SOLVING LINEAR EQUATIONS IN
A VECTOR SPACE OVER A FINITE FIELD II

MASATO MIMURA AND NORIHIDE TOKUSHIGE

ABSTRACT. Suppose that we are given a system of linear equations in k variables. We are
interested in the maximum size of a subset in the n-dimensional vector space over the p-element
field which contains no solution with & distinct elements. If the maximum size is less than (cp)™
for some constant 0 < ¢ < 1, then we say that the system is moderate. We first show that
any system consisting of just one equation is moderate provided the coefficients sum to zero.
We then provide several moderate systems consisting of two or three equations. Our proofs are
based on Tao’s slice rank method [10] and its extension due to Sauermann [6].

1. INTRODUCTION

Let p be a fixed prime, and let ) denote the n-dimensional vector space over the p-element
field IF,. We consider a subset A C F} and a system of linear equations (S) in k variables
where no solution in A has k distinct elements. According to Ruzsa [8] let R,(n,S) denote the
maximum size of A satisfying the condition. We assume that n is sufficiently large compared
with the fixed p and S, and we are interested in a system (S) satisfying Rp(n,S) < (cp)™ for
some constant ¢ = ¢(p, k) with 0 < ¢ < 1. Let us call such a system (S) moderate. In this paper
we will give some moderate systems arising from the same polynomial.

Ellenberg and Gijswijt [4] proved that any system consisting of one equation in three variables
is moderate provided the coefficients sum to zero. We extend this results to more than three
variables.

Theorem 1. Let k > 3 and let p be a prime. Let (S) be a system consisting of one equation
a1z, + agxe + - -+ aprr = 0,
where the coefficients ax, ..., a, € F, satisfy
ar+ag+ - +ap = 0.
If n > ng(p, k) then Ry(n,S) < (Cp)"™ for some constant C = C(p, k) with 0 < C < 1.
If the coefficients (considered in Z instead of F),) satisfy
O0<ar<ax < - <ap_1 < —ap <p,

then it is known from Behrend’s construction that R,(n,S) > (¢p)" where ¢’ := —1/a;, > 0,
see, e.g., Theorem 5.4 in [7].
By applying the result of Ellenberg—Gijswijt to equation

r1 — 2x9 + 23 =0,

we see that if A C [F)) contains no 3-AP (an arithmetic progression of length three) then |A] <
(cp)™ for some 0 < ¢ < 1. Do we have a similar upper bound for 4-AP? This is a very interesting
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open problem. For this case we consider the system of two equations

(4-AP) {

and we ask if (4-AP) is moderate or not (see [5] for some related results). This 4-AP problem
seems difficult, but we can find some other moderate systems, which are our main concern in
this paper. In fact by changing the definition of 4-AP slightly we get a moderate system, which
we call (T'):

r1 — 2x9 + 23 = 0,
To — 2x3+ x4 =0,

T x1 — 2w2 + 23 =0,
(T) T4 — 223 + 5 = 0.
Let us present some more examples of moderate systems. For this we introduce a polynomial
f in 5 variables:
(1) [y, 22,23, 24, T5) = T1 + T2 + T3 + T4 — 4T5.

Let (Sp) denote the system consisting of one equation f = 0 only. Then, for fixed prime p > 5,
we have (¢p)™ < Rp(n,So) < (cp)™ for some 0 < ¢ < ¢ < 1. In particular, (Sp) is a moderate
system, and this is a starting point. Then we define three systems (S1) in 9 variables, (S2) in 8
variables, and (S3) in 11 variables as follows.

f(z1, 22,23, 74, 75) = 0,
(Sl) f(xla x2, .’Eg,flfil,xir,) = 07 (SZ) (53) f(xla X2, xgvxipxi’)) = 07

f(x1, 22, 23,24, 25) = 0, { f(x1, 2, 3, 24, T5)
f(@y, w9, 23,2, 05) = 0
f($17$27$37$Z7$g) :07 ’ ’ ’ ’ ’ f($17$2755g7$£1/7xg) =0.

We will show that both (S7) and (S2) are moderate. The authors were unable to determine
whether system (S3) is moderate or not.

Conjecture 1. System (S3) is moderate, that is, Ry(n,Ss3) < (cp)” for some 0 < ¢ < 1.

By changing the definition of (S3) only slightly we get a moderate system (S5 ):
f(xlv T2,X3, T4, ':U5) = 07
(Sg) f(xl,fﬂg,xg,m'il,l'g) :07
f(xy, o, 25, 2], ) = 0.

Note that 2 appears in S3 but not in S;. Note also that the fact that S5 is moderate implies
that S; and Sy are moderate as well.

To prove the results mentioned above we use Tao’s slice rank method [10]. We apply the
method, however, not in a straightforward way, but we apply a modified version developed by
Sauermann. In [9] she considered the system of one equation in p variables

(Tp) x1+$2+"'+$p207
and proved that
(2) Ry(n,Tp) < Cp(2y/p)"
for some constant C, depending p only. Note that in this case the number of variables coincides
with the number of elements of the base field. To prove (2) she showed that if A C F) contains
no solution to (7},) without repeated elements then one can delete only a small part of A to
make the remaining part applicable to the multicolored version of the Tao’s slice rank bound.
We employ the same process repeatedly and systematically.

In section 2 we prepare some tools for the proofs. As a warm-up we prove Theorem 1 in
section 3. Next we show in section 4 that system (7') is moderate (Theorem 4). Then in
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sections 5 and 6 we prove our main results Theorems 5 and 6, respectively. These general
results contain the fact that (S1) and (S2) are moderate as special cases. In the last section we
show that system (S5 is also moderate (Theorem 7).

2. PRELIMINARIES

For a given system of linear equations (S) in k variables, we call a solution an S-shape if
it consists of k distinct elements. So R,(n,S) is the largest size of A C F); which contains no
S-shape. We also call a solution which may have repeated elements an S-semishape. In this
paper we always assume that p is a fixed prime, and we are interested in the situation n — oco.

