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ABSTRACT. Letm(n,k, r, t) be the maximum size ofF ⊂
([n]

k

)
satisfying|F1∩·· ·∩Fr | ≥ t

for all F1, . . . ,Fr ∈ F . We report some known results aboutm(n,k, r, t). The random walk
method introduced by Frankl is a strong tool to investigatem(n,k, r, t). Using a concrete
example, we explain the method and how to use it.

1. INTRODUCTION

Let n,k, r and t be positive integers, and let[n] = {1,2, . . . ,n}. A family G ⊂ 2[n] is
calledr-wiset-intersecting if|G1∩·· ·∩Gr | ≥ t holds for allG1, . . . ,Gr ∈ G . Let us define
a typical r-wise t-intersecting familyGi(n, r, t) and itsk-uniform subfamilyFi(n,k, r, t),
where 0≤ i ≤ ⌊n−t

r ⌋, as follows:

Gi(n, r, t) = {G⊂ [n] : |G∩ [t + ri ]| ≥ t +(r −1)i},
Fi(n,k, r, t) = Gi(n, r, t)∩

([n]
k

)
.

Two familiesG ,G ′ ⊂ 2[n] are said to be isomorphic, and denoted byG ∼= G ′, if there exists
a vertex permutationτ on [n] such thatG ′ = {{τ(g) : g∈ G} : G∈ G }.

Let m(n,k, r, t) be the maximum size ofk-uniform r-wise t-intersecting families on
n vertices. To determinem(n,k, r, t) is one of the oldest problems in extremal set the-
ory, which is still widely open. The caser = 2 was observed by Erdős–Ko–Rado [6],
Frankl [10], Wilson [30], and thenm(n,k,2, t) = maxi |Fi(n,k,2, t)| was finally proved
by Ahlswede and Khachatrian [2]. Frankl [8] showedm(n,k, r,1) = |F0(n,k, r,1)| if
(r − 1)n ≥ rk. Partial results for the casesr ≥ 3 and t ≥ 2 are found in [14, 16, 24,
26, 27, 23, 29]. All known results suggest

m(n,k, r, t) = max
i

|Fi(n,k, r, t)|. (1)

Now we introduce thep-weight version of the Erd̋os–Ko–Rado theorem. Throughout
this paper,p andq= 1− p denote positive real numbers. ForX ⊂ [n] and a familyG ⊂ 2X

we define thep-weight ofG , denoted bywp(G : X), as follows:

wp(G : X) = ∑
G∈G

p|G|q|X|−|G| =
|X|

∑
i=0

∣∣∣G ∩
(X

i

)∣∣∣ piq|X|−i .

We simply writewp(G ) for the caseX = [n], for example, we havewp(G0(n, r, t)) = pt .

Date: December 26, 2009, 09:38pm.
2000Mathematics Subject Classification.Primary: 05D05 Secondary: 05C65.
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Let w(n, p, r, t) be the maximump-weight ofr-wiset-intersecting families onn vertices.
It might be natural to expect

w(n, p, r, t) = max
i

wp(Gi(n, r, t)).

Ahlswede and Khachatrian proved that this is true forr = 2 in [3] (cf. [5, 7, 23]). This
includes the Katona theorem [19] aboutw(n,1/2,2, t). It is shown in [15] that

w(n, p, r,1) = p for p≤ (r −1)/r. (2)

To state some more related results let us define some collections of families as follows.

G(n, r, t) = {G ⊂ 2[n] : G is r-wiset-intersecting},
G j(n, r, t) = {G ⊂ 2[n] : G ⊂ G ′ for someG ′ ∼= G j(n, r, t)},
X i(n, r, t) = G(n, r, t)−

⋃
0≤ j≤i G j(n, r, t),

Y i(n,k, r, t) = {F ⊂
([n]

k

)
: F ∈ X i(n, r, t)}.

Finally let us define

mi(n,k, r, t) = max{|F | : F ∈ Y i(n,k, r, t)},
wi(n, p, r, t) = max{wp(G ) : G ∈ X i(n, r, t)}.

Ahlswede and Khachatrian [1] determinedm0(n,k,2, t) completely, extending the ear-
lier results by Hilton–Milner [18] and Frankl [11]. Brace and Daykin [4] determined
w0(n,1/2, r,1) and Frankl determinedw0(n,1/2, r, t) for r ≥ 5 and 1≤ t ≤ 2r − r −1; in
both casesG1(n, r, t) has the maximump-weight. (ButG1 is not always optimal forw0, for
example, we havew0(n, p, r,1) > wp(G1(n, r,1)) if p> 1

2 andr ≤ 5, see [28].) More results
for m0(n,k, r, t) with k/n≈ 1/2, andw0(n, p, r, t) with p≈ 1/2 are found in [17, 28, 29].

In this article we will introduce the random walk method originated by Frankl, which
is a strong tool to investigatew(n, p, r, t). In the next section, we explain the key idea
of the method. In Section 3 we prepare some tools to apply the method. Then in Sec-
tion 4 we illustrate the method by determiningw(n,1/3,4,36), and a general setup to
get w(n, p, r, t) will be given in Section 5. In the last section we discuss how to derive
m(n,k, r, t) from w(n, p, r, t) whenp≈ k/n. As a consequence, we get the following result
(see Theorem 10).

Theorem 1. Let p0 ∈ (0,1) andr, t, i ∈ N be given. Suppose thatmaxj{wp0(G j(n, r, t))}
is attained byj = i −1 or i. Then (W) implies (M).

