows from

Theorem 2 that |A′′| < (λp)n for some λ < 1. Thus we have

|A| − 8(c|A|+ 1) < |A| − 8t < |A′| ≤ 2|A′′| < 2(λp)n,

and |A| < 2
1−8c(λp)

n + 8
1−8c < (Cp)n for some C < 1. □

5. Cycles sharing all but two vertices

Let f be the following Fp-coefficient balanced polynomial in k + 2 variables;

f(x1, x2, . . . , xk+2) =
k+2∑
i=1

aixi.
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Let (Sk+2) be equation f = 0, and let (lSk+2) be the following system of l equations in k + 2l
variables:

(8) (lSk+2)


f(x1, . . . , xk, y1, z1) = 0,

f(x1, . . . , xk, y2, z2) = 0,

· · ·
f(x1, . . . , xk, yl, zl) = 0.

Theorem 5. Let p be a prime, and let k ≥ 1 and l ≥ 2. If n > n0(p, k, l) then there exists a
constant C = C(p, k, l) with 0 < C < 1 such that Rp(n, lSk+2) < (Cp)n.

Proof. Suppose that A ⊂ Fn
p contains no lSk+2-shape. Fix a constant 1

3(k+2) < c < 1
2(k+2) , and

let t := ⌈c|A|⌉. For simplicity we write S for Sk+2.

(CASE I) A does not contain t disjoint S-shapes.
In this case take disjoint S’s as many as possible, and delete all elements of them. Let A′ be

the resulting subset of A. Then we have

|A′| ≥ |A| − (t− 1)(k + 2) > (1− c(k + 2))|A| > |A|/2.
On the other hand, A′ contains no S-shape, and it follows from Theorem 1 that |A′| < (c′p)n

for some c′ < 1, and so |A| < (c′′p)n for some c′′ < 1 provided n > n0(p, k, l).

(CASE II) A contains t disjoint S-shapes.
Let M be a matching of S-shape of size t:

M = {(x1,i, x2,i, . . . , xk+2,i) : 1 ≤ i ≤ t}.
Let X = X1×X2× · · ·×Xk+2 be the ground set of M . For simplicity we also write Y := Xk+1,
Z := Xk+2, and yi := xk+1,i, zi := xk+2,i for 1 ≤ i ≤ t. Then, X1, . . . , Xk+2 are pairwise disjoint
sets with the same size t. Let

B = {(y, z) ∈ Y × Z : (y, z) is (k + 1, k + 2)-extendable in X}.

Claim 6. Define a map ϕ : B → Fn
p by ϕ(y, z) = ak+1y + ak+2z. Then |ϕ−1(α)| ≤ l − 1 for all

α ∈ Fn
p , and |B| ≤ (l − 1)pn.

Proof. Suppose the contrary. Then there exist α ∈ Fn
p and i1, . . . , il ∈ [t] such that l pairs

(yi1 , zi′1), . . . , (yil , zi′l) ∈ B

are distinct but take the same value α by ϕ. Since (yi1 , zi′1) is an extendable pair there is an

S-semishape (actually an S-shape) (x1,i′′1 , x2,i′′2 , . . . , xk,i′′k , yi1 , zi
′
1
) ∈ X with

a1x1,i′′1 + a2x2,i′′2 + · · ·+ akxk,i′′k = −α.

Thus we have
f(x1,i′′1 , x2,i′′2 , . . . , xk,i′′k , yiu , zi

′
u
) = 0

for all 1 ≤ u ≤ l. This means that A contains an lSk+2-shape, a contradiction. □
Let G = (V,E) be the graph corresponding to (M,B). Then by (4) we have |E| ≤ |B|−|V | ≤

(l − 1)pn − t. It follows from Theorem 3 that there is an independent set I ⊂ V with

(9) s := |I| ≥ |V |2

2|E|+ |V |
>

t2

2(l − 1)pn
.

We may assume that I = [s]. Let M ′ be the matching induced from M by I:

M ′ = {(x1,i, . . . , xk,i, yi, zi) ∈ M : 1 ≤ i ≤ s}.
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Let X ′ = X ′
1 × · · · ×X ′

k × Y ′ × Z ′ be the ground set of M ′. By the construction we have the
following.

Claim 7. If (x1,i1 , . . . , xk,ik , yi, zi′) ∈ X ′ is an S-semishape, then i = i′.

For 1 ≤ j ≤ k let

B′
j,k+2 = {(x, z) ∈ X ′

j × Z ′ : (x, z) is (j, k + 2)-extendable in X ′}.

