THE RANDOM WALK METHOD FOR INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

ABSTRACT. Letm(n,k,r,t) be the maximum size of C ([E]) satisfying|F1N---NF| >t
forall F,...,R € #. We report some known results abaon(n,k,r,t). The random walk
method introduced by Frankl is a strong tool to investigata, k,r,t). Using a concrete
example, we explain the method and how to use it.

1. INTRODUCTION

Let n,k,r andt be positive integers, and lét] = {1,2,...,n}. A family ¢ c 2" is
calledr-wiset-intersecting if Gy N --- NG| >t holds for allGy,...,G, € 4. Let us define
a typicalr-wise t-intersecting family%; (n,r,t) and itsk-uniform subfamily.%;(n,k,r.t),
where 0<i < [ |, as follows:

G(nrt) = {GC[n:|GN[t+ri]|>t+(r—1)i},
Zi(nkrt) = %(n,r,t)ﬂ([ﬂ}).

Two families®, %’ c 2" are said to be isomorphic, and denotedébsE ¢, if there exists
a vertex permutatiom on [n] such that?’ = {{1(g) :g€ G} : Ge ¥}.

Let m(n,k,r,t) be the maximum size df-uniform r-wise t-intersecting families on
n vertices. To determinen(n,k,r,t) is one of the oldest problems in extremal set the-
ory, which is still widely open. The case= 2 was observed by Eéd—Ko—Rado [6],
Frankl [10], Wilson [30], and them(n,k,2,t) = max |.%i(n,k,2,t)| was finally proved
by Ahlswede and Khachatrian [2]. Frankl [8] showedn,k,r,1) = |Zo(n,k,r,1)| if
(r —1)n > rk. Partial results for the cases> 3 andt > 2 are found in [14, 16, 24,
26, 27, 23, 29]. All known results suggest

m(n,k,r,t) = max|.Z(n,k,r,t)|. (1)
|

Now we introduce thg-weight version of the Efts—Ko—Rado theorem. Throughout
this paperp andq = 1 — p denote positive real numbers. ForC [n] and a family? c 2%
we define thep-weight of¥, denoted bywp(¥ : X), as follows:

X|
Wp(¥ 1 X) = Z p|G|qX|G'Z_i’%ﬂ@)’piqx“.

Ge¥

We simply writewy(%) for the caseX = [n], for example, we havery(%(n,r,t)) = p.
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Letw(n, p,r,t) be the maximunp-weight ofr-wiset-intersecting families on vertices.
It might be natural to expect

w(n, p,r,t) = maxwp(%(n,r,t)).
|

Ahlswede and Khachatrian proved that this is truerfef 2 in [3] (cf. [5, 7, 23]). This
includes the Katona theorem [19] abau(in, 1/2,2,t). It is shown in [15] that

w(n,p,r,1) = pforp<(r—1)/r. (2)
To state some more related results let us define some collections of families as follows.
G(n,r,t) {# c 21" : ¢4 is r-wiset-intersecting,
Gj(n,nt) = {¥c2:% c ¥ forsome¥’ = %(n,rt)},
(n r t) = G(ﬂ,r,t) - U0§j§i GJ <n7 rvt)a
Yinknt) = {Zc():7exinny).
Finally let us define
m(nkrt) = max|.Z|:.Z eY (nkrt)},
w(nprt) = maxwp(¥):¥4 <X\ (nrt)}.
Ahlswede and Khachatrian [1] determine®(n,k,2,t) completely, extending the ear-
lier results by Hilton—Milner [18] and Frankl [11]. Brace and Daykin [4] determined
wf(n,1/2,1,1) and Frankl determined®(n,1/2,r,t) forr > 5and 1<t < 2" —r —1;in
both case& (n,r,t) has the maximunp-weight. (But#%; is not always optimal fon?, for
example, we have®(n, p,r, 1) > wp(%1(n,1,1)) if p> 3 andr <5, see [28].) More results
for m°(n,k,r,t) with k/n~ 1/2, andw®(n, p,r,t) with p~ 1/2 are found in [17, 28, 29].
In this article we will introduce the random walk method originated by Frankl, which
is a strong tool to investigate(n, p,r,t). In the next section, we explain the key idea
of the method. In Section 3 we prepare some tools to apply the method. Then in Sec-
tion 4 we illustrate the method by determinimgn,1/3,4,36), and a general setup to
getw(n, p,r,t) will be given in Section 5. In the last section we discuss how to derive

m(n,k,r,t) fromw(n, p,r,t) whenp = k/n. As a consequence, we get the following result
(see Theorem 10).