(W) There exist positive constantsγ0,ε0,n0 such that, for allp with |p− p0| < ε0 and
all n with n ≥ n0, the following is true: IfG ∈ X i(n, r, t) is shifted and

⋂
G = /0

then we havewp(G ) < (1− γ0)max{wp(Gi−1(n, r, t)),wp(Gi(n, r, t))}.
(M) There exist positive constantsε,n1 such that, for alln > n1 andk with | k

n − p0| <
ε, we have (1) with equality holding only ifFi−1(n,k, r, t) or Fi(n,k, r, t) (up to
isomorphism).

We can in fact show (W) in some particular choices ofp0, r, t, i by the random walk
method. As an example we verify (1) forr ≥ 4, t ≤ (3r −2r −1)/2, k/n ≤ 1/3, andn
large enough (Theorem 12). Although it is still beyond our reach to determinem(n,k, r, t)
andw(n, p, r, t) completely, we hope that the strategy described in this article will provide
a better understanding of multiply intersecting families.
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2. THE RANDOM WALK METHOD

In [10] Frankl found a way to connect the number of walks of certain types with an
upper bound for the size of intersecting families. He then extended the idea to bound the
size of 3-wise 2-intersecting families in [9], where the random walk method was explicitly
used for the first time. One of the highlights of the method is [13], where he got many
interesting results on multiply intersecting families, and most of them have no alternative
proofs so far. A survey [12] by himself is highly recommended.

In this section we explain the key idea of the method. Letp andq be positive reals with
p+ q = 1, and letαr,p ∈ (p,1) be the unique root of the equationqxr − x+ p = 0. The
random walk method is basically to use the following inequality:

w(n, p, r, t) ≤ α t
r,p. (3)

This inequality itself is not sharp, but we often get sharp upper bounds for thep-weight of
intersecting families using (3) with some additional argument.

We outline how to get (3) here. (One can find the proof in [12] (for the casep = 1/2)
and we also include some more explanation about shifting technique etc. for convenience
in the next section.) ForG⊂ [n] we define the correspondingn-step walk onZ2, denoted
by walk(G), as follows. The walk is from(0,0) to (|G|,n−|G|), and thei-th step is one
unit up (↑) if i ∈ G, or one unit to the right (→) if i ̸∈ G. Let G ∈ G(n, r, t). We can find
a shiftedG ∗ ∈ G(n, r, t) with wp(G ) = wp(G ∗). Then, for eachG∈ G ∗, walk(G) touches
the lineL : y = (r −1)x+ t (see Lemma 4). Thus we haveG ∗ ⊂ Wn, whereWn = {W ⊂
[n] : walk(W) touchesL}. We note thatWn is not necessarilyr-wiset-intersecting.

Now consider the infinite random walk inZ2 starting from(0,0), taking↑ with prob-
ability p and→ with probability q at each step independently. Suppose thatG has the
maximump-weight. Then it follows that

w(n, p, r, t) = ∑
G∈G

p|G|qn−|G| ≤ ∑
W∈Wn

p|W|qn−|W| ≤ lim
n→∞ ∑

W∈Wn

p|W|qn−|W|

= P (the infinite random walk touchesL) = α t
r,p. (4)

The last equality (4) can be shown as follows. LetXs be the probability that the infinite
random walk touches the liney = (r −1)x+ s. After the first step, we are at(1,0) with
probability p, or at(0,1) with probabilityq. Thus we have

Xt = pXt−1 +qXt+r−1. (5)

Let ai be the number of walks from(0,0) to Ai = (i,(r −1)i + t) which touchL only atAi .
Then we haveXt = ∑i≥0ai p(r−1)i+tqi . To touch the lineL′ : y = (r −1)x+ t +1, we need
to hit L somewhere, say, atAi for the first time. Then the probability that we hitL′ starting
from Ai is equal toX1. Thus we have

Xt+1 = ∑
i≥0

(ai p
(r−1)i+tqi)X1 = XtX1 = Xt+1

1 . (6)

By (5) and (6) we haveX1 = p+ qXr
1. This equation has unique rootX1 = αr,p in (0,1),

and then (6) givesXt = α t
r,p, which proves (4). One can also show thatai = t

ri+t

(ri+t
i

)
and

∑i≥0ai p(r−1)i+tqi = α t
r,p in a different way, see e.g., [22].

To consider thek-uniform version problem, let us review the very original idea of the
method from [10]. LetF ⊂

([n]
k

)
be 2-wiset-intersecting. Then for everyF ∈F , walk(F)
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is from (0,0) to (n− k,k), which touches the liney = x+ t. The total number of walks
with this property is, by the reflection principle, equal to the total number of walks from
(−t, t) to (n− k,k), which is

( n
k−t

)
. This givesm(n,k,2, t) ≤

( n
k−t

)
≤ ( k

n−k)
t
(n

k

)
. On the

other hand, by settingp = k
n, we haveα2,p = p

q = k
n−k, andm(n,k,2, t) ≤ α t

2,p

(n
k

)
. This

suggests the followingk-uniform version of (3):

m(n,k, r, t) ≤ α t
r,p

(n
k

)
,

wherep = k
n. This is true if p < r−1

r+1 is fixed andn is large enough, see [25]. We will
discuss how to getm(n,k, r, t) from w(n, p, r, t) in the last section.