Claim 8. Let B′ = B′
1,k+2. Define a map B′ → Fn

p by (x, z) 7→ a1x+ ak+2z. Then the map is

injective, and |B′| ≤ pn.

Proof. Suppose the contrary. Then there exist (x1,i1 , zv) and (x1,i′1 , zv′) in B′ such that

(10) a1x1,i1 + ak+2zv = a1x1,i′1 + ak+2zv′

with i1 ̸= i′1 and v ̸= v′. By the definition of extendability with the previous claim there are two
S-semishapes in X ′:

(x1,i1 , x2,i2 , . . . , xk,ik , yv, zv),

(x1,i′1 , x2,i′2 , . . . , xk,i′k , yv
′ , zv′).

Then, using (10), we obtain another S-semishape

(x1,i′1 , x2,i2 , . . . , xk,ik , yv, zv′).

But this contradicts the previous claim because v ̸= v′. □

In the same way we have |B′
j,k+2| ≤ pn for all 1 ≤ j ≤ k. Let G′ = (V ′, E′) be the graph

corresponding to (M ′,
∪k

j=1B
′
j,k+2). By (4) we have |E′| ≤ kpn − s. Then it follows from

Theorem 3 that there is an independent set I ′ ⊂ V ′ with

|I ′| ≥ |V ′|2

2|E′|+ |V ′|
>

s2

2kpn
>

t4

8kl2p3n
,

where we used (9) in the last inequality. Let M ′′ be the matching induced from M ′ by I ′. Then
this is a (k + 2)-colored S-free matching. Recall that in system (8) there are k + 2l variables in
total, and 2l of them appear only once. So the condition (3) in Theorem 2 holds trivially. Thus
by Theorem 2 there is a constant 0 < d < 1 such that |M ′′| = |I ′| < (dp)n. Thus we have

t4

8kl2p3n
< (dp)n.

Then a simple computation using t ≥ c|A| and 1/c < 3(k + 2) shows

|A| < 1

c
(8kl2)

1
4 (d

1
4 p)n < (24k(k + 2)l2)

1
4 (d

1
4 p)n.

If n > n0(p, k, l) then the RHS is less than (Cp)n for some C = C(p, k, l) with 0 < C < 1. This
completes the proof of Theorem 5. □

6. Two connecting circles

Let us define the following Fp-coefficient balanced polynomial f in k + l variables by

f(x1, x2, . . . , xk+l) =
k+l∑
i=1

aixi.
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Let (Tk+l) be equation f = 0, and let (2Tk,l) be the following system of two equations in k + 2l
variables:

(11) (2Tk,l)

{
f(x1, . . . , xk, xk+1, . . . , xk+l) = 0,

f(x1, . . . , xk, xk+l+1, . . . , xk+2l) = 0.

We write a 2Tk,l-semishape as a vector in (Fn
p )

k+2l in the form

(x1, . . . , xk, xk+1, . . . , xk+l, xk+l+1, . . . , xk+2l).

Theorem 6. Let p be a prime, and let k ≥ 1, l ≥ 2. If n > n0(p, k, l) then there exists a
constant C = C(p, k, l) with 0 < C < 1 such that Rp(n, 2Tk,l) < (Cp)n.

We prove the theorem by induction on l. Lemma 1 will be the initial step, and Lemma 2 will
be the induction step.

Lemma 1. Theorem 6 holds for l = 2.

Proof. Let l = 2. Suppose that A ⊂ Fn
p contains no 2Tk,2-shape. Fix a constant 1

3(k+2) < c <
1

2(k+2) , and let t := ⌈c|A|⌉. For simplicity we write T := Tk+2.

(CASE I) A does not contain t disjoint T -shapes.
This case is exactly same as (CASE I) in the proof of Theorem 5.

(CASE II) A contains t disjoint T -shapes.
Let M be a matching of T -semishape of size t, and let X = X1 × X2 × · · · × Xk+2 be the

ground set of M . Then, X1, . . . , Xk+2 are pairwise disjoint sets with the same size t. Let

B = {(x, y) ∈ Xk+1 ×Xk+2 : (x, y) is (k + 1, k + 2)-extendable in X}.