2.1. Multicolored version of Tao’s slice rank method. In the rest of the paper, by an
equation we always mean a balanced linear equation, that is, an equation written in the form

a1x1 + asxs + - - - + agzy = 0,

where the coefficients satisfy

ap+az+---+ap=0.
Let (S) be a system of equations in k variables. Let x; = (x1,%24,...,%k;) be a solution to
(S) for 1 < i < m. We say that M = {x1,...,X,} is a matching of S-semishape of size m if
the solutions in M are disjoint, that is,

{l‘l,ila:EZ,ila e 7mk,i1} N {xl,iga L5y - - - 7$k,i2} = @
forall 1 <i < j < m. (We call M a matching of S-shape if each solution has no repeated
elements.) Let X; = {xj1,2j2,...,2jm} for 1 < j <k, and let X = X x --- x X;. We call
X = X(M) the ground set of M. We say that the matching M is k-colored S-free if the following
holds:

(X141, T2,095 - - - ,a;/m-k) € X is an S-semishape <= i1 =iy = --- = iy,.

The following result is a consequence of Tao’s slice rank method. (For one equation, see, e.g.,
[2, 6, 9].)

Theorem 2 ([7]). Let p be a fized prime. Let (S) be a system of L linear balanced equations in
k variables which take values in ¥y, and let v be the number of variables which appear in only
one of the equations. Suppose that there is a k-colored S-free matching of size m. If

(3) sr+ik—-r)>L
then
m < (cp)"

for some constant ¢ = ¢(p, k, L) with 0 < ¢ < 1.

Let M = {x1,...,X;»} be a matching of S-semishape of size m. For I C [m]:={1,2,...,m}
let

M ={x;:i€l}

and we say that M’ is the matching induced from M by I. By renumbering the indices we may
assume that I = [s] if |I| = s, and we will always do so.

Let X = X; x --- x X}, be the ground set of M. We say that (zq,,2p1,) € Xo X Xp is
(a,b)-extendable in X' to mean that there exist complementing elements z;;. (j € [k] \ {a,b})

such that (x1,,224,,...,%k,) € X is an S-semishape. This extendability is introduced by
Sauermann in [9], which will play an important role in this paper. Let

B = {(za1.,%b1,) € Xa X Xp: (@q1,,Tp,) is (a,b)-extendable in X.}
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Then a graph G = (V, E) corresponding to (M, B) is defined by V' = [m], and two vertices
v and v in V are adjacent if (x4,,,2p1,) € B and u # v. Note that for all u € V' we have
(%aty,sTb1,) € B because M is a matching, but {u,u} ¢ E by definition. Thus we have

(4) [El <[B|=[V].

2.2. Independence number of a graph. Let G = (V, E) be a graph, and let o denote the
independence number of G. Then, it is easy to see that
a > 7|V|
T 14+ A
where A denotes the maximum degree of the graph. It is also known that this inequality is still
valid if we replace A with the average degree, see, e.g., [1] Probabilistic Lens: Turén’s Theorem.

Theorem 3 (Caro [3], Wei [11]).
V]

C = TEQEV])

3. A SYSTEM CONSISTING OF ONE EQUATION

In this section we prove Theorem 1 by induction on k, the number of variables. The base case
k = 3 is exactly the result of Ellenberg and Gijswijt [4]. (This case also follows from Theorem 2
directly.)

Let & > 3. We assume that the statement of the theorem holds for all systems of k variables,
and we prove the case k + 1 variables. Let (Sky1) be a given system consisting of a balanced
equation in k 4 1 variables.

(Sk+1) a1z + -+ ap_1Tp—1 + bpTp + bpy17x1 = 0.
Define a system (Sj) in k variables by
(Sk) ar@1+ -+ ag_12p-1 + agzg = 0,
where ap = by, + bg+1.
Suppose that A C F} contains no Sy 1-shape. Our aim is to show that [A| < (Cp)" for some

0 < C < 1. Fix a constant ¢ with 1/3k < ¢ < 1/2k, and let ¢ := [c|A|]. For simplicity we write
S for Sy.

(CASE I) A does not contain ¢ disjoint S-shapes.
In this case take disjoint S’s as many as possible, say, t’ of S, and delete all elements of them.
Let A’ be the resulting subset of A. Noting that ¢’ <t —1 < ¢|A| we have

|A'| = |A| =tk > (1 — ck)|A| > |A]/2.
On the other hand, A’ contains no S-shape, and it follows from the induction hypothesis that
|A"] < (p)™ for some 0 < ¢ < 1, and so |A4| < (¢"p)" for some 0 < ¢ < 1 provided n >
no(p, k+1).
(CASE II) A contains t disjoint S-shapes.

Let My = {x; = (14,...,2%;) : 1 < i < t} be a matching of S-shape of size t, and let
X = X1 x -+ x X}, be the ground set of My, that is, X; = {z;1,...,2;¢+} for 1 < j < k. Then
for each i, (x;,2y,) is a semishape of Si11. So we can define a matching of Sy -semishape M
of size t by

M ={yi= (Y1,i,- - Yr+14) : 1 <@ < t},
where y; = (x;,25,). Let Y =Y1 x -+ x Y11 = X x X, be the ground set of M. Note that k
sets Y7,Ys,..., Yy = Y11 are pairwise disjoint.



SOLVING LINEAR EQUATIONS IN A VECTOR SPACE II 5

Claim 1. If (Y11 -+ > Yksigs Ykt Linys,) € YV 18 an Syy1-semishape, then iy = igq1.

Proof. If not, then we get an Si1-shape, a contradiction. U
For 1 <j<klet Bjp={(y,2) €Y; x Yy :(y,2) is (j, k)-extendable in V}.

Claim 2. Define a map By — Fy by (y,2) = (a1y + bgz). Then this map is injective, and

|Bril < p".

Proof. Suppose the contrary, that is, there exist distinct (1, k)-extendable pairs (y14,, Y, ) and

(yl,i’layk,i;) in ¥; x Y} such that

(5) a1y1,iy + OkYki, = a1914, + OkYr it

with iy, # ¢}.. By the definition of extendability there are two corresponding Sy 1-semishapes

y = (yl,’h s Y20 -+ Ykyig yk+1,ik+1);
/ Pyp—
y = (yl,z"l,yQ,igy co Ykl yk+1,i;€+1)a
and, by the previous claim, i = ixy1 and iy = i, ;. From y and y’ we get another Sy, -
semishape
.
y = (yl,i’l y Y200y - s yk7i;€ayk+1,z‘k+1),

where ¢/ appears only in the first and the k-th entry. Indeed, by (5), we have

a1+ 02y2,4, + 0+ kit + bk 1Yk 1,510
= a1Y1,iy + @292,y + + OkYkiy + Okt 1Ykt1,ipy, = 0.