3. TOOLS

Let us introduce the shifting operation. For integers 1≤ i < j ≤ n and a familyG ⊂ 2[n],
we define the(i, j)-shift σi j as follows:

σi j (G ) = {σi j (G) : G∈ G },
where

σi j (G) =
{

(G−{ j})∪{i} if i ̸∈ G, j ∈ G, (G−{ j})∪{i} ̸∈ G ,
G otherwise.

This operation preservesr-wiset-intersecting property, namely, ifG is r-wiset-intersecting,
then so isσi j (G ). Note also that shifting does not change thep-weight, i.e.,wp(σi j (G )) =
wp(G ).

A family G ⊂ 2[n] is calledshiftedif σi j (G ) = G for all 1≤ i < j ≤ n, andG is called
tameif it is shifted and

⋂
G = /0. Starting from a givenG we can always get a shiftedG ′

by a finite sequence of shifting operations. To see this fact, lets(G ) = ∑{∑{g : g∈ G} :
G∈ G } ∈ N and observes(σi j (G )) < s(G ) if σi j (G ) ̸= G .

Lemma 2. X0(n, r, t) ⊂ X0(n, r −1, t +1) andw0(n, p, r, t) ≤ w0(n, p, r −1, t +1).

Proof. Let G ∈ X0(n, r, t). Then clearly we haveG ̸∈ G0(n, r −1, t + 1). Thus it suffices
to show thatG ∈ G(n, r −1, t + 1). If it is not, then we can findG1, . . . ,Gr−1 ∈ G such
that|G1∩·· ·∩Gr−1| = t. But G is r-wiset-intersecting and so everyG∈ G must contain
G1∩·· ·∩Gr−1. This meansG ̸∈ X0(n, r, t), a contradiction. ¤
Lemma 3. If G ∈X0(n, r, t) has maximump-weight then we can find a tameG ′ ∈X0(n, r, t)
with wp(G ′) = wp(G ).

Proof. If G ∈ X0(n, r, t) then G ∈ X0(n, r − 1, t + 1) by Lemma 2. We apply shifting
operations toG to get a shifted familyG ′ ∈ G(n, r, t) ⊂ G(n, r −1, t +1).

We have to show that
⋂

G ′ = /0. Otherwise we may assume that 1∈
⋂

G ′ andH =
[2,n] ̸∈ G ′. SinceG ′ is p-weight maximum we can findG1, . . . ,Gr−1 ∈ G ′ such that|G1∩
·· ·∩Gr−1∩H| < t. Then we have|G1∩·· ·∩Gr−1| < t +1, which is a contradiction. ¤
Lemma 4. Let G ∈ G(n, r, t) be shifted. Thenwalk(G) touches the lineL : y= (r−1)x+ t
for all G∈ G .

Proof. Let H = [n]−{t, t + r, t +2r, t +3r, . . .}. Then walk(H) does not touchL. Moreover
this walk is the maximal one with this property. Namely, if walk(F) does not touchL, then
we can findF ′ ⊃ F such thatH is obtained fromF ′ by a sequence of shifting operations.
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Let G ∈ G(n, r, t). Suppose that we have someG ∈ G such that walk(G) does not
touch L. We may assume thatG is size maximal, and soG = H. For 1≤ i < r, let
Hi = [n]−{t + i, t + r + i, t + 2r + i, t + 3r + i, . . .}. We getHi from H by shifting. Since
G is shifted we haveH,H1, . . . ,Hr−1 ∈ G andH ∩H1∩ ·· · ∩Hr−1 = [t − 1], which is a
contradiction. ¤
Lemma 5 ([28]). Let p, r, t0,c be fixed constants, and letα ∈ (p,1) be the root of the
equationqxr −x+ p = 0. Suppose thatw(n, p, r, t0) ≤ c holds for alln≥ t0. Then we have
w(n, p, r, t) ≤ cα t−t0 for all t ≥ t0 andn≥ t.

Proof. If G ⊂ 2[n] is trivial r-wiset0-intersecting, i.e.,|
⋂

G | ≥ t0, then we haveG ⊂ {G⊂
[n] : [t0] ⊂ G} andwp(G ) ≤ pt0. Thus we may assume thatc≥ pt0. Note also thatp < α.

We prove the result by double induction ons= n− t andt. One of the initial steps for
t = t0 follows from our assumption. For the other initial step fors, we prove the result for
the cases 0≤ s≤ r −1, or equivalently,t ≤ n≤ t + r −1. Suppose thatG ⊂ 2[n] satisfies
wp(G ) = w(n, p, r, t). We may assume thatG is shifted and size maximal. IfG is trivial,
i.e., |

⋂
G | ≥ t, then we havewp(G ) ≤ pt = pt0 pt−t0 < cα t−t0 and we are done. Otherwise

we haveG ∈ G such that[t] ̸⊂ G, and we may assume thatGt = [n]−{t} ∈ G because
G is shifted and maximal. Then again by the shiftedness we haveGi = [n]−{i} ∈ G for
all t ≤ i ≤ n. This implies|

⋂n
i=t Gi | = t −1. But this is impossible becauseG is r-wise

t-intersecting andn− t +1≤ r.
Next we show the induction step. Lets≥ r andt > t0. We show the case(s, t). We

assume that the result holds for{(s,b) : b < t}∪{(a,b) : a < s, b≥ t0}. In particular, we
can apply induction hypothesis to the case(s, t −1) and(s− r, t + r −1).