Claim 9. Define a map B → Fn
p by (x, y) 7→ ak+1x + ak+2y. Then the map is injective, and

|B| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct

(xk+1,ik+1
, xk+2,ik+2

), (xk+1,i′k+1
, xk+2,i′k+2

) ∈ B

such that

ak+1xk+1,ik+1
+ ak+2xk+2,ik+2

= ak+1xk+1,i′k+1
+ ak+2xk+2,i′k+2

(12)

with

ik+1 ̸= i′k+1, ik+2 ̸= i′k+2.(13)

Then we have two 2Tk,2-semishapes

(x1,i1 , . . . , xk,ik , xk+1,ik+1
, xk+2,ik+2

, xk+1,ik+1
, xk+2,ik+2

),

(x1,i′1 , . . . , xk,i′k , xk+1,i′k+1
, xk+2,i′k+2

, xk+1,i′k+1
, xk+2,i′k+2

).

Now we verify that the following element in X is a 2Tk,2-shape:

(x1,i1 , . . . , xk,ik , xk+1,ik+1
, xk+2,ik+2

, xk+1,i′k+1
, xk+2,i′k+2

).

In fact, by (13), these k + 4 elements are all distinct. It clearly satisfies the first equation in
(2Tk,2) from (11), that is,

f(x1,i1 , . . . , xk,ik , xk+1,ik+1
, xk+2,ik+2

) = 0.
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Using (12) we can also check the second equation:

f(x1,i1 , . . . , xk,ik , xk+1,i′k+1
, xk+2,i′k+2

)

=

k∑
j=1

ajxj + ak+1xk+1,i′k+1
+ ak+2xk+2,i′k+2

=
k∑

j=1

ajxj + ak+1xk+1,ik+1
+ ak+2xk+2,ik+2

= f(x1,i1 , . . . , xk,ik , xk+1,ik+1
, xk+2,ik+2

)

= 0.

But this contradicts the assumption that A has no 2Tk,2-shape. □

Let G = (V,E) be the graph corresponding to (M,B). Then |E| ≤ |B| − |V | ≤ pn − t. It
follows from Theorem 3 that there is an independent set I ⊂ V with

(14) s := |I| ≥ |V |2

2|E|+ |V |
>

t2

2pn
.

Let M ′ be the matching induced from M by I, and let X ′ = X ′
1 × · · · ×X ′

k+2 be the ground set
of M ′. By this construction it follows that

Claim 10. If (x1,i1 , . . . , xk+2,ik+2
) ∈ X ′ is a T-semishape, then ik+1 = ik+2 ∈ I.

Let B′
1,k+1 = {(x, y) ∈ X ′

1 ×X ′
k+1 : (x, y) is (1, k + 1)-extendable in X ′}.

Claim 11. Define a map B′
1,k+1 → Fn

p by (x, y) 7→ a1x+ ak+1y. Then the map is injective, and

|B′
1,k+1| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct (x1,i1 , xk+1,ik+1
), (x1,i′1 , xk+1,i′k+1

) ∈ B′
1,k+1

such that a1x1,i1 + ak+1xk+1,ik+1
= a1x1,i′1 + ak+1xk+1,i′k+1

with ik+1 ̸= i′k+1. Then we have two

T -semishapes

(x1,i1 , . . . , , xk+2,ik+2
), (x1,i′1 , . . . , , xk+2,i′k+2

),

from which we get another T -semishape

(x1,i′1 , x2,i2 , x3,i3 , . . . , xk,ik , xk+1,i′k+1
, xk+2,ik+1

).

Indeed we have

f(x1,i′1 , x2,i2 , x3,i3 , . . . , xk,ik , xk+1,i′k+1
, xk+2,ik+1

)

= f(x1,i1 , x2,i2 , x3,i3 , . . . , xk,ik , xk+1,ik+1
, xk+2,ik+1

)

= 0.

But This contradicts Claim 10 because ik+1 ̸= i′k+1. □

In the same argument we have |B′
j,k+1| ≤ pn for all 1 ≤ j ≤ k. Let G′ = (V ′, E′) be the

graph corresponding to (M ′,
∪k

j=1Bj,k+1). Then we have |E′| ≤ kpn − s, and we can find an

independent set I ′ ⊂ V ′ with

|I ′| ≥ |V ′|2

2|E′|+ |V ′|
>

s2

2kpn
>

t4

8kp3n
,
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where we used (14) in the last inequality. Let M ′′ be the matching induced from M ′ by I ′. Then
this is a (k+2)-colored T -free matching. Thus by Theorem 2 there is a constant 0 < d < 1 such
that |M ′′| = |I ′| < (dp)n, and

t4

8kp3n
< (dp)n.