But in y” we have i), # i1 because i) # i; and iy = ir41. This contradicts the previous
claim. O

In the same way we have |Bj | < p™ for 2 < j < k as well.

Let G = (V, E) be the graph corresponding to (M, Uf;ll Bj), that is, V = [[M|] = [t], and
two vertices v and v in V' are adjacent if (yu,,Yv,,) € Bjk for some 1 < j < k and u # v. By
(4) we have

IE| < (k= 1)p" —t.
Then it follows from Theorem 3 that there exists an independent set I C V such that
|V|2 t2

= |I| > > .
s =2 7 E ~ 2

Let M’ be the matching induced from M by I. By the construction M’ is (k+ 1)-colored S-free.
Thus by Theorem 2 we have |M'| < (¢'p)™ for some 0 < ¢ < 1. Consequently we have

(cA]) ’

and, noting that 1/c < 3k, we have
|A| < /2k/c(VE p)" < V6k(V p)" < (Cp)™
for some C' = C(p,k + 1) with 0 < C < 1 provided n > ng(p,k + 1). O
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4. T

Recall that T-shape is defined by the following equations.
r1 — 229 + 23 =0,
{x4—2x3—|—x5 = 0.

In this section we show the following result.

Theorem 4. Let p > 3 be a prime. If n > ny(p) then there exists a constant C = C(p) with
0 < C <1 such that Ry(n,T) < (Cp)™.

For the proof we assume that A C [} contains no T-shape and bound the size of A. If there
is no element x € A such that x is the middle term of a 3-AP in A, and moreover x is the first
or third term of another 3-AP in A, then we can bound the size of A easily (see Case III below).
But there are two obstacles of T-semishapes for the non-existence of such . One is the case
when zs = x5 in T-semishape, which we call P-shape. This configuration consists of 4 elements
and defined by the following equations.

T1 — 229 + 23 =0,

T4 — 223 + 19 = 0.
Actually P-shape is a 4-AP. The other is the case when z; = x5 in T-semishape, which we call
(-shape. This is also 4-element configuration defined by the following equations.

T — 2x9 + a3 =0,

r4 — 2x3+x1 = 0.
Proof of Theorem j. Suppose that A C ) contains no T-shape. Let ¢ be a fixed constant with
0<e< % and let

(6) t:= [clA[l.

(CASE I) A contains ¢ disjoint P-shapes.
Let Mp be a matching of P-shape of size t:
Mp = {(x1,4, 2,4, 234, ®a,) : 1 <0 <t}

Let Xp = X1 x -+ x X4 be the ground set. Then we can define a matching of T-semishape of
size t by

M = {(21,, T2,i, T34, T4, T2i) * (T1,6, T2, T34, T43) € Mp, 1 < i <t}
on the ground set X := Xp x X5, where X5 := X5. Note that the four sets X1, Xo = X5, X3, X4
are pairwise disjoint.

Claim 3. If (z1,,,%2,,,-.-,%545) € X is a T-semishape, then iz = is, that is, T2, = T5 ;.

Proof. If not, then we get a T-shape, a contradiction. O
Let B := {(z,y) € X1 x Xo: (z,y) is (1, 2)-extendable in X'}.

Claim 4. Define a map B — F} by (z,y) — x — 2y. Then this map is injective, and |B| < p".

Proof. Suppose the contrary. Then there exist distinct pairs (z,y) and (2/,%3’) in B such that
x—2y = 2'—2y/. In this case y # 3’ and there are two corresponding T-semishapes (z,y, z3, x4, y)
and (2/,y',2%,2),y’). Then we have another T-semishape (2/,v,z3,24,y). Indeed we have
¥ —2y +23=x—2y+x3 =0 and x4 — 223 +y = 0. But this contradicts Claim 3 because

Y #y. a
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In the same way we can show that |B’| < p’, where B’ is the set of (4,5)-extendable pairs in
X.

Let G = (V, E) be the graph corresponding to (M, B U B’). By (4) we have |E| < 2p™ —t.
By Theorem 3 there is an independent set I C V with

|V|2 t2
7 > — > —.
" 1= 5w 7
Let M’ be the matching induced from M by I.
Claim 5. M’ is 5-colored T-free.

Proof. Let X' be the ground set of M'. Suppose that (x1,,%2,,...,254;) € X’ is an T-
semishape. Then by construction it follows that io = i5, i1 = i9, and iy = i5. So let ¢ := i1 =
i9 = i4 = i5. Moreover it follows from x1; — 2x2; 4+ 3, = 0 that i3 = ¢. O

By Theorem 2 we have |I| = |[M’| < (up)™ for some pu < 1. Then by (6) and (7) we get

Al < £ < 2(Jp)" < (Cp)"
for some C' < 1 provided n > nyg.

(CASE II) A contains ¢ disjoint @-shapes.

One can show that |A| < (Cp)" for some C' < 1 in almost the same way as in CASE 1. So
we just give a sketch of the proof. By extending a matching of QQ-shape we get a matching of
T-semishape on the ground set X = Xg x X;. Then we can show the following.

o If (14, %2y,...,25,5) € X is a T-semishape, then i; = 5.
e The size of the set of (1,2)-extendable pairs in X is at most p.
e The size of the set of (4,5)-extendable pairs in X is at most p’.

The remaining part is exactly the same as Case 1.

(CASE III) A contains less than ¢ disjoint P-shapes and less than ¢ disjoint Q-shapes.
By deleting at most 4(t — 1) +4(t — 1) < 8t elements from A we can destroy all P-shapes and
Q-shapes. Let A’ C A be the resulting subset with |A’| > |A| — 8t. Let

! :={x € A" : x is the middle term of a 3-AP in A'},
5:={z € A" : x is the first or third term of a 3-AP in A'}.