Let G ⊂ 2[n] ber-wiset-intersecting. DefineG1,G1̄ ⊂ 2[2,n] as follows:

G1 = {G−{1} : 1∈ G∈ G }, G1̄ = {G : 1 ̸∈ G∈ G }.
ThenG1 is clearlyr-wise(t −1)-intersecting. On the other hand,G1̄ is r-wise(t + r −1)-
intersecting. To see this fact suppose, on the contrary, that there existG2 . . .Gr+1 ∈ G1̄
such that

⋂r+1
i=2 Gi = [2, t + r −1]. By the shiftedness we haveG′

i = {1}∪ (Gi −{i}) ∈ G

for all 2≤ i ≤ r +1. But then we have
⋂r+1

i=2 G′
i = [t + r −1]− [2, r +1], which contradicts

r-wiset-intersecting property ofG .
Note thats for G1 is (n−1)− (t −1) = s ands for G1̄ is (n−1)− (t + r −1) = s− r.

Therefore using the induction hypothesis, we have

wp(G ) = pwp(G1 : [2,n])+qwp(G1̄ : [2,n]) ≤ pcα t−t0−1 +qcα t+r−t0−1

= cα t−t0−1(p+qα r) = cα t−t0. ¤
Lemma 6. For anyi ≥ 0 we havewi(n+1, p, r, t) ≥ wi(n, p, r, t).

Proof. ChooseG ∈ X i(n, r, t) with wp(G ) = wi(n, p, r, t). ThenG ′ := G ∪{G∪{n+ 1} :
G ∈ G } ∈ X i(n+ 1, r, t) andwp(G ′ : [n+ 1]) = wp(G : [n])(q+ p) = wi(n, p, r, t), which
meanswi(n+1, p, r, t) ≥ wi(n, p, r, t). ¤

4. AN EXAMPLE

As a toy example, we consider the caser = 4 andt = 36. Letp∈ (0,1) andq = 1− p,
and setG j = G j(n,4,36). Simple computation shows thatwp(G0) ≥ wp(G1) iff p≤ 1/3.
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To give a feel of the random walk method, we will show that

w(n, p,4,36) = wp(G0) = p36 (7)

for all n≥ 40 andp≤ 1/3.
Clearly we havew(n, p,4,36)≤w(n, p,2,36), and the Ahlswede–Khachatrian result [3]

already shows (7) forp≤ 1/(t +1) = 1/37. We can easily improve this upper bound for
p using (3). Suppose thatG ∈ G(n,4,36). If G ∈ G0(n,4,36) then we havewp(G ) ≤ p36.
Otherwise we haveG ∈ X0(n,4,36) ⊂ X0(n,3,37) by Lemma 2. Now by (3) we have
wp(G ) ≤ α37

3,p. Then we find thatα37
3,p < p36 if p ≤ 1/5. In this way we get (7) for

p≤ 1/5.
To get (7) forp≤ 1/3, we will prove the following slightly stronger inequality, that is,

w1(n, p,4,36) < 0.9999 max{wp(G0),wp(G1)} (8)

for all n≥ 40 andp≤ 0.34. This givesw(n, p,4,36) = max{wp(G0),wp(G1)} for p≤ 0.34,
and in particular this implies (7) forp≤ 1/3.

ChooseG ∈X1(n,4,36) with the maximump-weight, and choose a tameG ∗ ∈X0(n,4,36)
with wp(G ) = wp(G ∗) by Lemma 3. We will show the following.

(i) If G ∗ ̸⊂ G1 thenwp(G ∗) < 0.99wp(G0) for p≤ 0.34.
(ii) If G ∗ ⊂ G1 thenwp(G ∗) < 0.9999wp(G1) for p≤ 0.34.

We can show (ii) in a more general setting as we will see in the next section. Here we
show (i). So we assume thatG ∗ ̸⊂ G1 and rename itG .

Let s= max{ j : G ∈ G(n,3, j)}. By Lemma 2 we haves≥ 37. If s≥ 40 then by (3) we
have

wp(G ) ≤ w(n, p,3,40) ≤ α40
3,p < 0.99p36 (9)

for p≤ 0.34. Thus we may assume that 37≤ s≤ 39. After [13] let

h = min{ j : |G∩ [36+ j]| ≥ 36 for allG∈ G }.
This is the maximum size of “holes” in[36+h].

Claim 1. 1≤ h≤ s−36≤ 3.

Proof. SinceG ∈ X0(n,4,36), we haveh≥ 1. By the definition ofsand the shiftedness of
G , we haveG1,G2,G3 ∈ G such thatG1∩G2∩G3 = [s]. SinceG ∈ G(n,4,36) it follows
that|G∩ [s]| ≥ 36 for allG∈ G , namely, 36+h≤ s. ¤

Let b = 36+ (h− 1) = 35+ h and letTi = [b+ 1− i,b] be the right-mosti-set in [b]
(T0 = /0). ForA⊂ [b] let

G (A) = {G∩ [b+1,n] : G∈ G , [b]\G = A}.

SinceG is shifted, we haveG (A) ⊂ G (Ti) for all A∈
([b]

i

)
, and thus we have

wp(G ) ≤
h

∑
i=0

(b
i

)
pb−iqi wp(G (Ti) : [b+1,n]). (10)

To boundwp(G (Ti) : [b+1,n]) we use the fact thatG (Ti) is highly-intersecting as we see
below.