This together with

|A|
3(k + 2)

< c|A| ≤ t

we get |A| < (Cp)n for some 0 < C < 1 provided n > n0(p, k). This completes the proof of
Lemma 1. □

Lemma 2. Let k ≥ 2. If Theorem 6 holds for 2Tk,l, then so does for 2Tk−1,l+1.

Proof. We assume that

there exists a constant D = D(p, k, l) with 0 < D < 1 such that if A ⊂ Fn
p

contains no 2Tk,l-shape then |A| < (Dp)n (provided n > n0(p, k, l)).

Under this assumption we will show that

there exists a constant C = C(p, k− 1, l+1) with 0 < C < 1 such that if A ⊂ Fn
p

contains no 2Tk−1,l+1-shape then |A| < (Cp)n (provided n > n0(p, k − 1, l + 1)).

Suppose that A ⊂ Fn
p contains no 2Tk−1,l+1-shape. Fix a constant 1

3(k+2l) < c < 1
2(k+2l) and let

t = ⌈c|A|⌉. For simplicity we write 2T for 2Tk,l. Note that 2T -shape consists of k + 2l elements
while 2Tk−1,l+1-shape consists of k + 2l + 1 elements.

(CASE I) A does not contain t disjoint 2T -shapes.
In this case take disjoint 2T ’s as many as possible, and delete all elements of them. Let A′

be the resulting subset of A. Then we have

|A′| ≥ |A| − (t− 1)(k + 2l) > (1− (k + 2l)c)|A| > |A|/2.

On the other hand, A′ contains no 2T -shape, and it follows from the assumption that |A′| ≤
(Dp)n, and so |A| < (c′′p)n for some c′′ < 1 if n > n0(p, k, l).

(CASE II) A contains t disjoint 2T -shapes.
Let M2T be a matching of 2T -shape of size t:

M2T = {(x1,i, . . . , xk+2l,i) : 1 ≤ i ≤ t},

where {
f(x1,i, . . . , xk,i, xk+1,i, . . . , xk+l,i) = 0,

f(x1,i, . . . , xk,i, xk+l+1,i, . . . , xk+2l,i) = 0

for each i. Let X = X1 × · · · ×Xk+2l be the ground set of M2T . Next we define a matching M
of 2Tk−1,l+1-semishapes in M2T of size t:

M = {(y1,i, . . . , yk+2l+1,i) : yj,i = xj,i for 1 ≤ j ≤ k + l,

yk+l+1,i = xk,i,

yk+l+j+1,i = xk+l+j,i for 1 ≤ j ≤ l,

(x1,i, . . . , xk+2l,i) ∈ M2T , 1 ≤ i ≤ t}.
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Further we let Yj = {yj,1, yj,2, . . . , yj,t} for j ∈ [k + 2l + 1], and let Y = Y1 × Y2 × · · · × Yk+2l+1

be the ground set of M . In other words we have

Yj =


Xj 1 ≤ j ≤ k + l,

Xk j = k + l + 1,

Xj−1 k + l + 2 ≤ j ≤ k + 2l + 1,

and
Y = (X1 × · · · ×Xk−1)× (Xk ×Xk+1 · · ·Xk+l)× (Xk ×Xk+l+1 · · ·Xk+2l).

Note that |Y1| = · · · = |Yk+2l+1| = t, Yk+l+1 = Yk. Note also that the following k + 2l sets are
pairwise disjoint:

Y1, Y2, . . . , Yk−1, Yk = Yk+l+1, Yk+1, . . . , Yk+l, Yk+l+2, . . . , Yk+2l+1

Claim 12. If (y1,i1 , y2,i2 , . . . , yk+2l+1,ik+2l+1
) ∈ Y is a 2Tk−1,l+1-semishape, then ik = ik+l+1,

and yk,ik = yk+l+1,ik+l+1
.

Proof. If not, we get a 2Tk−1,l+1-shape, a contradiction. □
Let Bk,k+1 = {(y, z) ∈ Yk × Yk+1 : (y, z) is (k, k + 1)-extendable in Y}. This means that if

(xk,ik , xk+1,ik+1
) ∈ Bk,k+1, then there exist

x1,i1 , . . . , xk−1,ik−1
, xk+2,ik+2

, . . . , xk+2l,ik+2l

such that

(x1,i1 , . . . , xk−1,ik−1
, xk,ik , . . . , xk+l,ik+l

, xk,ik , xk+l+1,ik+l+1
, . . . , xk+2l,ik+2l

) ∈ Y
is a 2Tk−1,l+1-semishape.