Theorem 1. Let po € (0,1) andr,t,i € N be given. Suppose thataxj{wp,(¥j(n,r,t))}
is attained byj =i — 1 ori. Then (W) implies (M).

(W) There exist positive constangs, £y, no such that, for alp with |p— po| < & and
all n with n > no, the following is true: 14 € X'(n,r,t) is shifted anq\¥ = 0
then we havev,y(¥4) < (1— yo) max{Wp(%_1(n,r,t)),wp(¥4(n,r,t))}.

(M) There exist positive constargsn, such that, for alh > n; andk with |'ﬁ< — pol| <
€, we have (1) with equality holding only i#%;_1(n,k,r,t) or Z(n,k,r,t) (up to
isomorphism).

We can in fact show (W) in some particular choicesp@fr,t,i by the random walk
method. As an example we verify (1) for> 4,1t < (3" — 1)/2,k/n < 1/3, andn
large enough (Theorem 12). Although it is still beyond our reach to detenmiingk, r,t)
andw(n, p,r,t) completely, we hope that the strategy described in this article will provide
a better understanding of multiply intersecting families.
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2. THE RANDOM WALK METHOD

In [10] Frankl found a way to connect the number of walks of certain types with an
upper bound for the size of intersecting families. He then extended the idea to bound the
size of 3-wise 2-intersecting families in [9], where the random walk method was explicitly
used for the first time. One of the highlights of the method is [13], where he got many
interesting results on multiply intersecting families, and most of them have no alternative
proofs so far. A survey [12] by himself is highly recommended.

In this section we explain the key idea of the method. pahdq be positive reals with
p+qg=1, and letayp € (p,1) be the unique root of the equatiop’ —x+ p=0. The
random walk method is basically to use the following inequality:

w(n, p,r,t) <ay,, 3)

This inequality itself is not sharp, but we often get sharp upper bounds fartesght of
intersecting families using (3) with some additional argument.

We outline how to get (3) here. (One can find the proof in [12] (for the gasel/2)
and we also include some more explanation about shifting technique etc. for convenience
in the next section.) FoB C [n] we define the correspondimgstep walk oriZ?, denoted
by walk(G), as follows. The walk is from0,0) to (|G|,n— |G|), and thei-th step is one
unitup (1) if i € G, or one unit to the right-¢) if i € G. Let¥ € G(n,r,t). We can find
a shifted¢™ € G(n,r,t) with wp(¥4) = wp(¢*). Then, for eacl € ¢, walk(G) touches
the lineL : y = (r — 1)x+t (see Lemma 4). Thus we ha#¥& C #;, where#, = {W C
[n] : walk(W) touched.}. We note that#}, is not necessarily-wiset-intersecting.

Now consider the infinite random walk i starting from(0,0), taking T with prob-
ability p and — with probability g at each step independently. Suppose #dtas the
maximump-weight. Then it follows that

G| 4n—|G W| n—|W ; W| n—|W

—> 00

Ge¥ We#n We#n
= P (the infinite random walk touchdg = aip. 4)
The last equality (4) can be shown as follows. Xgtbe the probability that the infinite

random walk touches the line= (r — 1)x+s. After the first step, we are &t,0) with
probability p, or at(0,1) with probabilityq. Thus we have

X = pX-1+0Xtr-1- (5)

Let a be the number of walks frorf0,0) to A = (i, (r — 1)i +t) which touchL only atA;.
Then we have = ¥i-oa p" D' *q'. To touch the lind’ : y = (r — 1)x+t + 1, we need
to hit L somewhere, say, &t for the first time. Then the probability that we hitstarting
from A; is equal toX;. Thus we have

X=3 (a p )Xy = XeXa = X{T. (6)

i>
By (5) and (6) we have; = p+qgX{. This equation has unique ro¥i = arp in (0,1),
and then (6) give¥; = a; ,, which proves (4). One can also show that ri‘?(”i“) and
Yisoaip Vg = af , in a different way, see e.g., [22].
To consider th&-uniform version problem, let us review the very original idea of the

method from [10]. Let# C ([E]) be 2-wisd-intersecting. Then for evelly € .#, walk(F)
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is from (0,0) to (n— Kk, k), which touches the ling = x+t. The total number of walks
with this property is, by the reflection principle, equal to the total number of walks from
(—t,t) to (n—k k), which is (,",). This givesm(n,L(, 2,t) < (") < *HRY). On the

other hand, by setting = X, we haveay , = g = e andm(n,k, 2,t) < a5 (). This

suggests the following-uniform version of (3):
m(n,k,r,t) < af 5(y),

wherep = ‘ﬁ‘ This is true ifp < [;—i is fixed andn is large enough, see [25]. We will
discuss how to gan(n,k,r,t) fromw(n, p,r,t) in the last section.