Since A’ contains no T-shape, no P-shape, no @-shape, it follows that A} N A, = 0. Let A” be
one of A\ A} and A’\ A} such that |A”| > 1|4’|. Since A” contains no 3-AP it follows from
Theorem 2 that |A”| < (Ap)™ for some A < 1. Thus we have

|A| — 8(c|A| + 1) < |A] — 8t < |A] < 2|4"| < 2()p)",

and |A| < 2 (Ap)" + 25 < (Cp)™ for some C < 1. O

5. CYCLES SHARING ALL BUT TWO VERTICES
Let f be the following [F)-coefficient balanced polynomial in & 4 2 variables;

k+2

f($1,332, PPN :Ek+2) = Zalxz
=1



8 MASATO MIMURA AND NORIHIDE TOKUSHIGE

Let (Sk+2) be equation f = 0, and let (I.Sk12) be the following system of [ equations in k + 2[
variables:

f(xh v 7$k7y1721) - O)
f(xh s 7$k7y2722) = O)
(8) ({Sk+2)
f(wla v 7$k7ylazl) =0.
Theorem 5. Let p be a prime, and let k > 1 and | > 2. If n > ng(p, k,l) then there exists a
constant C' = C(p, k,1) with 0 < C < 1 such that Ry(n,1Sk12) < (Cp)".

Proof. Suppose that A C F}} contains no lSy2-shape. Fix a constant m <c< m, and
let ¢ := [c|A]]. For simplicity we write S for Siio.

(CASE I) A does not contain ¢ disjoint S-shapes.
In this case take disjoint S’s as many as possible, and delete all elements of them. Let A’ be
the resulting subset of A. Then we have

|A| > |A] = (t—1)(k+2) > (1 —c(k+2))]A| > |A]/2.
On the other hand, A’ contains no S-shape, and it follows from Theorem 1 that |A’| < (¢'p)”
for some ¢ < 1, and so |A] < (¢'p)™ for some ¢ < 1 provided n > no(p, k,1).

(CASE II) A contains t disjoint S-shapes.
Let M be a matching of S-shape of size t:

M = {(:ELZ',CCQ’Z‘, e 73716—&-2,1') 01 S 7 S t}.
Let X = X1 x Xg X - -+ X Xj12 be the ground set of M. For simplicity we also write Y := X1,

Z = Xjqo, and y; = Tp41,4, % = Thyo, for 1 <4 <t Then, Xq,..., X0 are pairwise disjoint
sets with the same size t. Let

B={(y,z) €Y x Z:(y,z)is (k+ 1,k + 2)-extendable in X'}.

Claim 6. Define a map ¢ : B — F) by ¢(y,2) = ar11y + axr22. Then o~ ()| <1 —1 for all
a €y, and |B] < (I —1)p".
Proof. Suppose the contrary. Then there exist a € F) and 41,...,4 € [t] such that [ pairs
Wirs zi )5 -5 (Wi, 2i7) € B
are distinct but take the same value a by ¢. Since (y;,, Zit ) is an extendable pair there is an
S-semishape (actually an S-shape) (zq 7, @27, ... 7$k,z‘g7yi172i’1) € X with
a1Tq 3y + a2To 4y + 0+ QT = —a
Thus we have
f(xl,i’{a T ity s Thill» Yiu zy) =0
for all 1 < <. This means that A contains an [Sk2-shape, a contradiction. U
Let G = (V, E) be the graph corresponding to (M, B). Then by (4) we have |E| < |B|—|V]| <
(I —1)p™ —t. It follows from Theorem 3 that there is an independent set I C V with
|V’2 . t2
El+[V] = 20— 1)p™
We may assume that I = [s]. Let M’ be the matching induced from M by I:
M ={(z1y.. T4y yiy2zi) € M : 1< i <s}.

(9) si=lllz 5
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Let X' = X| x -+ x X; x Y’ x Z' be the ground set of M’. By the construction we have the
following.

Claim 7. If (14, .., Tky, Yi, 27) € X' is an S-semishape, then i =i’
For1<j<klet
o = {(2,2) € X x Z": (2, 2) is (j, k 4 2)-extendable in X'}

Claim 8. Let B' = By ,,. Define a map B — F} by (z,2) = a12 + api22. Then the map is
injective, and |B'| < p™.
Proof. Suppose the contrary. Then there exist (z1,,, 2,) and (:ULZ-/I ,2y) in B’ such that
(10) @121, + App2ze = Q1T 3+ Ahyazy
with i1 # ¢} and v # v'. By the definition of extendability with the previous claim there are two
S-semishapes in X”:

(T1,i1, @295 -+ » Thiigs Yos 20),

(xl,ig y L2y oo s Thil s Yo' Zyt)-
Then, using (10), we obtain another S-semishape

($17i/1,£527i2, e Ty Yus 2ot

But this contradicts the previous claim because v # v'. (I

In the same way we have |B, ,| < p" for all 1 < j < k. Let G’ = (V', E') be the graph
corresponding to (M/>U§:1 B!, .o). By (4) we have |E'| < kp" —s. Then it follows from
Theorem 3 that there is an independent set I’ C V' with

‘ S |V/|2 . 52 . t4
T 2B+ V| T 2kp™ T 8kiZpn’

where we used (9) in the last inequality. Let M” be the matching induced from M’ by I’. Then
this is a (k + 2)-colored S-free matching. Recall that in system (8) there are k + 2 variables in
total, and 2/ of them appear only once. So the condition (3) in Theorem 2 holds trivially. Thus
by Theorem 2 there is a constant 0 < d < 1 such that |[M”| = |[I'| < (dp)™. Thus we have

tt n
L2 < (dp)".