Claim 13. Define a map Bk,k+1 → Fn
p by (x, y) 7→ akx+ ak+1y. Then the map is injective, and

|Bk,k+1| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct (xk,ik , xk+1,ik+1
), (xk,i′k , xk+1,i′k+1

) ∈
Bk,k+1 such that

(15) akxk,ik + ak+1xk+1,ik+1
= akxk,i′k + ak+1xk+1,i′k+1

with ik ̸= i′k. Then we get the following two 2Tk−1,l+1-semishapes:

(x1,i1 , . . . , xk−1,ik−1
, xk,ik , . . . , xk+l,ik+l

, xk,ik , xk+l+1,ik+l+1
, . . . , xk+2l,ik+2l

),(16)

(x1,i′1 , . . . , xk−1,i′k−1
, xk,i′k , . . . , xk+l,i′k+l

, xk,i′k , xk+l+1,i′k+l+1
, . . . , xk+2l,i′k+2l

),(17)

from which we can construct a 2Tk−1,l+1-shape as follows. We take k-th and (k + 1)-th entries
from (17), the other entries from (16) to get

(x1,i1 , . . . , xk−1,ik−1
, xk,i′k , xk+1,i′k+1

, xk+2,ik+2
, . . . , xk+l,ik+l

, xk,ik , xk+l+1,ik+l+1
, . . . , xk+2l,ik+2l

).
(18)

Note that these k + 2l + 1 elements are all distinct because ik ̸= i′k. Let us verify that (18) is a
Tk−1,l+1-shape. For the first equation of (2Tk−1,l+1) from (11), we use (15) and

f(x1,i1 , . . . , xk−1,ik−1
, xk,i′k , xk+1,i′k+1

, . . . , xk+l,ik+l
)

= f(x1,i1 , . . . , xk−1,ik−1
, xk,ik , xk+1,ik+1

, . . . , xk+l,ik+l
)

= 0.

For the second equation, we use (16) to get

f(x1,i1 , . . . , xk−1,ik−1
, xk,ik , xk+l+1,ik+l+1

, . . . , xk+2l+1,ik+2l+1
) = 0.
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But this contradicts the assumption that A has no 2Tk−1,l+1-shape. □

By the same argument we have |Bk,j | ≤ pn for all j = k + 1, . . . , k + l. For j = k + l +
2, . . . , k+ 2l+ 1 letting Bk+l+1,j = {(y, z) ∈ Yk+l+1 × Yj : (y, z) is (k + l + 1, j)-extendable}, we
also get |Bk+l+1,j | ≤ pn similarly.

Let G = (V,E) be the graph corresponding to(
M, (

∪k+l
j=k+1Bk,j) ∪ (

∪k+2l+1
j=k+l+2Bk+l+1,j)

)
.

Since |E| ≤ 2lpn − t there is an independent set I ⊂ V such that

(19) s := |I| ≥ |V |2

2|E|+ |V |
>

t2

2lpn
.

Let M ′ be the matching induced from M by I, and let Y ′ = Y ′
1 × · · · × Y ′

k+2l+1 be the ground
set of M ′. By the construction we have the following.

Claim 14. If (y1,i1 , . . . , yk+2l+1,ik+2l+1
) ∈ Y ′ is a 2Tk−1,l+1-semishape, then ik = ik+1 = · · · =

ik+2l+1 ∈ I.

Let B′
1,k := {(y1,i1 , yk,ik) ∈ Y ′

1 × Y ′
k : (y1,i1 , yk,ik) is (1, k)-extendable in Y ′}.

Claim 15. Define a map B′
1,k → Fn

p by (y1,i1 , yk,ik) 7→ a1y1,i1 + akyk,ik . Then the map is

injective, and |B′
1,k| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct (y1,i1 , yk,ik), (y1,i′1 , yk,i′k) ∈ B′
1,k such that

a1y1,i1 + akyk,ik = a1y1,i′1 + akyk,i′k(20)

with ik ̸= i′k. Then we get two 2Tk−1,l+1-semishapes:

(y1,i1 , y2,i2 , . . . , yk−1,ik−1
, yk,ik , yk+1,ik , . . . , yk+2l+1,ik),

(y1,i′1 , y2,i′2 , . . . , yk−1,i′k−1
, yk,i′k , yk+1,i′k

, . . . , yk+2l+1,i′k
),

from which we obtain another 2Tk−1,l+1-semishape:

(y1,i′1 , y2,i2 , . . . , yk−1,ik−1
,

yk,i′k , yk+1,ik , . . . , yk+l,ik ,

yk+l+1,i′k
, yk+l+2,ik , . . . , yk+2l+1,ik).