3. TooLs

Let us introduce the shifting operation. For integersil< j < nand a family¢ c 2,
we define thei, j)-shift gij as follows:

6 (%) ={0j(G): Ge ¥},
where
6i(G) = | G- {IDUli} 11i¢G ieG G- {ihuli)¢9.
' G otherwise.

This operation preserveswiset-intersecting property, namely4f is r-wiset-intersecting,
then so isij (¢). Note also that shifting does not change fhereight, i.e.wp(Gij(¥)) =
Wp(¥).

A family ¢ c 2" is calledshiftedif aj;(¢) =% forall 1<i < j < n, and¥ is called
tameif it is shifted andN¥ = 0. Starting from a give®¥ we can always get a shifted

by a finite sequence of shifting operations. To see this fac§#f=5{>{g:g< G} :
G e ¥} e Nand observe(aij(¥)) < s(¥) if 6ij(¥) #49.

Lemma 2. X°(n,r,t) c XO(n,r —1,t +1) andwP(n, p,r,t) <wP(n,p,r —1,t+1).

Proof. Let % € X°(n,r,t). Then clearly we hav ¢ Go(n,r — 1,t +1). Thus it suffices
to show thaty € G(n,r — 1,t +1). If it is not, then we can finds4,...,G,_1 € ¢ such
that|G1N---NG,_1| =t. But¥ isr-wiset-intersecting and so evefy € ¥ must contain
G1N---NG;_1. This meany/ ¢ X°(n,r,t), a contradiction. O

Lemma 3. If ¢ € XO(n,r,t) has maximunp-weight then we can find a targ# < X°(n,r,t)
with wp(¢") = wp(¥).

Proof. If ¥ € XO(n,r,t) then® € X%n,r —1,t 4+ 1) by Lemma 2. We apply shifting
operations t® to get a shifted family?’ € G(n,r,t) C G(n,r —1,t +1).

We have to show thgf)%’ = 0. Otherwise we may assume thae\¥’ andH =
[2,n] € 9. Since¥’ is p-weight maximum we can fin@,,...,G,_1 € ¢’ such thatGi N
---NGy_1NH| <t. Then we havéGyN---NG;_1| <t+ 1, which is a contradiction. [

Lemma 4. Let¥ € G(n,r,t) be shifted. Themwalk(G) touches the link 1y = (r —1)x+t
forallGe 4.

Proof. LetH = [n] — {t,t+r,t+2r,t+3r,...}. Then walkH) does not touclh.. Moreover
this walk is the maximal one with this property. Namely, if w@k does not touch, then
we can findF’ D F such thaH is obtained fronF’ by a sequence of shifting operations.
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Let 4 € G(n,r,t). Suppose that we have soriec ¢ such that walkG) does not
touchL. We may assume th&f is size maximal, and s@& =H. For 1<i <, let
Hi =[] —{t+i,t+r+i,t+2r+i,t+3r+i,...}. We getH; from H by shifting. Since
¢ is shifted we haved,Hq,...,H,_1 € 9 andHNHiN---NH,_1 = [t — 1], which is a
contradiction. O

Lemma 5 ([28]). Let p,r,tg,C be fixed constants, and let € (p,1) be the root of the
equatiomx —x+ p = 0. Suppose that/(n, p,r,ty) < c holds for alin > to. Then we have
w(n, p,r,t) < ca'~ for allt >ty andn > t.

Proof. If ¢ c 2I" is trivial r-wisetg-intersecting, i.e.,¥| > to, then we have/ ¢ {G c
[n] : [to] € G} andwp(¥) < p. Thus we may assume that- p. Note also thap < a.

We prove the result by double induction sa- n—t andt. One of the initial steps for
t = tp follows from our assumption. For the other initial step $pwe prove the result for
the cases & s<r — 1, or equivalentlyt < n<t-+r —1. Suppose tha? c 2" satisfies
Wp(¥) = w(n, p,r,t). We may assume that is shifted and size maximal. # is trivial,
i.e., |N¥] >t, then we havevy(¥) < pt = pp!~ < ca'l~" and we are done. Otherwise
we haveG € ¢ such thatft] ¢ G, and we may assume th& = [n| — {t} € ¢ because
¢ is shifted and maximal. Then again by the shiftedness we Gave[n] — {i} € ¢ for
allt <i <n. This implies|';Gi| =t — 1. But this is impossible becauggis r-wise
t-intersectingand—t+ 1 <r.