Then a simple computation using t > ¢|A| and 1/c¢ < 3(k + 2) shows

v

1
1Al < E(Skﬂ)i(dip)” < (24k(k + 2)12) 1 (d1p)™.
If n > no(p, k, 1) then the RHS is less than (Cp)" for some C = C(p, k,1) with 0 < C < 1. This
completes the proof of Theorem 5. O
6. TWO CONNECTING CIRCLES

Let us define the following [F)-coefficient balanced polynomial f in k + [ variables by

k+1

flz1,20,.. ., xpqy) = Z a; ;.
i=1
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Let (Tj41) be equation f = 0, and let (27};) be the following system of two equations in k + 2[
variables:

f(xl, oy Lhy Lht1y - - 795k+l) = 0,
(11) (2T}) {

f(@, o Th Tpgig1, -+ Tepr) = 0.
We write a 27}, ;-semishape as a vector in (]Fg)k“l in the form

(xla sy Ty Tl 15 -+ oy Thetls L1415 - - - ,ZL’k+21)-

Theorem 6. Let p be a prime, and let k > 1, 1 > 2. If n > no(p, k,l) then there exists a
constant C' = C(p, k,l) with 0 < C < 1 such that R,(n,2T},;) < (Cp)".

We prove the theorem by induction on /. Lemma 1 will be the initial step, and Lemma 2 will
be the induction step.

Lemma 1. Theorem 6 holds for | = 2.

Proof. Let | = 2. Suppose that A C F}) contains no 27}, >-shape. Fix a constant 3(%”) <c<

m, and let ¢ := [c|A[]. For simplicity we write T := T o.
(CASE I) A does not contain ¢ disjoint T-shapes.
This case is exactly same as (CASE I) in the proof of Theorem 5.

(CASE II) A contains t disjoint T-shapes.
Let M be a matching of T-semishape of size ¢, and let X = X; X X9 X -+ X Xiyo be the
ground set of M . Then, Xi,..., Xy1o are pairwise disjoint sets with the same size t. Let

B ={(z,y) € Xpt+1 X Xgto: (z,y) is (k + 1,k + 2)-extendable in X'}.

Claim 9. Define a map B — Fy by (z,y) v axr17 + agyoy. Then the map is injective, and
|B < p".

Proof. Suppose the contrary. Then there exist distinct

(Tht1ips1s Th+2,ik12)5 ($k+1,i;c+1 ) xk+2,i;c+2) €B

such that
(12) Ah-t1Th+1ig 11 T et 2Th4 2,040 = W18k 1) T Get2Thr24)
with
. ./ . -/
(13) U1 7 Upg1s k42 7 Upyo-

Then we have two 2T}, o-semishapes
(T1iys - v Ty ThtLigeyy» Tht g Tht Ligg 1> Tht2ipin)s
(951,1"17 o Tl T 1l o Th42,8) o0 Tht Ll o xk+2,i;€+2)'
Now we verify that the following element in & is a 27}, o-shape:
(361,1‘1, o Phjig Tht Lyigrrs Tht2,ip 420 Lot L) $k+2,i;€+2)'

In fact, by (13), these k + 4 elements are all distinct. It clearly satisfies the first equation in
(2T} 2) from (11), that is,

@1y Ty ThotLig s Tht2,ip0) = 0
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Using (12) we can also check the second equation:

f(xl,ip o Thyi Th1d) o0 xk+2,i§€+2)
k
= § aTj + k1Tt 1t Gh2Try2,)
j=1
k
= § AT + Ak 1Tk 1,054 T Ok+2Th+2,i5 40
=1
= (xl,ip vy Lhyigs xk+1,ik+1 ) xk-‘rQ,ik_._g)
=0.
But this contradicts the assumption that A has no 27}, »-shape. [l

Let G = (V, E) be the graph corresponding to (M, B). Then |E| < |B| —|V| < p" —t. It
follows from Theorem 3 that there is an independent set I C V with

‘V’Z t2
14 s=I>—> —,
(14) = S5 v~ o

Let M’ be the matching induced from M by I, and let &' = X7 x --- x X ,, be the ground set
of M'. By this construction it follows that

Claim 10. If (z14,,- -, Tk424,.,) € X' is a T-semishape, then i1 = iro € 1.
Let By ., = {(7,y) € X{ x X, : (,y) is (1, k + 1)-extendable in X'}
Claim 11. Define a map Bi,k+1 — I, by (z,y) = a1x + agr1y. Then the map is injective, and
‘Bi,k—&—l‘ <p"
Proof. Suppose the contrary. Then there exist distinct (z1,i,, Tr+1,i,)s (21,67 x’@+11i2+1) € By

_ . . -/
such that a121 4, + ap 174146, = aryry g + A1 41,3, | with 511 # Ty Then we have two

T-semishapes

(xl,ip ) xk+2,ik+2>7 (xl,i'lv ceey 7xk+2,i2+2)7

from which we get another T-semishape

(551,1'/1,562,7;2, L3yizy -+ Ty Th1,il 10 3Uk+2,z'k+1)-
Indeed we have
f(xl,ill y L2ias L3yigs -+ - s Lhyip» xk—‘y—l,i;Hl ) xk+2,ik+1)
= f(T115 T2in> T3ig, - - Thyigy> Tht Lig s Tht 2,ips1)
= 0.
But This contradicts Claim 10 because i1 # i§€+1. O

In the same argument we have |B}; ;[ < p" for all 1 < j < k. Let G' = (V', E’) be the
graph corresponding to (M, U?:l Bji+1). Then we have |E'| < kp™ — s, and we can find an
independent set I’ C V'’ with

V/|2 82 t4
I > | > > ,
= 21E" | + |V'| T 2kp™ ~ 8kpPn
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where we used (14) in the last inequality. Let M"” be the matching induced from M’ by I'. Then
this is a (k + 2)-colored T-free matching. Thus by Theorem 2 there is a constant 0 < d < 1 such
that |[M"| = |I'| < (dp)", and

A
Rkpon < (dp)"
This together with
?)(]J;ﬂ?) <clAl <t
we get |A] < (Cp)" for some 0 < C' < 1 provided n > ng(p, k). This completes the proof of
Lemma 1. U

Lemma 2. Let k > 2. If Theorem 6 holds for 2T}, ;, then so does for 2Ty _141.

Proof. We assume that
there exists a constant D = D(p,k,l) with 0 < D < 1 such that if A C Fy
contains no 27} ;-shape then |A| < (Dp)" (provided n > no(p, k,1)).

Under this assumption we will show that

there exists a constant C' = C(p,k — 1,1+ 1) with 0 < C' < 1 such that if A C Fy
contains no 271 ;41-shape then |A| < (Cp)"™ (provided n > ng(p,k — 1,1+ 1)).