Note that i′∗ appears only on the first, k-th, and (k + l+ 1)-th entries. Let us check that this is
actually a solution to (2Tk−1,l+1). For the first equation it follows from (20) that

f(y1,i′1 , y2,i2 , . . . , yk−1,ik−1
, yk,i′k , yk+1,ik , . . . , yk+l,ik)

= f(y1,i1 , y2,i2 , . . . , yk−1,ik−1
, yk,ik , yk+1,ik , . . . , yk+l,ik)

= 0.

For the second equation we note that yk,i′k = yk+l+1,i′k
by Claim 12, and we get

f(y1,i′1 , y2,i2 , . . . , yk−1,ik−1
, yk+l+1,i′k

, yk+l+2,ik , . . . , yk+2l+1,ik)

= f(y1,i′1 , y2,i2 , . . . , yk−1,ik−1
, yk,i′k , yk+1,ik , . . . , yk+l,ik)

= 0.

This contradicts Claim 14 because ik ̸= i′k. □
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In the same way we have |B′
j,k| ≤ pn for all j = 1, 2, . . . , k− 1. Let G′ = (V ′, E′) be the graph

corresponding to (M ′,
∪k−1

j=1 B
′
j,k). Since |E′| ≤ (k− 1)pn − s there is an independent set J ⊂ V ′

such that

|J | ≥ |V ′|2

2|E′|+ |V ′|
>

s2

2(k − 1)pn
>

t4

8kl2p3n
,(21)

where we used (19) in the last inequality. Let M ′′ be the matching induced from M ′ by J . Then
this is a (k+2l+1)-colored 2Tk−1,l+1-free matching. Thus by Theorem 2 there exists a constant

0 < d < 1 such that |M ′′| = |J | < (dp)n. This together with (21) implies t <
4
√
8kl2 ( 4

√
d p)n,

and

|A| ≤ t

c
< 3(k + 2l)

4
√
8kl2 (

4
√
d p)n.

If n > n0(p, k, l) then the RHS is less than (Cp)n for some C = C(p, k, l) with 0 < C < 1. □

Proof of Theorem 6. Let k, l be given. By Lemma 1 the statement holds for (2Tk+l−2,2). Then
by Lemma 2 the statement holds for (2Tk+l−3,3). Now we apply Lemma 2 repeatedly as follows:

2Tk+l−2,2 → 2Tk+l−3,3 → 2Tk+l−4,4 → · · · → 2Tk+1,l−1 → 2Tk,l,

and we get the statement for (2Kk,l) in the end. □

7. Three equations with ten variables

In this section we show that system S−
3 from section 1 is moderate. To make the description

for the proof easier we rename the systems and variables. Let f be the following Fp-coefficient
polynomial in 5 variables:

f(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 − 4x5.

Let (T ) be the system consisting of f = 0. We redefine systems (3S5) in section 5 and (S−
3 ) in

section 1 as (T333) and (Tabb), respectively:

(T333)


f(x1, x2, x3, x4, x5) = 0,

f(x1, x2, x3, x6, x7) = 0,

f(x1, x2, x3, x8, x9) = 0,

(Tabb)


f(x1, x2, xa, x4, x5) = 0,

f(x1, x2, xb, x6, x7) = 0,

f(x1, x2, xb, x8, x9) = 0.

Recall that T333 is the system in 9 variables, and Tabb in 10 variables.

Theorem 7. If n > n0(p) then there exists a constant C = C(p) with 0 < C < 1 such that
Rp(n, Tabb) < (Cp)n.

Proof. Suppose that A ⊂ Fn
p contains no Tabb-shape. Fix a constant 0 < c < 1, and let t = c|A|.

(CASE I) A does not contains t disjoint T333-shapes.
We have already settled this case in Theorem 5.

(CASE II) A contains t disjoint T333-shapes. Let

MT333 = {(x1,i, . . . , x9,i) : 1 ≤ i ≤ t}
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be a matching of T333-shape of size t, that is,
f(x1,i, x2,i, x3,i, x4,i, x5,i) = 0,

f(x1,i, x2,i, x3,i, x6,i, x7,i) = 0,

f(x1,i, x2,i, x3,i, x8,i, x9,i) = 0.

Let X = X1 × · · · ×X9 be the ground set of M , that is, Xj = {xj,1, xj,2, . . . , xj,t} for 1 ≤ j ≤ 9.
Next we define a matching M of Tabb-semishape of size t as follows.