Next we show the induction step. Let>r andt > to. We show the casés;t). We
assume that the result holds fis,b) : b <t} U{(a,b) :a< s, b>tp}. In particular, we
can apply induction hypothesis to the cds¢ — 1) and(s—r,t+r —1).

Let% c 2I" ber-wiset-intersecting. Defingy,%; c 2127 as follows:

H={GCG—{1}:1€Ge¥9}, 4={G:1¢Gec¥}.
Then; is clearlyr-wise (t — 1)-intersecting. On the other hard; is r-wise (t +r — 1)-
intersecting. To see this fact suppose, on the contrary, that thereGxistG, ;1 € ¥1
such than| 13 Gj = [2,t +r — 1]. By the shiftedness we ha@® = {1} U (G —{i}) € ¥
forall 2<i <r+1. Butthen we havg) ") G| = [t +r — 1] — [2,r + 1], which contradicts
r-wiset-intersecting property o¥.

Note thats for ¢; is (n—1) — (t— 1) =sandsfor 97is (n—1) — (t+r—1) =s—r.
Therefore using the induction hypothesis, we have

Wp(&) = Pwp(%1:[2,n))+awp(%1: [2,n]) < pea' ™0t 4 qeat T
cat ™ (p+qga")=cat 0. O

Lemma 6. For anyi > 0 we havew' (n+1, p,r,t) > w(n, p,r,t).

Proof. Choose¥ € X!(n,r,t) with wp(#) =wi(n,p,r,t). Then¥’ =% U{GU{n+1}:
Ge 9} e X (n+1rt) andwp(9’ : [n+1]) = wp(¥ : [n])(g+ p) = W(n, p,r,t), which
meansy (n+ 1, p,r,t) >w(n,p,r,t). O

4. AN EXAMPLE

As a toy example, we consider the case 4 andt = 36. Letp e (0,1) andg=1—p,
and set¥; = ¥j(n,4,36). Simple computation shows that,(¢%) > wp(%1) iff p <1/3.
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To give a feel of the random walk method, we will show that
W(nv p, 47 36) = Wp(gO) = p36 (7)
foralln>40andp <1/3.

Clearly we havev(n, p,4,36) <w(n, p,2,36), and the Ahlswede—Khachatrian result [3]
already shows (7) fop < 1/(t+1) = 1/37. We can easily improve this upper bound for
p using (3). Suppose that € G(n,4,36). If &4 € Go(n,4,36) then we havevy(¥) < p*°.
Otherwise we haveZ € X°(n,4,36) c X%n,3,37) by Lemma 2. Now by (3) we have
wp(¥) < a3f. Then we find thao3] < p*® if p < 1/5. In this way we get (7) for
p<1/5.

To get (7) forp < 1/3, we will prove the following slightly stronger inequality, that is,

wh(n, p,4,36) < 0.9999 maXwp(%), Wp(¥1)} (8)
for alln> 40 andp < 0.34. This givesv(n, p,4,36) = max{wp(¥),Wp(¢1)} for p < 0.34,
and in particular this implies (7) fqp < 1/3.

Choose? € X1(n, 4,36) with the maximurmp-weight, and choose a tarf& < X°(n, 4, 36)

with wp(¥) = wp(¢*) by Lemma 3. We will show the following.

(i) If 9 ¢ 41 thenwp(9*) < 0.99wp(%) for p < 0.34.
(i) If 9" C 4 thenwp(¥*) < 0.9999wp(%41) for p < 0.34.

We can show (ii) in a more general setting as we will see in the next section. Here we
show (i). So we assume th&t ¢ 4 and rename i¥.

Lets=max{j:¥ € G(n,3,j)}. By Lemma 2 we have > 37. If s> 40 then by (3) we
have

Wp(¢) < w(n, p,3,40) < a3 < 0.99p*° (9)
for p < 0.34. Thus we may assume that 8& < 39. After [13] let
h=min{j:|GN[36+ j|]| > 36 forallG c ¥}.
This is the maximum size of “holes” if36+ h|.
Claim1. 1<h<s-36<3.

Proof. Since® € X°(n,4,36), we haveh > 1. By the definition ok and the shiftedness of
¢, we haveGy, Gy, Gz € ¢ such thalG1 NG, N G3 = [g. Since¥ € G(n,4,36) it follows
that|GN[s]| > 36 for allG € ¢4, namely, 36-h <s. O

Letb =36+ (h—1) =35+h and letT, = [b+ 1—i,b] be the right-most-set in [b]
(To=0). ForAC [b] let

Y(A)={GnNb+1n:Ge¥9,b\G=A}.
Since¥ is shifted, we have/(A) C 4(T;) forall A e ([?]), and thus we have

h
wo(#) < 3 (7)Pd wo( () :[o-+1,n). (10)

To boundwp (¥ (Ti) : [b+1,n]) we use the fact tha# (T;) is highly-intersecting as we see
below.