Suppose that A C F) contains no 27j_1 ;41-shape. Fix a constant m <c< m and let

t = [c|A]]. For simplicity we write 27" for 27} ;. Note that 27-shape consists of k + 2[ elements
while 27}, _; ;4 1-shape consists of k£ 4 21 + 1 elements.

(CASE I) A does not contain ¢ disjoint 27-shapes.
In this case take disjoint 27”s as many as possible, and delete all elements of them. Let A’
be the resulting subset of A. Then we have

|A'| > |A] = (t = 1)(k+20) > (1 — (k + 20)c)|A] > |4]/2.
On the other hand, A’ contains no 27-shape, and it follows from the assumption that |A'| <
(Dp)™, and so |A| < (¢"p)™ for some ¢’ < 1 if n > ng(p, k,1).
(CASE II) A contains t disjoint 27-shapes.
Let My be a matching of 27-shape of size ¢:

MQT = {(l'l,iy .. 'a$k+2l,i) 01 § /) § t},
where

f(l‘l,ia cee axk;ia xk‘—i—l,i? sy mk‘-ﬁ-l,i) = 07

F(@1y s Ty Tl 1,65 - - - » Thy2ti) = 0
for each ¢. Let X = X X -+ X X419, be the ground set of Myr. Next we define a matching M
of 2T}, _1 j41-semishapes in Mot of size t:

M = {(Y1is - Ykrarr1,) 1 Y0 = xji for 1 < j <k +1,
Yk+i+14i = Tk

Yk+l+j+1i = Thtlga for 1 < g <1,
(xl,’ia ce. 7$k‘+2l,i) € M2T7 1 S 1 S t}
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Further we let Y; = {y;1,yj2,...,yj} for j e [k+20+1],and let Y =Y X Yo x -+ X Yyoi11
be the ground set of M. In other words we have

X; 1< <k+1,
Y; =< X j=k+1+1,

Xj1 k+1+2<7<k+20+1,

and
V= (X1 x - xXp_1) x (Xp X X1+ Xpg) X (Xpe X Xpgag1 - Xipgor)-
Note that |Yi| = -+ = [Yiqa41| = ¢, Yiti+1 = Y. Note also that the following k + 21 sets are
pairwise disjoint:
Yi,Yo, o Y1, Y = Y1, Y1, -+ Yrts Yerigo, - o5 Yo

Claim 12. If (Y161, Y2,in> - - s Ykt20t Ligios) € V 08 a 2Ty _1141-semishape, then iy = ipyi41,
and Yr, = Yk+l+1ip 1141
Proof. If not, we get a 2T}_1 ;41-shape, a contradiction. O

Let By g1 = {(y,2) € Y X Y1 = (y,2) is (k, k + 1)-extendable in Y}. This means that if
(Thyif» Tha1,iy,) € Brks1, then there exist

Llgyye-- 7xk—1,ik_17xk+2,ik+27 ) $k+2l,ik+21
such that
(.’17171‘1, et xk*l,ikfl ’ xk,iku s 7xk+l,ik+la xk,ik7‘rk+l+1,ik+l+17 s 7xk+2l,ik+21) € y
is a 2T}_1 j41-semishape.
Claim 13. Define a map By, y+1 — F); by (z,y) = apr + agyr1y. Then the map is injective, and
|Br k1| < p".
Proof. Suppose the contrary. Then there exist distinct (T, Trt1,i0,,) (ﬁk,i;’xkﬂ,i;“) €
By, 41 such that
(15) Akhiy, + Ok 1Tht Ly = kT, T Ok 1Tkl
with g # . Then we get the following two 27}_1 ;41-semishapes:
(16) (:L‘l,ila vy Th—1,ip_ 15 Lhyigs » - 7xk:-}—l,ik_;,_lvxk7ik7$k+l+1,ik+l+1v s 7xk+2l,ik+gl)7
(17) (T 100 Bhmif, s Tty s Thet il o Tl Tt Lo o o0 Tk 2,l o)
from which we can construct a 271 ;41-shape as follows. We take k-th and (k + 1)-th entries
from (17), the other entries from (16) to get
(18)
(:L‘l,ila v 7$k—1,ik_17xk,i;€7$k+l7i;€+l y mk+2,’ik+27 v 7xk:-}—l,ik_;,_l)$k7ik7$k+l+1,ik+l+1v s 7xk:+2l,ik+gl)'
Note that these k + 2] + 1 elements are all distinct because i), # ). Let us verify that (18) is a
T}—11+1-shape. For the first equation of (27%_; 4+1) from (11), we use (15) and

f(il,il) vy L= .’Ek7i;€, l‘k:—‘,-l,i;“_la R 7$k+l,ik+l)
= f(xl,ilv s 71‘]{71,’%,1 ) xk,ikamk+1,ik+17 s 7‘rk+l,ik+l)
=0.

For the second equation, we use (16) to get

f(xl,i17 sy Th—Tyip_1> xk,ikyxk+l+1,ik+l+1a s 7xk‘+2l+1,ik+gl+1) =0.
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But this contradicts the assumption that A has no 27}_; ;41-shape. O

By the same argument we have |By ;| < p™ forall j = k+1,....,k+1. For j =k+1+
2,..., k+20+1 letting Bryiy1,; = {(y,2) € Y1 x Y : (y,2) is (k+ 1+ 1, j)-extendable}, we
also get |Bpyi41,5| < p" similarly.

Let G = (V, E) be the graph corresponding to

ket k42041
(M, (U1 Big) U (USRS Brvion) ) -
Since |F| < 2Ip™ — t there is an independent set I C V' such that
|V‘2 t2
> .
E|+|V| "~ 2ipn

Let M’ be the matching induced from M by I, and let }’ = Y{ x --- x Y/, 5., be the ground
set of M’'. By the construction we have the following.

19 = |I| >
(19) EL

Claim 14. If (yul,...,yk+21+17ik+2l+1) el isa 2Tk _1,4+1-semishape, then i = gy = -+ =
igyorr1 € 1.

Let By . := {(Y1,i1, Ykir) € Y1 X Yi 0 (Y101, Yky,,) I8 (1, k)-extendable in J'}.

Claim 15. Define a map Bi,k — Fp by (Y1015 Ykin) & @191 + QkYki,- Then the map is
injective, and |B] ;| < p".