Claim 2. For0≤ i < h we haveG (Ti) ∈ G(n,3,3i +1).
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Proof. Suppose thatG (Ti) ̸∈G(n,3,3i+1). Then we can findG1,G2,G3∈G (Ti) such that
|G1∩G2∩G3| ≤ 3i. SinceG is shifted, we may assume thatG1∩G2∩G3 ⊂ [b+1,b+3i].
For 1≤ ℓ ≤ 3, by shifting(Gℓ ∪ [b])−Ti ∈ G , we getG′

ℓ := (Gℓ ∪ [b])− [b+ 1+ (ℓ−
1)i,b+ ℓi] ∈ G . By the definition ofh we have someH ∈ G such that|H ∩ [b]| < 36
and due to the shiftedness ofG we may assume thatH = [n]− [36,b]. Then we have
G′

1∩G′
2∩G′

3∩H = [35], which contradicts the factG ∈ G(n,4,36). ¤

Claim 3. If G ̸⊂ Gh thenG (Th) ∈ G(n,3,3h+2).

Proof. Suppose thatG (Th) ̸∈G(n,3,w), wherew= 3h+2. Then we can findG1,G2,G3 ∈
G (Th) such thatG1∩G2∩G3 ⊂ [b+ 1,b+ w− 1]. By shifting (Gℓ ∪ [b])−Th ∈ G we
getG′

ℓ := (Gℓ ∪ [b])− [36+(ℓ−1)h,35+ ℓh] ∈ G for 1≤ ℓ ≤ 3. SinceG ̸⊂ Gh we have
G′

4 := [n]− [36+3h,36+4h]∈ G . Then we have|G′
1∩·· ·∩G′

4|< 36, a contradiction. ¤
We may assume thatG ̸⊂ Gh for 1≤ h≤ 3. In fact, we have already assumedG ̸⊂ G1,

and we havewp(Gi) < 0.99max{wp(G0),wp(G1)} for i = 2,3 andp≤ 0.34.
First we consider the caseh = 1. In this case, by Claim 2 we haveG (T0) ∈ G(n,3,1).

SinceG ̸⊂ G1 it follows from Claim 3 thatG (T1) ∈ G(n,3,5). Thus (3) giveswp(G (T0) :
[b+1,n]) ≤ α3,p andwp(G (T1) : [b+1,n]) ≤ α5

3,p. Finally by (10) we have

wp(G ) ≤ p36α3,p +36p35qα5
3,p < 0.99p36

for p≤ 0.34.
Next we consider the caseh = 2. In this case, Claim 2 givesG (T0) ∈ G(n,3,1) and

G (T1) ∈ G(n,3,4), and Claim 3 givesG (T2) ∈ G(n,3,8). Thus (3) and (10) imply

wp(G ) ≤ p37α3,p +37p36qα4
3,p +

(37
2

)
p35q2α8

3,p < 0.99p36.

Similarly, in the caseh = 3, we have

wp(G ) ≤ p38α3,p +38p37qα4
3,p +

(38
2

)
p36q2α7

3,p +
(38

3

)
p35q3α11

3,p < 0.99p36. (11)

This completes the proof of (i). ¤
If we have more information aboutw(n, p,3,∗) then we get simpler proof. For example,

using a result in [27] we havew(n, p,3,8)≤ p8 for p≤ 0.34. This together with Lemma 5
gives

w(n, p,3,39) ≤ p8α31
3,p < 0.99p36.

By replacing (9) with the above estimation, we can conclude that 37≤ s≤ 38 and so
1≤ h≤ 2. This means we do not have to deal with (11).

5. A GENERAL SETUP

Let n, p, r, t be fixed and letGi = Gi(n, r, t). Suppose that max{wp(Gi−1),wp(Gi)} >
wp(G j) for all j ̸∈ {i−1, i}, and consider the situation that we are trying to show

w(n, p, r, t) = max{wp(Gi−1),wp(Gi)}, (12)

with equality holding only ifG ∼= Gi−1 or Gi . If G ̸∈ X i(n, r, t) then there is nothing to
show. So suppose thatG ∈ X i(n, r, t) and we want to show thatwp(G ) is much less than
max{wp(Gi−1),wp(Gi)}. Let G ∗ be a tame family obtained fromG by shifting. Then we
have two cases:
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(a) G ∗ ̸⊂ G j(n, r, t) for all 0 ≤ j ≤ i. This is the essential case we need to estimate
wp(G ∗) by the random walk method. To use the method, it is important thatG ∗ is
shifted. We saw an example in this case in the previous section.

(b) G ∗ ⊂ G j(n, r, t) for some 0≤ j ≤ i. In this case, we will see thatwp(G ∗) cannot be
large by Theorem 7 below.

Consequently, to get (12) with the uniqueness of the optimal configuration, it is enough to
consider a tameG ∈ X i(n, r, t) from the beginning.

Theorem 7. Let r, t andi be positive integers withr ≥ 4, and letp∈ (0, r−3
r−2]. Then there

existsγ > 0 such that for alln≥ t + r the following is true.
Let G ∈X i(n, r, t), and letG ∗ ∈X0(n, r, t) be a tame family obtained fromG by shifting.

If G ∗ ⊂ Gi(n, r, t) then
wp(G ) < (1− γ)wp(Gi(n, r, t)).

Proof. Set Gi = Gi(n, r, t). Note thatG is not necessarily shifted. SinceG ∗ ⊂ Gi , we
may assume (by renaming the starting family if necessary) thatG ∗ = σxy(G ) ⊂ Gi , where
x= t +ri , y= x+1. We note that|[x]\G| ≤ i +1 for all G∈G . Moreover if|[x]\G|= i +1
thenG∩{x,y} = {y} and(G−{y})∪{x} ̸∈ G .

