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1. INTRODUCTION

Let N = {1,2,...} denote the set of all positive integers. Set [{] =
{1,2,...,4}. For a family F = {F,...,F,}, consisting of finite subsets
of N let ¢(F) denote the shadow of F, that is

o(F)={GCN:3FeF, GCF}.

Set also
' 6i(F)={G € o(F) : |G| = i}.

‘We use the notation
(I:) ={H CN:|H|=k}.

IfFcC (i‘), then F is called k-uniform. A family F is called a complex
if o(¥) = F hold. The f-vector f = (fo, f1,--.,fty...) of a family Fis

defined by
s=lra ()
i
Set also F& = Fn (T)

Note that this differs slightly from the usual definition in combinatorial
topology. An important problem in combinatorial topology is the charac-
terisation of all possible f-vectors of complexes. This is done by the —
by now classical — Kruskal-Katona Theorem. We shall present it together
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?I\?ith (one ?f) its proof in the next section. For the proof we use the follow-
Ing operation, called shifting and first defined by Erdés-Ko-Rado [7). Given
a family F and integers 1 < ¢ < § < n define

Sy (F) = {F’=(F—{j})u{i} fjeF,i¢ Fand F' ¢ F
F otherwise .
Set
8i3(F) ={Si;(F): F e F}.
Note that f-vectors of F an;i Si(F) are identical.

f’roposition 1.1. (Katona [20]) If.F is a complex then 8;i(F) is a complex,
00.

Proof. Let G C H, |G| = [H| -1, H € 8;;(F). Cleatly, it is sufficient to
prove, that for all such pairs, G € 53 (F) holds. By definition H = Sii(F)
holds for some F € F. We consider some cases according F n {4, 5}.

@ {iitcF '

In this case F = 5;;(F) and F — {i}, F — {7} are both proper subsets
of F. Consequently, Sg;(F — {i}} = F — {z}.
We infer G € 8;;(F) from this and the fact that F is a complex.

(i) j¢r
In this case Si(E) = E holds for all subsets E of F. I ti
ey n particular,

(i) je F,i¢ Fbut F = H.
From the definition of S;; it follows that F¥ — (F —{j}) U {i} satisfies

F' € F and consequently Si;(E) = E for .all subsets E of F. In
particular, G € S;(F).

(V) jEF,i¢F, Sy(F)=H=F
Deﬁ.ne ¢ by G=F'~{z}. If z # i then j € F and the definition of
Si; implies G € $;5(F) in view of (F — {z}) e F.
Finally, if G = H — {i} then G = FNF'. Thus @ € F and S;;(¢) =
G € 54(F) follow. m e 50 =
For an integer i and for a family F we define
F@)={F-{i}:ic FeF}and
F@={FeF:i¢F)
Note that | F| = |F(5)| + | F(7)| holds.

9. THE COLEX ORDER AND THE KRUSKAL-KATONA THEOREM

The colex order <, is a total order on all finite subsets of N defined by:

A <. Bif and only if either A is a proper subset of B or the
maximal element of A — B is smaller than that of B — A.

The first few sets in the colex order are
@7 {1}! {2}7 {17 2}: {3}a {1) 3}1 {21 3}’ {1’ 2, 3}7 {4}'

The following fact easily follows from the definition but it is very im-
portant.

Fact 2.1. The sets in any initial segment of the colex order form a complex.

Proof. Suppose that G C H and H is in the initial segment. Then G <. H
by definition and therefore G belongs to the initial segment, too. m

For positive integers m, k let A(k,m) denote the family of the first m
sets of size k in the colex order.

Fact 2.2. 0;(A(k,m)) = A(,|os(A(k,m))|), that is the i’th shadow of
A(k, m) forms an initial segment among i-element sets in the colex order.

Proof. Let A = {ai,...,0r} be the largest element (in colex order)
of Alk,m), 1 < a1 < ... < ag. Set B = {@k—g41;--- 0} I G is
an i-set with B <. G then A <. G and consequently, A <. H follows
for all sets H, containing G. Consequently, B is the largest element in
oi(A(k,m)). Let now D be an arbitrary i-set satisfying.D <. B. Suppose
that D = {dk—it1,..-,dx} with dx_i1 < ... < dg. By definition of the
colex order there is an a k — ¢ < a < k such that

dy < b and

dj=bjfora<j <k :

If @ < by; then take an arbitrary a-element set F C {1,2,...,by — 1}
containing {dy_sy1,...,da}. Now E U {dgt1,...,dx} <c 4 and it contains
D, proving D € o;(A(k, m)).