Proof. Suppose the contrary. Then there exist distinct (yii,, Yr.i, ) (yl,ixl Yl ) € Bi}k such that

(20) 1Y1,iy T WYk, = 1Y1i) + Ak,

with g # 7). Then we get two 2T} ;41-semishapes:
(Y1,i1s Y2yins - -+ s Yh—Lyin_ 1 Yksi> Ykt Ligs - - - » Ykt2041,5 )
(yl,i’l yY2ahs s Y100 Ykih s Yk, 0+ - 73/k+2l+1,i§€)a

from which we obtain another 27},_1 ;41-semishape:

(yl,ill’yQ,izv s Ye—1yip_1>
Yk,il s Ykt Ligs - - s YhAlig
Ykt L > YhA4 2,0 - - - Ykt 2041, )-

Note that i/, appears only on the first, k-th, and (k + [ + 1)-th entries. Let us check that this is
actually a solution to (27;_141). For the first equation it follows from (20) that

FW1is Y2000 - Yb—1yin 1> Yhiil > Ykt Lo - - - » Yketliig)
= f(?/l,i1 y Y200y ooy Yk—1yig_15 Ykyig s Yk+1igs -+ - » yk-‘rl,ik)
=0.

For the second equation we note that Ykil. = Yk+i+1,, by Claim 12, and we get

F1i Y2000 - Yb—1in 1> Yl 1l Yh+142,i0 - - - > Yh+204+ 1, )
= f(yu’1 v Y2si0s - s Yk—1yig 15 Yhyis s Ykt Lyigr -+ - yk+l,z‘k)
=0.

This contradicts Claim 14 because iy, # i), O
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In the same way we have |B} ;| < p" forall j =1,2,...,k—1. Let G' = (V', E’) be the graph
corresponding to (M, U;:ll B’ ). Since |E'| < (k—1)p" — s there is an independent set J C V"
such that
|V/’2 82 t4

> > ,
"N+ VT 2(k—1)pr ~ 8ki2pPn
where we used (19) in the last inequality. Let M” be the matching induced from M’ by J. Then
this is a (k+ 20+ 1)-colored 2T},_; ;1 -free matching. Thus by Theorem 2 there exists a constant
0 < d < 1 such that [M”| = |J| < (dp)". This together with (21) implies t < V/8ki2 (v/dp)™,
and

>
(21) 712 55

t
Al < - <3(k+ 2)V8kI2 (Vdp)".
If n > no(p, k, 1) then the RHS is less than (Cp)” for some C' = C(p,k,l) with0 < C < 1. O

Proof of Theorem 6. Let k,l be given. By Lemma 1 the statement holds for (27%4;_22). Then
by Lemma 2 the statement holds for (27}4;_33). Now we apply Lemma 2 repeatedly as follows:

2Tgy1-22 — 2Tk 133 = 2Thy1—a4 —> - = 2T 111 — 2T}y,

and we get the statement for (2K} ;) in the end. O

7. THREE EQUATIONS WITH TEN VARIABLES

In this section we show that system S; from section 1 is moderate. To make the description
for the proof easier we rename the systems and variables. Let f be the following IF,-coefficient
polynomial in 5 variables:

f(xl, T2, T3, %4, a:5) =x1+ 29+ 3+ x4 — 4T5.

Let (T') be the system consisting of f = 0. We redefine systems (3S55) in section 5 and (S; ) in
section 1 as (T333) and (Typp), respectively:

f(w1, 22, 23,24, 25) =0
(T333) { f(x1, @2, 23, 36, 27) =0
f(z1, 22,23, 78, 29) = 0,
fx1, 22,24, 24, 25) = 0
f(x1 )=0

0

) T1, T2, Tp, T, T7

f(xl,.’ll'g,l'b, .TS,.TQ) =

Recall that T333 is the system in 9 variables, and T, in 10 variables.

Theorem 7. If n > ng(p) then there exists a constant C = C(p) with 0 < C' < 1 such that
Rp(n, Ta) < (Cp)™.

Proof. Suppose that A C F}; contains no Tppp-shape. Fix a constant 0 < ¢ < 1, and let ¢ = clAl.

(CASE I) A does not contains ¢ disjoint T333-shapes.
We have already settled this case in Theorem 5.

(CASE II) A contains t disjoint T333-shapes. Let

Mry,, = {(xl,z'; e ,33972‘) 1< < t}
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be a matching of T333-shape of size ¢, that is,
(w14, 224, 234, 244, 25) = 0,
f(x1i, 24,34, %64, 77,:) = 0,
J(w14, 224, 23,4, 28,4, T9;) = 0.
Let X = X x -+ x Xg be the ground set of M, that is, X; = {z;1,2;2,...,2;¢} for 1 <j <9.
Next we define a matching M of T,,-semishape of size t as follows.
M = {(Y1,is Y2,i> Yasis Yb,is Yd,is Y505 Y6.i> Y7,i» Y8,is Y9.i) -
yji = xj; for j € {1,2,4,5,6,7,8,9},
Ya,i = Ybi = T3,is
(1,45, %94) € Mrpys,, 1 <1 <t}
Then the ground set ) of M is as follows.
Y=Y1 xYoxY, xY, xYyxYs5 xYs xYs xYg xYy, where
Y; ={yj1.vj2,..., Y} for j € {1,2,a,b,4,5,6,7,8,9}.
We can also write J) = X1 X X9 x X3 X X3 x X4 x X5 x X x X7 x Xg x Xg. Note that |Y;| =¢,
Y, =Y}, and the following 9 sets Y7,Ys,Y, =Y, Yy, Y5, Vs, Y7, Yg, Yy are pairwise disjoint.
Claim 16. If (y1,i;, Y2,ia» Yasia» Yosin Y4,ias Y5,is Y6,icr Y i Ys,is» Y9,i0) € Y is a Typy-semishape, then
iq = 1y and Ya i, = Yb.i, -
Proof. If not, we have a T,p,-shape, a contradiction. O
Let Bqa = {(x3,i3,T44,) € Yo X Yi : (234,,%4,,) is (a,4)-extendable in Y}. This means that
if (23,,,%4,i,) € Bq,a then there exist 1 4,,22,,, 5,5, - - -, L9,y Such that
(T1,i15 T2,in, T3i5, T3ig» Tdigs T5,i5T6,ig» T7,i7» T8,ig» L9,ig) € V
is a T,pp-semishape.
Claim 17. Define a map By 4 — Fg by (2345, a,iy) > 3,5 + Tai,. Then this map is injective,
and |Bg 4| < p™.
Proof. Suppose the contrary. Then there exist distinct (23,5, %4, ), (€341, ¥4,41) € B such that
(22) T3,i5 + T4,y = T35, + Ty -
Then we have two T,,-semishapes:
(23) (%1315 T2 315> T31is s Tdigs T5.is L6,ig> L7,i7: L8,ig> L9.ig) € V,
(24) (371,z"17372,i'271’3,1‘371’3,1‘371’4,1‘117375,1"57376,1‘37957,1"77958,1‘57959,%) €.
Using them we get another Typ,-semishape (actually Tppp-shape), that is,
(161,1'171“2,127$3,¢ga553,137554,1';17£U5,i57166,167567,177568,187569,2‘9) €,