M = {(y1,i, y2,i, ya,i, yb,i, y4,i, y5,i, y6,i, y7,i, y8,i, y9,i) :
yj,i = xj,i for j ∈ {1, 2, 4, 5, 6, 7, 8, 9},
ya,i = yb,i = x3,i,

(x1,i, . . . , x9,i) ∈ MT333 , 1 ≤ i ≤ t}.
Then the ground set Y of M is as follows.

Y = Y1 × Y2 × Ya × Yb × Y4 × Y5 × Y6 × Y7 × Y8 × Y9, where

Yj = {yj,1, yj,2, . . . , yj,t} for j ∈ {1, 2, a, b, 4, 5, 6, 7, 8, 9}.
We can also write Y = X1 ×X2 ×X3 ×X3 ×X4 ×X5 ×X6 ×X7 ×X8 ×X9. Note that |Yj | = t,
Ya = Yb, and the following 9 sets Y1, Y2, Ya = Yb, Y4, Y5, Y6, Y7, Y8, Y9 are pairwise disjoint.

Claim 16. If (y1,i1 , y2,i2 , ya,ia , yb,ib , y4,i4 , y5,i5 , y6,i6 , y7,i7 , y8,i8 , y9,i9) ∈ Y is a Tabb-semishape, then
ia = ib and ya,ia = yb,ib.

Proof. If not, we have a Tabb-shape, a contradiction. □
Let Ba,4 = {(x3,i3 , x4,i4) ∈ Ya × Y4 : (x3,i3 , x4,i4) is (a, 4)-extendable in Y}. This means that

if (x3,i3 , x4,i4) ∈ Ba,4 then there exist x1,i1 , x2,i2 , x5,i5 , . . . , x9,i9 such that

(x1,i1 , x2,i2 , x3,i3 , x3,i3 , x4,i4 , x5,i5x6,i6 , x7,i7 , x8,i8 , x9,i9) ∈ Y
is a Tabb-semishape.

Claim 17. Define a map Ba,4 → Fn
p by (x3,i3 , x4,i4) 7→ x3,i3 + x4,i4. Then this map is injective,

and |Ba,4| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct (x3,i3 , x4,i4), (x3,i′3 , x4,i′4) ∈ B3,4 such that

(22) x3,i3 + x4,i4 = x3,i′3 + x4,i′4 .

Then we have two Tabb-semishapes:

(x1,i1 , x2,i2 , x3,i3 , x3,i3 , x4,i4 , x5,i5 , x6,i6 , x7,i7 , x8,i8 , x9,i9) ∈ Y,(23)

(x1,i′1 , x2,i′2 , x3,i′3 , x3,i′3 , x4,i′4 , x5,i′5 , x6,i′6 , x7,i′7 , x8,i′8 , x9,i′9) ∈ Y.(24)

Using them we get another Tabb-semishape (actually Tabb-shape), that is,

(x1,i1 , x2,i2 , x3,i′3 , x3,i3 , x4,i′4 , x5,i5 , x6,i6 , x7,i7 , x8,i8 , x9,i9) ∈ Y,

where the entries in Ya and Y4 come from (24), otherwise from (23). Let us check that this is
actually a solution to (Tabb). Clearly it satisfies the second and the third equations. For the first
equation, it follows from (22) that

f(x1,i′1 , x2,i2 , x3,i′3 , x4,i4 , x5,i5) = f(x1,i1 , x2,i2 , x3,i3 , x4,i4 , x5,i5) = 0.

But this contradicts Claim 16 because i3 ̸= i′3. □
In the same way we have |Ba,5| ≤ pn. The next claim is similar but more delicate.
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Claim 18. Define a map Ba,6 → Fn
p by (x3,i3 , x6,i6) 7→ x3,i3 + x6,i6. Then this is injective, and

|Ba,6| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct (x3,i3 , x6,i6), (x3,i′3 , x6,i′6) ∈ Ba,6 such that

x3,i3 + x6,i6 = x3,i′3 + x6,i′6

with i3 ̸= i′3. Then we have two Tabb-semishapes:

(x1,i1 , x2,i2 , x3,i3 , x3,i3 , x4,i4 , x5,i5 , x6,i6 , x7,i7 , x8,i8 , x9,i9) ∈ Y,

(x1,i′1 , x2,i′2 , x3,i′3 , x3,i′3 , x4,i′4 , x5,i′5 , x6,i′6 , x7,i′7 , x8,i′8 , x9,i′9) ∈ Y.

We also have

f(x1,i1 , x2,i2 , x3,i′3 , x6,i′6 , x7,i7) = f(x1,i1 , x2,i2 , x3,i3 , x6,i6 , x7,i7) = 0.