For A ∈
([x]

i

)
setG (A) = {G ∈ G : [y] \G = A}, and forB ∈

([x−1]
i

)
andz∈ {x,y} let

Gz(B) = {G∈ G : [y]\G = B∪{z}}. Sinceσxy(G ) ⊂ Gi we haveGx(B)∩Gy(B) = /0 and
sowp(Gx(B))+wp(Gy(B)) ≤ px−iqi+1. SetG ′ = {G∈ G : |[x] \G| < i}, G ′′ = {G∈ G :

|[x−1]\G| = i−1, G∩{x,y} = /0} and lete= min{wp(G (A)) : A∈
([x]

i

)
}. Then we have

wp(G ) = ∑
A∈([x]

i )
wp(G (A))+ ∑

B∈([x−1]
i )

(
wp(Gx(B))+wp(Gy(B))

)
+wp(G ′)+wp(G ′′) (13)

≤ e+(
(x

i

)
−1)px−i+1qi +

(x−1
i

)
px−iqi+1 +

i−1

∑
j=0

(x
j

)
px− jq j +

(x−1
i−1

)
px−iqi+1

= e+(η −1)px−i+1qi , (14)

whereη = ∑i
j=0

(x
j

)
pi− j−1q−i+ j . Note thate≤ px−i+1qi , and (14) coincideswp(Gi) =

η px−i+1qi iff e= px−i+1qi . If there is someB∈
([x−1]

i

)
such thatGx(B)∪Gy(B) = /0, then

by (13) we getwp(G )≤wp(Gi)− px−iqi+1 =
(
1−q/(η p)

)
wp(Gi), and we are done. Thus

we may assume that

Gx(B)∪Gy(B) ̸= /0 for all B∈
([x−1]

i

)
. (15)

To provewp(G ) < (1− γ)wp(Gi) by contradiction, let us assume that for anyγ > 0 and
anyn0 there is somen > n0 such that

wp(G ) > (1− γ)wp(Gi) = (1− γ)η px−i+1qi . (16)

By (14) and (16) we havee> (1− γη)px−i+1qi . This means, lettingH (A) = {G\ [y] :
G∈ G (A)} andY = [y+1,n], we havewp(H (A) : Y) > 1− γη , namely,

wp(2Y −H (A) : Y) > γη for all A∈
([x]

i

)
. (17)

SinceG ∈ X i(n, r, t) both
⋃

B∈([x−1]
i )Gx(B) and

⋃
B∈([x−1]

i )Gy(B) are non-empty. Using this

with (15), we can chooseG∈ Gx(B) andG′ ∈ Gy(B′) with B,B′ ∈
([x−1]

i

)
andB∩B′ = /0.
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Let L = [x−1]− (B∪B′) andH ∗ =
⋂

A∈(L
i)

H (A). Then by (17) we have

wp(H ∗ : Y) = 1−wp(2Y −H ∗ : Y) = 1−wp(
⋃

A∈(L
i)

(2Y −H (A)) : Y)

≥ 1−∑A∈(L
i)

wp(2Y −H (A) : Y) > 1−
(|L|

i

)
γη . (18)

If H ∗ ⊂ 2Y is not (r −2)-wise 1-intersecting, then we can findH1, . . .Hr−2 ∈ H ∗ such
thatH1∩·· ·∩Hr−2 = /0. Choose disjointi-setsBℓ ⊂ L, 1≤ ℓ ≤ r −2, and setGℓ := ([y]−
Bℓ)∪Hℓ ∈G . Then we have|G1∩·· ·∩Gr−2∩G∩G′|= t−1, which contradicts ther-wise
t-intersecting property ofG . ThusH ∗ is (r −2)-wise 1-intersecting andwp(H ∗ : Y)≤ p
by (2). (We needr ≥ 4 andp≤ r−3

r−2 here.) But this contradicts (18) because we can choose

γ so small thatp≪ 1−
(|L|

i

)
γη . ¤

This theorem implies (ii) of the previous section by takingγ = 0.0001. In fact we have
q/(η p) > γ andp≤ 1−

(|L|
i

)
γη = 1−37γ(1

q + 40
p ) for p≤ 0.34. Consequently we have

proved (8). It is an easy exercise to get

w1(n, p,4, t) < (1− γ)max{wp(G0(n,4, t)),wp(G1(n,4, t))}
for all n≥ 40, 1≤ t ≤ 36 andp≤ 0.34, whereγ > 0 is an absolute constant. Then using
induction onr with more careful analysis (but very much in the same way we did for the
caser = 4 andt = 36) one can show the following.

Theorem 8. For all r ≥ 4 there exist positive constantsε,γ such that

w1(n, p, r, t) < (1− γ)max{wp(G0(n, r, t)),wp(G1(n, r, t))}

holds for alln≥ t + r, 1≤ t ≤ (3r −2r −1)/2 andp≤ 1
3 + ε.

We note thatwp(G0(n, r, t)) = wp(G1(n, r, t)) if p = 1/3 andt = (3r −2r −1)/2. As a
corollary we get the following.

Corollary 9. For all r ≥ 4, n≥ t + r, 1≤ t ≤ (3r −2r −1)/2 andp≤ 1/3 we have

w(n, p, r, t) = wp(G0(n, r, t)) = pt .