where the entries in Y, and Y, come from (24), otherwise from (23). Let us check that this is
actually a solution to (T,p,). Clearly it satisfies the second and the third equations. For the first
equation, it follows from (22) that

F@1i, 02,00, T3.00 5 Tasias T5,i5) = f(T1010 T2,i05 T340 Tsias T5,05) = 0.
But this contradicts Claim 16 because i3 # 5. O

In the same way we have | B, 5| < p™. The next claim is similar but more delicate.
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Claim 18. Define a map By, — FI' by (234., T6.4) > T34, + Te4s. Lhen this is injective, and
D ) p VY 1137 16,16 13 ,i6 ] ’
|Ba,6| <p"
Proof. Suppose the contrary. Then there exist distinct (z3.., T4 ), (X3, Te 7 ) € Bgg such that
Yy )13 )26 /9 \ #3159 6,ig s
T35 T T6,ig = T3, T T,

with ig # i5. Then we have two Typ,-semishapes:

(T161, 2,55, 3,05, T3,i5> T ig> T5,i55 T6,igs T7,ivs T8,iss L9,ig) € Vs

(@1,i1> T2, T34 T3it» Ta > T 4t T if » T7,4t, > T8 il Toif)) € V.
We also have

F (@105 T2,i0, 3,005 To it s T7,37) = S (T1615 T2,i0 T3,i5, L6465 T7,i7) = 0.

Now we consider the following element in ):

(l'l,il y L2095 '1"3,1'% y L3i33 Ldigs L5055 1'6,1"6 y L7075, L8 igs $9,i9) € y

This is not a solution to (Typp) as it is in the order above, and here is the tricky point. By
sorting these 10 values in the following order, we obtain a T,p,-shape, that is,

f<$1,i1;$2,i27333,1"3;336,1‘%;337,1'7) =0,
F(@1,01, 2,005 T3,i55 Tajigs T565) = 0,
(@16, %245, T3,i5, 28,45, T9,ig) = 0.
But this contradicts the assumption that A contains no Ty,-shape. O
In the same way we have |Bg ;| < p" for j =7,8,9.

Let G = (V, E) be the graph corresponding to (M, U?:4 Bq ;). Then |E| < 6p™ —t and there
exists an independent set I C V such that
|V|2 t2
25 =1 > > .
(25) s =2 g ~ 2

Let M’ be the matching induced from M by I:

M = {(Y1,i5 V2,0 Yasi> Yosis Yai> Ys.i» Y6.is Y7.i> Ys,i» Yo.i) € M 24 € I},
and let ' =Y/ x -+ x YJ be the ground set of M’. By the construction we have the following.
Claim 19. If (Y14, ---,Y94) € V' is a Typp-semishape, then iq =iy =iq4 = -+ =g € I.
Let Bi,a = {(Y1,i1+Yasia) € Y] X Y] : (Y1,i1, Ya,in) 18 (1,a)-extendable in Y'}.

Claim 20. Define a map By , — F} by (Y141, Yasia) = Y1is + Yai,- Then this is injective, and
1Bl ol <1
Proof. Suppose the contrary. Then there exist distinct (y1,,,Ya,i)s (Y117, Ya,ir) € By, such that
(26) Yi T Yai = Y14 T Yai's
and i # /. Then we have two Typ,-semishapes

(Y1,i1» Y2,ins Yais Ybsis Yais Ys,is Y6.i> Y7,is Ys,ir Yoi) € V,

(yl,i’l 2 Y2,it s Ya,il s Yoyl s Yasit s Ys il Y6175 Y7,i Y8,il s Yo,ir) € V-
Using them we get another T,p,-semishape as follows.

(Z/u'l s Y2,ins Yaits Yb,its Ydsis Ys,is Y6,i> Y7,is Y8,is Y9,i) € V.
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Let us verify that it is indeed a solution to (T,p,). The first equality follows from (26). For the
second equality, we use Claim 16 and (26) to get
Y1, T Ybi' = Y1, T Ya,ir = Y1,i + Ya,i = Y1,/ T Ybis
and
F Wi V2,0 Yo7 Y5, Y6,i) = F (Y1000 V2,005 Yais Y56, Y6,i) = 0.
The third equality can be verified similarly. But this contradicts Claim 19 because i # '. O
Similarly we have |Bj ,| < p".
Let G' = (V', E’) be the graph corresponding to (M, By , U By ). Since |E'| < 2p" — s we
can find an independent set J C V' such that
lvl’2 82 t4 t4
27 J> > —> = ,
( ) | | - 2’El‘ + ‘V" 4pn 4 . 122p3n 2462p3n
where we used (25) for the last inequality. Let M” be the matching induced from M’ by J:
M" = {(y17i7 . ,ygﬂ') eM i€ J}

Then this is a 10-colored strongly Typ,-free matching. Thus we have |M"| = |J| < (dp)™ for
some 0 < d < 1 by Theorem 2. Consequently it follows that

t 26 N
|A‘:E<T(%p) .
The RHS is less than (Cp)™ for some C' = C(p) with 0 < C < 1 if n > ng(p). O
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