Now we consider the following element in Y:

(x1,i1 , x2,i2 , x3,i′3 , x3,i3 , x4,i4 , x5,i5 , x6,i′6 , x7,i7 , x8,i8 , x9,i9) ∈ Y.

This is not a solution to (Tabb) as it is in the order above, and here is the tricky point. By
sorting these 10 values in the following order, we obtain a Tabb-shape, that is,

f(x1,i1 , x2,i2 , x3,i′3 , x6,i′6 , x7,i7) = 0,

f(x1,i1 , x2,i2 , x3,i3 , x4,i4 , x5,i5) = 0,

f(x1,i1 , x2,i2 , x3,i3 , x8,i8 , x9,i9) = 0.

But this contradicts the assumption that A contains no Tabb-shape. □
In the same way we have |Ba,j | ≤ pn for j = 7, 8, 9.

Let G = (V,E) be the graph corresponding to (M,
∪9

j=4Ba,j). Then |E| ≤ 6pn − t and there
exists an independent set I ⊂ V such that

(25) s := |I| ≥ |V |2

2|E|+ |V |
>

t2

12pn
.

Let M ′ be the matching induced from M by I:

M ′ := {(y1,i, y2,i, ya,i, yb,i, y4,i, y5,i, y6,i, y7,i, y8,i, y9,i) ∈ M : i ∈ I},
and let Y ′ = Y ′

1 × · · · × Y ′
9 be the ground set of M ′. By the construction we have the following.

Claim 19. If (y1,i1 , . . . , y9,i9) ∈ Y ′ is a Tabb-semishape, then ia = ib = i4 = · · · = i9 ∈ I.

Let B′
1,a := {(y1,i1 , ya,ia) ∈ Y ′

1 × Y ′
a : (y1,i1 , ya,ia) is (1, a)-extendable in Y ′}.

Claim 20. Define a map B′
1,a → Fn

p by (y1,i1 , ya,ia) 7→ y1,i1 + ya,ia. Then this is injective, and

|B′
1,a| ≤ pn.

Proof. Suppose the contrary. Then there exist distinct (y1,i1 , ya,i), (y1,i′1 , ya,i′) ∈ B′
1,a such that

y1,i1 + ya,i = y1,i′1 + ya,i′ ,(26)

and i ̸= i′. Then we have two Tabb-semishapes

(y1,i1 , y2,i2 , ya,i, yb,i, y4,i, y5,i, y6,i, y7,i, y8,i, y9,i) ∈ Y,

(y1,i′1 , y2,i′2 , ya,i′ , yb,i′ , y4,i′ , y5,i′ , y6,i′ , y7,i′ , y8,i′ , y9,i′) ∈ Y.

Using them we get another Tabb-semishape as follows.

(y1,i′1 , y2,i2 , ya,i′ , yb,i′ , y4,i, y5,i, y6,i, y7,i, y8,i, y9,i) ∈ Y.
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Let us verify that it is indeed a solution to (Tabb). The first equality follows from (26). For the
second equality, we use Claim 16 and (26) to get

y1,i′ + yb,i′ = y1,i′ + ya,i′ = y1,i + ya,i = y1,i′ + yb,i,

and
f(y1,i′1 , y2,i2 , yb,i′ , y5,i, y6,i) = f(y1,i1 , y2,i2 , ya,i, y5,i, y6,i) = 0.

The third equality can be verified similarly. But this contradicts Claim 19 because i ̸= i′. □
Similarly we have |B′

2,a| ≤ pn.

Let G′ = (V ′, E′) be the graph corresponding to (M ′, B′
1,a ∪ B′

2,a). Since |E′| ≤ 2pn − s we

can find an independent set J ⊂ V ′ such that

|J | ≥ |V ′|2

2|E′|+ |V ′|
>

s2

4pn
>

t4

4 · 122p3n
=

t4

2462p3n
,(27)

where we used (25) for the last inequality. Let M ′′ be the matching induced from M ′ by J :

M ′′ := {(y1,i, . . . , y9,i) ∈ M ′ : i ∈ J}.
Then this is a 10-colored strongly Tabb-free matching. Thus we have |M ′′| = |J | < (dp)n for
some 0 < d < 1 by Theorem 2. Consequently it follows that

|A| = t

c
<

2
√
6

c
(

4
√
d p)n.

The RHS is less than (Cp)n for some C = C(p) with 0 < C < 1 if n > n0(p). □
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