Claim 2. ForO0<i < hwe have4(Ti) € G(n,3,3i+1).
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Proof. Suppose tha¥(Ti) € G(n,3,3i+1). Then we can fin®, Gy, Gz € ¢(T;) such that
|G1NG2NG3| < 3i. Since¥ is shifted, we may assume tHat NG, N G3 C [b+ 1, b+ 3i].
For 1< ¢ < 3, by shifting(G,U [b]) — Ti € ¢, we getG, := (G,U[b]) — [b+ 1+ (¢ —
1)i,b+ ¢i] € 4. By the definition ofh we have soméd € ¢ such that/H N [b]| < 36
and due to the shiftedness @f we may assume thad = [n] — [36,b]. Then we have
Gy NG,NG;NH = [35], which contradicts the fa&f € G(n, 4, 36). O

Claim 3. If 4 ¢ 4, then¥ (Tp) € G(n,3,3h+2).

Proof. Suppose tha# (T,) & G(n,3,w), wherew = 3h+ 2. Then we can fin1, Gy, G3 €
¢ (Th) such thatG; NG, NGz C [b+1,b+w—1]. By shifting (G,U [b]) — T, € 4 we
getG) := (GyU[b]) — [36+ (£ — 1)h,35+ ¢h] € 4 for 1 < ¢ < 3. Since¥ ¢ %, we have

i = [n] — [36+3h,36+4h| € 4. Then we havéG;N---NG,| < 36, a contradiction. [

We may assume th& ¢ ¢, for 1 < h < 3. In fact, we have already assuntédz ¢,
and we havavp(4) < 0.99 maxwp(%),wp(¥1) } fori = 2,3 andp < 0.34.

First we consider the case= 1. In this case, by Claim 2 we ha¥&Tp) € G(n,3,1).
Since¥ ¢ ¢ it follows from Claim 3 that/(T;) € G(n,3,5). Thus (3) giveswvp (¢ (To) :
b+1,n]) < aszpandwp(¥(Ty) : [b+1,n]) < agp. Finally by (10) we have

wp(¥) < p*as p+36p>>qa3 , < 0.99p%°

for p<0.34.
Next we consider the cade= 2. In this case, Claim 2 giveg(Tp) € G(n,3,1) and
9(T1) € G(n,3,4), and Claim 3 give¥ (T,) € G(n,3,8). Thus (3) and (10) imply

wp(#) < p*’asp+37p°%0a3 , + (3) p*°e?al ) < 0.99p%.
Similarly, in the casd = 3, we have
wp(¥) < p®asp+38p>7qasz  + (3) p¥Pal  + () p*°aall < 0.99p%. (1)

This completes the proof of (i). O
If we have more information about(n, p, 3, x) then we get simpler proof. For example,
using a result in [27] we hawe(n, p, 3,8) < p® for p < 0.34. This together with Lemma 5
gives
w(n, p,3,39) < pPa3} < 0.99p%.
By replacing (9) with the above estimation, we can conclude that 3K 38 and so
1 < h < 2. This means we do not have to deal with (11).

5. A GENERAL SETUP

Let n,p,r,t be fixed and let4 = %(n,r,t). Suppose that mawp(%i-1),wp(¥4)} >
wp(¥;) forall j ¢ {i —1,i}, and consider the situation that we are trying to show

W<n> P, r7t) = maX{Wp(gi—l)’Wp(gi)}a (12)

with equality holding only if¥ =~ ¢ _; or 4. If 4 & X!(n,r,t) then there is nothing to
show. So suppose thét € X'(n,r,t) and we want to show that,(¥) is much less than
max{Wp(¥%i-1),Wp(¥4)}. Let¥* be a tame family obtained frosf by shifting. Then we
have two cases:
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(@) 9* ¢ 4j(n,r,t) for all 0 < j <i. This is the essential case we need to estimate
Wp(¢*) by the random walk method. To use the method, it is important4tias
shifted. We saw an example in this case in the previous section.

(b) ¥* C Fj(n,r,t) for some 0< j <i. In this case, we will see that,(¢*) cannot be
large by Theorem 7 below.

Consequently, to get (12) with the uniqueness of the optimal configuration, it is enough to
consider a tam& < X'(n,r,t) from the beginning.