Moreover if t = (3r − 2r − 1)/2 and p = 1/3 thenG0(n, r, t) andG1(n, r, t) are the only
optimal configurations (up to isomorphism). OtherwiseG0(n, r, t) is the only optimal con-
figuration (up to isomorphism).

6. FROM p-WEIGHT VERSION TOk-UNIFORM VERSION

In this section, we show that ak-uniform version problem form(n,k, r, t) can be reduced
to ap-weight version problem forw(n, p, r, t) whenk/n≈ p (Theorems 10 and 11). Using
these results, we will get ak-uniform version (Theorem 12) corresponding to Theorem 8.
Theorem 1 in the introduction is an immediate consequence of the following result.

Theorem 10. Let p0 ∈ (0,1) andr, t, i ∈ N be given. Then (W) implies (M).

(W) There exist positive constantsγ0,ε0,n0 such that

wi(n, p, r, t) < (1− γ0)max{wp(Gi−1(n, r, t)),wp(Gi(n, r, t))}

holds for allp with |p− p0| < ε0 and alln with n≥ n0.
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(M) There exist positive constantsγ,ε,n1 such that

mi(n,k, r, t) < (1− γ)max{|Fi−1(n,k, r, t)|, |Fi(n,k, r, t)|}

holds for alln > n1 andk with | k
n − p0| < ε. (We can chooseε = ε0

2 , γ = γ0
4 .)

For reals 0< b < a we write a± b to mean the open interval(a− b,a+ b), and for
n∈ N, n(a±b) means((a−b)n,(a+b)n)∩N.

Proof. Assuming the negation of (M), we will construct a counterexample to (W).
For fixedr andt we note that

f (p) := max{wp(Gi−1(n, r, t)),wp(Gi(n, r, t))}

is a uniformly continuous function ofp on p0± ε0. Let ε = ε0
2 , γ = γ0

4 , andI = p0± ε.
Chooseε1 ≪ ε so that

(1−3γ) f (p) > (1−4γ) f (p+δ ) (19)

holds for allp∈ I and all 0< δ ≤ ε1. Choosen2 so that

∑
j∈J

(n
j

)
p j

1(1− p1)n− j > (1−3γ)/(1−2γ) (20)

holds for alln > n2 and allp1 ∈ I0 := p0± 3ε
2 , whereJ = n(p1± ε1). Choosen3 so that

(1− γ)max{|Fi−1(n,k, r, t)|, |Fi(n,k, r, t)|} > (1−2γ) f (k/n)
(n

k

)
(21)

holds for alln > n3 andk with k/n∈ I . Finally setn1 = max{n0,n2,n3}.
Suppose that (M) fails. Then for our choice ofε,γ andn1, we can find somen,k and

F ∈ Y i(n,k, r, t) with |F | ≥ (1− γ)max{|Fi−1(n,k, r, t)|, |Fi(n,k, r, t)|}, wheren > n1

and k
n ∈ I . We fix n,k andF , and letp = k

n. By (21) we have|F | > c
(n

k

)
, wherec = (1−

2γ) f (p). Let G =
⋃

k≤ j≤n(∇ j(F )) ∈ X i(n, r, t) be the collection of all upper shadows of

F , where∇ j(F ) = {H ∈
([n]

j

)
: H ⊃∃F ∈F}. Let p1 = p+ε1 ∈ I0, andJ = n(p1±ε1) =

(k,k+2ε1n)∩N.

Claim 4. |∇ j(F )| ≥ c
(n

j

)
for j ∈ J.

Proof. Choose a realx≤ n so thatc
(n

k

)
=

( x
n−k

)
. Since|F | > c

(n
k

)
=

( x
n−k

)
the Kruskal–

Katona Theorem [21, 20] implies that|∇ j(F )| ≥
( x

n− j

)
. Thus it suffices to show that( x

n− j

)
≥ c

(n
j

)
, or equivalently, ( x

n− j

)( x
n−k

) ≥
c
(n

j

)
c
(n

k

) .

Using j ≥ k this is equivalent toj · · ·(k+1)≥ (x−n+ j) · · ·(x−n+k+1), which follows
from x≤ n. ¤

By the claim we have

wp1(G ) ≥ ∑
j∈J

|∇ j(F )| p j
1(1− p1)n− j ≥ c∑

j∈J

(n
j

)
p j

1(1− p1)n− j . (22)

Using (20) and (19), the RHS of (22) is more than

c(1−3γ)/(1−2γ) = (1−3γ) f (p) > (1−4γ) f (p+ ε1) = (1− γ0) f (p1).
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This meanswp1(G ) > (1− γ0) max{wp1(Gi−1(n, r, t)),wp1(Gi(n, r, t))}, which contradicts
(W) becausep1 ∈ I0 ⊂ p0± ε0. ¤

Theorem 11. Let r, t ∈ N with r ≥ 4, and letp0 ∈ (0, r−3
r−2]. Suppose that

pt
0 > (t + r)pt+r−1

0 (1− p0)+ pt+r
0 ,

i.e.,wp0(G0(n, r, t)) > wp0(G1(n, r, t)) for all n≥ t + r. Then (W0) implies (M1) and (W1).

(W0) There exist positive constantsγ0,ε0,n0 such thatw0(n, p, r, t) < (1− γ0)pt holds
for all p with |p− p0| < ε0 and alln with n≥ n0.

(M1) There exist positive constantsγ1,ε1,n1 such that

m0(n,k, r, t) < (1− γ1)
(n−t

k−t

)
(23)

holds for alln > n1 andk with k
n < p0 + ε1.