Ifa=b,, then A= {1,2,...,a} U{das1,---,dx}, implying D C A. ®

Kruskal-Katona Theorem. (Kruskal [23], Katona [20]) For all F c (}) -

one has
los(FN 2 |oi(Alk, |F)], 0<i<k.
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Before giving the proof of the theorem let us explore the colex order.
For positive integers k,m let A = {a1,...,ax}, &1 < ... < a; be the

last element in A(k,m). Since A completely determines A(k,m) we shall
use the notation:

A(B) ={D:|D|=B|, b <. B}.

By definition of the colex order ([‘”‘k_ 1]) C A(k, m) holds. Furthermore,
ax € B holds for the remaining members of A(A). This implies

Fact 2.3.
ap—1
A(A) = ( . )U{{ak}uB : BeA({ay,...,a54))}. m
Applying this fact & times we obtain the following expression for m.
_ ak—l a,k__]_—]. a —1 0
m= () () e (7))

This is called the inproper cascade Jorm of m.

Choose the minimal j > 1 with the property a; +1 < aj41. If no such
J exist set § = k. Then

C7)e (00
(7)) () ()= (2)
m = (a’“k_ 1) oot (a";jr_l 1) + (‘;’)

This is called the (proper) cascade form of m.

That is,

Fact 2.4. The cascade form is unique among all representations of m in
the form '

m= (b]:) +... 4 (?) satisfying by >...>b; >3 > 1.

Proof. Suppose that m = (%) + ...+ (%) is another representation.
Suppose by symmetry that {by,... 2b;} >¢ {dg. ..., d;} holds. That is there
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exist I < k with b; > d; and b, = dy for all | < u < k. Then using, the two
representations, we obtain
(-
i

0=m—m= (bll)+...+(l;?')-—(?)—...—
()00
a contradiction. m

For m = ( 3 ) +...+ ( 7 1 ) + ( J-), written in proper CﬂSCadB form
define

aj+1—1

3‘(’”):(akl_l)+"‘+(j+1-(k—l>)+(j—3§—z>>’ Dsi<h

_ for—1 a1—1
Similarly, for m written in inproper cascade form m = =+ (D) +

(%) we define
By(m) = (“k N 1) ot (1 ol l)).

0
Noting that {*§') = 0 for b < 0 and using (5) = Xo<ich (474) we obtain

Fact 2.5. ~
ag(m) = al(m).
Trom this and from. the way we defined the inproper cascade form we
obtain

fack 28 lo (AL, m))| = Bi(m)

Thus the Kruskal-Katona theorem is equivalent to

(1P| 2 8u(m) for all F (‘Z) @.1)

To avoid misunderstanding sometimes we write 6} )(m), to indicate that
the function arose via k-sets.

Combining Facts 2.2 and 2.6 gives

o (my = 8. EDEE (m)). ). (2.2)
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In view of (2.2) and monotonieity of B(m) as a function of m, we see
that it suffices to prove (2.1) for { =k — 1.

To do so we first apply the shifting operation Sijto Ffor2<j,4is
contained in some member F' of F.

After repeated applications of S1; we obtain a I-shifted family G, that
is, 515(G) = G for all j > 2. Moreover, 18l = |7, |oe(F)| > |oe(G)|. To see
this last inequality consider the complex F, generated by F: F. = {F. :
dFeF, F.C F}. Then

fo(F) = loe(F)).

In view of Proposition 1.1 the family 8y, (F) is a complex, too. Furthermore
fe(Fe) = fo(S1;(F)). Since $15(F,) is a complex loe(F)| = |oo(Si(F))]
follows . Repeated applications yield: the desired inequality loo(F)| >
lo2(G)].

1-shifted families have the following nice property.

Fact 2.7. Suppose that G C (IE) is I-shifted. Then
ok-1(9) = G U{HU{1} : H € 0 5(G(1))}.