Theorem 7. Letr,t andi be positive integers with> 4, and letp € (0, g]. Then there
existsy > 0 such that for alh >t +4-r the following is true.

Let¥ € X!(n,r,t), and letg* € XO(n,r,t) be a tame family obtained frof# by shifting.
If 9% C 4(n,r,t) then

Wp(g) < (1_ V)Wp(%“" r7t))'
Proof. Set¥ = %4 (n,r,t). Note that¥ is not necessarily shifted. Sin¢g¢* C 4, we
may assume (by renaming the starting family if necessaryhat oy(¢) C 4, where
X=t-+ri,y=Xx+1. We note thal[x] \ G| <i+1forallG e %¥. Moreover if| x| \G| =i+1
thenGN {x,y} = {y} and(G—{y}) U{x} ¢ .

ForAc () set@(A) = {Ge % :[y]\G=A}, and forB € (*;¥) andz e {xy} let
“4(B) ={Ge ¥ :y|\G=BU{z}}. Sinceoy(¥) C % we have4(B)N%,(B) =0 and
SOWp(%(B)) +Wp(%(B)) < pr'q*L. Set9’ = {Gec ¥ |X\G|<i}, 9" ={Ge¥:
Ix—=1\G| =i—1,GN{xy} =0} and lete= min{wy(¥(A)) : Ac (¥)}. Then we have

Wp(¥) = Z[]Wp(g(A))‘F [Z](Wp(gX(B))WLWp(gy(B)))+Wp(g/)+Wp(gﬂ) (13)
A<() Be("7Y)

i—1
< e+ (() -y + (TP > () pig + (1) pig
J:

= e+(n-1)pid, (14)
wheren = ¥'_ (j)p~1"tq~"*1. Note thate < p*'*1q, and (14) coincidesvp(%) =
np<itiq iff e= p*it1q. If there is somé e (*;Y) such that%(B) U%,(B) = 0, then

by (13) we gewp(¥) < wp(%) — P '+ = (1-q/(np))wp(%), and we are done. Thus
we may assume that

% (B)U%,(B) £ 0 forallBe (*Y). (15)

To provewp(¥) < (1—y)wp(%) by contradiction, let us assume that for gny 0 and
anyng there is soma > ng such that

Wp(#) > (1—y)Wp(4) = (1—y)np"q. (16)

By (14) and (16) we have > (1— yn)p*'*1q". This means, letting#’(A) = {G\ [y] :
Ge ¥ (A} andY = [y+1,n]|, we havewp((A) : Y) > 1—yn, namely,

wp(2' — A (A) 1Y) > yn forall Ac (). (17)
Since¥ < X'(n,r,t) both UBEGH])%X(B) andUBe([xfl])%y(B) are non-empty. Using this
with (15), we can choosé € %(B) andG' € %,(B') with B,B' ¢ (*;%) andBNB' = 0.
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LetL =[x—1] — (BUB') and.#* = ﬂAe(_L) ' (A). Then by (17) we have
Wp(* 1Y) = 1—-wp(2¥ =" 1Y) = 1—Wp(UA€<Ii_)(2Y —H(N):Y)

> 1-Yacy wp(2' —2(A) 1Y) > 1— (Hyyn. (18)

If 7% 2 is not (r — 2)-wise l-intersecting, then we can fikt,...H,_» € #* such
thatHy N ---NH;_2 = 0. Choose disjointsetsB, C L, 1< /¢ <r—2, and seG, := (|y] —
B/)UH; € 4. Thenwe havéG;N---NG;_»NGNG'| =t — 1, which contradicts the-wise
t-intersecting property of. Thus.7Z”* is (r — 2)-wise 1-intersecting amdlp(2* 1Y) < p
by (2). (We need >4 andp < % here.) But this contradicts (18) because we can choose
y so small thap < 1— () yn. O
This theorem implies (ii) of the previous section by taking 0.0001. In fact we have
q/(np) >yandp<1—(thyn=1- 37y(3 + %) for p < 0.34. Consequently we have
proved (8). It is an easy exercise to get

Wl(n7 P, 47t) < (1_ V) maX{Wp(gO(n: 47t))7wp(gl(n7 47t))}

foralln> 40, 1<t < 36 andp < 0.34, wherey > 0 is an absolute constant. Then using
induction onr with more careful analysis (but very much in the same way we did for the
caser = 4 andt = 36) one can show the following.

Theorem 8. For allr > 4 there exist positive constargsy such that
Wl(n7 P, rat) < (1 - V) maX{Wp(gO(nv r7t>)7wp(gl(n7 rat))}
holds foralln>t+r,1<t<(3'—2r—1)/2andp< i +e.