(W1) There exist positive constantsγ2,ε2 such thatw0(n, p, r, t) < (1− γ2)pt holds for
all p with p < p0 + ε2 and alln with n≥ t.

Proof. For simplicity, we writeG j for G j(n, r, t) andF j for F j(n,k, r, t).
Assume (W0). First we show (M1). Chooseε0 from (W0). Sincewp0(G0) > wp0(G1)

we may assume thatwp(G0) > wp(G1) for all p with |p− p0|< ε0 (if necessary we replace
ε0 so that this property holds). We can choosen1 so that|F0| > |F1| holds for alln > n1

andk with | k
n− p0|< ε0. Then for the parameters chosen as above, we havew0(n, p, r, t) =

w1(n, p, r, t) andm0(n,k, r, t) = m1(n,k, r, t). Thus (23) for the case| k
n − p0| < ε1 := ε0

2
follows from Theorem 10 by settingi = 1. We will show (23) for k

n ≤ p0 − ε1. Let
p = p0− ε1

2 . Sincep < p0 andwp(G0) = pt > wp(G1) we can chooseγ1 > 0 so that

(1−2γ1)pt > wp(G1(n, r, t)). (24)

Then choosen0 so that

∑
i∈J

(n−t
i−t

)
pi(1− p)n−i > pt (1−2γ1)/(1− γ1) (25)

holds for alln > n0, whereJ = n(p± ε1
2 ) = ((p0− ε1)n, p0n)∩N.

To show (23), suppose, on the contrary, that we can find somen,k andF ∈ Y0(n,k, r, t)
with |F | ≥ (1− γ1)

(n−t
k−t

)
, wheren > n1 and k

n ≤ p0− ε1. We fix n,k andF . Let G =⋃
k≤i≤n(∇i(F )) ∈ X0(n, r, t) be the collection of all upper shadows ofF .

Claim 5. |∇i(F )| ≥ (1− γ1)
(n−t

i−t

)
for i ∈ J.

Proof. Choose a realx ≤ n− t so that(1− γ1)
(n−t

k−t

)
=

( x
n−k

)
. Since |F | ≥

( x
n−k

)
the

Kruskal–Katona Theorem implies that|∇i(F )| ≥
( x

n−i

)
. Thus it suffices to show that( x

n−i

)
≥ (1− γ1)

(n−t
i−t

)
, or equivalently,( x

n−i

)( x
n−k

) ≥
(1− γ1)

(n−t
i−t

)
(1− γ1)

(n−t
k−t

) .

Using i > (p0−ε1)n≥ k this is equivalent to(i− t) · · ·(k− t +1) ≥ (x−n+ i) · · ·(x−n+
k+1), which follows fromx≤ n− t. ¤
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By the claim we have

wp(G ) ≥ ∑
i∈J

|∇i(F )| pi(1− p)n−i ≥ (1− γ1)∑
i∈J

(n−t
i−t

)
pi(1− p)n−i . (26)

By (25) and (24), the RHS of (26) is more than(1− γ1) · pt(1−2γ1)/(1− γ1) = pt(1−
2γ1) > wp(G1(n, r, t)), which contradicts (W0). This completes the proof of (M1).

Next we show (W1). Letε1 = ε0
2 and letp ≤ p0− ε1 be given. By (M1) we can find

γ1 > 0 andn1 such thatm0(n,k, r, t) < (1−γ1)
(n−t

k−t

)
holds for alln> n1 andk with k

n < p0.
Choose 0< δ ≪ ε1 so thatp±δ ⊂ (0, p0). Choosen2 so that

(1− γ1) ∑
k∈J

(n−t
k−t

)
pkqn−k + ∑

k̸∈J

(n
k

)
pkqn−k < (1− γ1

2 )pt (27)

holds for alln > n2, whereJ = n(p±δ ). Let n > max{n1,n2} and chooseG ∈ X0(n, r, t)
with wp(G ) = w0(n, p, r, t). Let G (k) = G ∩

([n]
k

)
for k∈ J.

If G (k) ∈ Y0(n,k, r, t) then we have|G (k)| ≤ m0(n,k, r, t) < (1− γ1)
(n−t

k−t

)
. If G (k) fixes

t vertices, say[t], thenG̃ (k) := {G− [t] : G∈ G (k)} is (r −1)-wise 1-intersecting. (Other-
wiseG fixes [t].) Thus we have|G (k)| = |G̃ (k)| ≤

(n−t−1
k−t−1

)
= k−t

n−t

(n−t
k−t

)
< p0

(n−t
k−t

)
by (2).

Consequently, in both cases, we have

|G (k)| < (1− γ1)
(n−t

k−t

)
. (28)

Using (28) and (27), we have

wp(G ) ≤ ∑
k∈J

|G (k)|pkqn−k + ∑
k̸∈J

(n
k

)
pkqn−k < (1− γ1

2 )pt ,

and this is true for alln≥ t by Lemma 6. This completes the proof of (W1). ¤
By Theorems 8, 10 and 11, we have the following.

Theorem 12. Let r ≥ 4. There existsn1 such that

m(n,k, r, t) = max{|F0(n,k, r, t)|, |F1(n,k, r, t)|}
holds for all t with 1 ≤ t ≤ (3r − 2r − 1)/2, and for alln > n1 and k with k

n < 1
3 + ε.

MoreoverF0(n,k, r, t) andF1(n,k, r, t) are the only possible optimal configurations (up
to isomorphism).
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