We note thaivy(4p(n,r,t)) = wp(%1(n,r,t)) if p=1/3andt=(3"—-2r—-1)/2. Asa
corollary we get the following.

Corollary 9. Forallr >4,n>t+r,1<t<(3"—2r—1)/2 andp < 1/3 we have

w(n, p,r,t) = wp(%(n,r.t)) = pt.

Moreover ift = (3" —2r — 1) /2 andp = 1/3 then%(n,r,t) and¥;(n,r,t) are the only
optimal configurations (up to isomorphism). Othervégén, r.t) is the only optimal con-
figuration (up to isomorphism).

6. FROM p-WEIGHT VERSION TOK-UNIFORM VERSION

In this section, we show thatiauniform version problem fom(n, k,r,t) can be reduced
to a p-weight version problem fow(n, p,r,t) whenk/n~ p (Theorems 10 and 11). Using
these results, we will getlauniform version (Theorem 12) corresponding to Theorem 8.
Theorem 1 in the introduction is an immediate consequence of the following result.

Theorem 10. Let pg € (0,1) andr,t,i € N be given. Then (W) implies (M).
(W) There exist positive constants, €9, Ng such that

W (n, p,r,t) < (1-y) max{wp(%-1(n,1,t)), wp(#4(n,r,t))}
holds for allp with |p— po| < & and alln with n > ng.
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(M) There exist positive constangse, ny, such that
m (n,k,1,t) < (1— y)max{| Zi_s(nk,r,)],| Fi (kK1) }
holds for alln > ny andk with \E — po| < €. (We can choose = 5—20 y=%)

For reals O< b < a we write a+ b to mean the open intervgh — b,a+ b), and for
ne N, n(a+b) meang(a—b)n, (a+b)n)NN.

Proof. Assuming the negation of (M), we will construct a counterexample to (W).
For fixedr andt we note that

F(p) := max{wp(%-1(n,r,t)), wp(Z(n,1,1)) }

is a uniformly continuous function g on pp + &. Lete = 5—20 y
Chooses; < € so that

% andl = pote.

(1-3y)f(p) > (1—-4y)f(p+9) (19)
holds for allp € | and all 0< & < &;. Choosean, so that
ZJ (D pr(1—po)" T > (1-3y)/(1-2y) (20)
Je

holds for alln > ny and allp; € lg:= po£ 3 wherel = n(p1+ €1). Choosens so that
(1-y)ymax{|Fi_1(n,k,r0)],|Zi(nkrt)[} > (1-2y)f(k/n)(y) (21)

holds for alln > nz andk with k/n € |. Finally setn; = max{ng,ny, ns}.

Suppose that (M) fails. Then for our choice afy andn;, we can find some,k and
F e Y'(nk,rt) with 7] > (1—y)max{|Zi_1(n,kr,t)],|.-Z(nkrt)|}, wheren > n;
andX € I. We fixn,k and.%, and letp = X. By (21) we have.Z| > c(}), wherec = (1—
2y)f(p). Let¥ = Uk<j<n(0j(F)) € X'(n,r,t) be the collection of all upper shadows of
Z,wherellj(Z)={H e ([rj‘]) ‘HDIFeZ}. Letpr=p+ée€lp,andd=n(p1t+&) =
(k,k+2&1n) NN.

Claim 4. |0j(#)| > c(]) for j € J.

Proof. Choose a reat < n so thatc(}) = (,*,). Since|.#| > c(}) = (,,*,) the Kruskal-
Katona Theorem [21, 20] implies th&fl;(.#)| > (X J) Thus it suffices to show that

(n%;) = c(}), or equivalently,

(n35) _ ()

()~ cli)
Usingj > kthisis equivalenttg--- (k+1) > (x—n+j)--- (Xx—n-+k+1), which follows
fromx <n. O
By the claim we have
Wo (@) > 3 101(Z)] pl(2—p)" ) = ¢ S (})pl(2—pu) . (22)
1 Z] 1 %(]) 1

Using (20) and (19), the RHS of (22) is more than
c(1-3y)/(1-2y) = (1-3y)f(p) > (1-4y)f(p+e&1) = (1— ) f(p1).
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This meanswp, () > (1— yo) max{wp, (4%-1(n,r,t)),wp, (%4 (n,r,t))}, which contradicts
(W) because € lp C po =+ &. O

Theorem 11. Letr,t € N withr > 4, and letpo € (0, =3]. Suppose that

Po > (t+1)po H(1—po)+ Py,
i.e.,Wp,(%o(n,1,t)) > Wp, (41(n,1,1)) for alln > t+r. Then (WO) implies (M1) and (W1).
(WO0) There exist positive constangs, £9,ng such that®(n, p,r,t) < (1— yo)p! holds

for all p with |p— po| < & and alln with n > ng.
(M1) There exist positive constangs, €1,n; such that

mP(n,k,r,t) < (1—y1) (3 ) (23)

holds for alln > ny andk with ¥ < po+ &;.

(W1) There exist positive constangs, e, such thatn®(n, p,r.t) < (1—y)pt holds for
all p with p < po+ & and alln withn > t.

Proof. For simplicity, we write; for ¢;(n,r,t) and.#; for .7;(n,k,r,t).

Assume (WO0). First we show (M1). Choosgfrom (WO0). Sincewp, (%) > Wp,(%1)
we may assume that,(%p) > wp(¢1) for all pwith |p— po| < & (if necessary we replace
& SO that this property holds). We can choogeso that|.%g| > |-#1| holds for alln > ng
andk with ]% — po| < &. Then for the parameters chosen as above, wew3e p,r,t) =
wi(n, p,r,t) andm®(n,k,r,t) = mi(n,k,r,t). Thus (23) for the cast — po| < & == 2
follows from Theorem 10 by setting= 1. We will show (23) for'ﬁ‘ < po—&1. Let
p=po— %. Sincep < pg andwy(%) = p' > Wp(%1) we can choosg > 0 so that

(1—2y1)p' > wp(“1(n,1,1)). (24)
Then choose@g so that

Z(. P A-p)" > pH(1-2p)/(1-n) (25)

holds for alln > no, whereJ = n(p=+ %) = ((po — €1)n, pon) NN.

To show (23), suppose, on the contrary, that we can find spkand.Z € YO(n,k,r,t)
with |Z| > (1—y1) (1), wheren > ng and X < pg— &. We fixn,k and.#. Let¥ =
Uk<i<n(Di(:#)) € XO(n,r,t) be the collection of all upper shadows.&f.

Claim 5. |0(.F)] > (1— 1) (")) fori € J.

(%) Since|.Z| > (%) the

Proof. Choose a reak < n—t so that(1— Vl)(ﬂ ) =
)| ). Thus it suffices to show that

t
Kruskal-Katona Theorem implies thdfl(.#)| > E
(%) > (1) (7)), or equivalently,
() . a-w(
()~ Q=w ()
Usingi > (po— €1)n > k this is equivalent tgi —t) --- (k—t+1) > (x—n+i)--- (X—n+
k+ 1), which follows fromx < n—t. O
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By the claim we have

>Z|D )P L—p)"" > (1- Vl)Z( )p(1-p" (26)

By (25) and (24), the RHS of (26) is more théh—y1) - p'(1—2y1)/(1—y1) = p'(1—
2y1) > Wp(%1(n,r,t)), which contradicts (WO0). This completes the proof of (M1).

Next we show (W1). Leg; = 5—20 and letp < po — &1 be given. By (M1) we can find
y1 > 0 andny such thatm®(n,k,r,t) < (1—y1)(§ ) holds for alln > ny andk with & < po.
Choose (< d « €1 so thatp+ d C (0, pp). Choosen, so that

(1-v) S () pa™ ™+ ; QP < (1-%)p (27)
ked keJ
holds for alln > ny, whereJ = n(p+J). Letn > max{ny,n;} and choos&’ € X%(n,r,t)
with wp(#) =wP(n, p,r,t). Let#® =« n () for k € J.

If 0 cYO(n,k,r,t) then we havév®| < mP(n k,rt) <

t vertices, sayt], theng® := {G — [ |:Ge %( Klis (r—1)

(1—y) (7). 1f W fixes

-wise 1-intersecting. (Other-
k—t
n—t

wise ¥ fixes [t].) Thus we haveg N =19W| < (D) =0 < po(R)) by (2).
Consequently, in both cases, we have
M| < (1-w) () (28)
Using (28) and (27) we have
7)< S 19Mpa™ k+; <(1-%)p,
ked
and this is true for alh >t by Lemma 6. This completes the proof of (W1). O

By Theorems 8, 10 and 11, we have the following.

Theorem 12. Letr > 4. There exists, such that
m(n,k,r,t) = max{L%(n k. r,t)],[-Z1(nk,rt)|}

holds for allt with 1 <t < (3" — 1)/2, and for alln > ny andk with ¥ 5 <3 + E.
Moreover Zp(n,k,r,t) and.Z1(n, k r t) are the only possible optimal conflguratlons (up
to isomorphism).
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