" Proof. Clearly the RHS is a subset of the LHS. To prove the inclusion in
the other direction, take E C @ €G,|E|=k~1.1f1€E, then B — {1}
is a (k — 2)-subset of (G ~ {IHegr) 1¢EbDt F=EU {1}, then
E € G(1). Finallyif 1 ¢ Eand F = EU {/} for some 2 < j then 1-
shiftedness implies $7;(F) = F thus (F-{s)u{l} = EU{1} bas to be in
G. Thatis, ¥ € G(1). m

Now we prove (2:1),by the proof given in [8], for the case [ = k — 1,
by double introductionon m and k. The cases m =1 or k=1 are trivial.
Suppose that |G] = (%)it... + (‘;J) in proper cascade form.

=1 a;—1

> R

o)l > (k_li) ot (,-_1)'

Prodfofthe claim. Suppose the contrary, |g(i)| = Igl—IG(l)l > (akl;-1)+

. (ajj_l) + 1 follows:. If.aj — 1 > 7 then the induction hypothesis, Fact

2.7 and monotonicity yields |G(1)] > loe-1 (GO 2 (P +... + (‘;i__ll),
contradicting the indirect assumption.

Claim.
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If a; = j then let T be the greatest integer j <7 < k with a, = 7. We
i =

16(D)] > (“’“k" 1) ot (“r:i—l 1) T

Writing 1 as (T) and using Fact 2.7 together with the induction hypoth-
T .

have

esis gives
-1 T
- ap—1 Grg1 N ( ) >
izl @y (47 bt ()4 (L |
ak—l CLT+]_—1 + r—1 +“.+(]'-—1>
2 k—1 et T r—1 j—1
in contradiction with the indirect assumption. &

Now the proof of (2.1) is easy.

3 i1 ig 1 er or inproper. cascade
Set 7 = (%) +...+ (“].J_l ). This is a prop

form. Using the claim, Facts 2.5, 2.6, 2.7 and monotonicity gives
g ay. \ , .
7 =Dy = (% ...+<,’)=8I(m).l:l—
lok-1(G)] > #h + 8D () = (k _ 1) + i

As an immediate consequence we have.

Corollary 2.8. A sequence (fo, f1,...) of non-negative integers is the f-
vector of a complex if and only if

() < fra (2.3)

holds for all k > 1.
Proof. Suppose that F is a complex with f-vector (fo,---). Then

e 1((FeF:|Fl=k})C{FeF:|Fl=k-1}

holds. Thus (2.1) and the definition of (fo,...) gives the inequal?ty (2.3).
Suppose next that (2.3) is satisfied and consider A = UpA(K, fx)-

In view of Fact 2.2 and 2.6 we have

or1( Ak, fi) = Ak = 1,88, (7)),

that is, .A is a complex. =
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3. CANONICAL ANTICHAINS

A family F C 2M is called an antichain it F ¢ G holds for all distinct

F.GeF.

Let us introduce the notation

F® ={FeF:|F|=k).

Suppose that f = (fo,... » Ju) is the f-vector of . Then Fatdl | = fx holds.

Claim. F is an antichain if and only if for all 0 < I < k < n one has

a(FnF® =,

P?tzposition 3.1. (Sperner [30]) Suppose that F ¢ 2l an antichain
with f-veetor (fo,..., f,). If k is the maximal integer with fi > 0, then

(F - F®) Uy (F)

is an antichain, too.

.l;’roof. A member, G of U]c._l(]:) is of maximal size in the new family, so
1t cannot be properly contained in any other member. On the other hz;nd

the existence of i impli i
fee € F with G C F implies that G contains no member of

( Given t-he f -\fector (fos---, fa) of an antichain defire the sequence
8(25 -2 8n) Inductively, by setting s, = f,, and if s;, is defined set Sk
ak—l(sk) + fe—1 for k> 1. B

Repeated application of Propositi i
position 3.1 togeth
Katona Theorem gives that pether with the Kruslal
8; < (n)
i

Theorem 3.2. (2], [6]) Let F c 2l p ichai i
AP detniy € an antichain. The family A =

1=

(3.1)

A= (AG,s) - AG,s: — £)

0<i<n

The Kruskal-Katona Theorem

is an antichain of [n] having the same f-vector as F.

Proof. From (3.1) it follows that A C 2"l Define
sH={se ([T), A€ A Sc A}

We prove by descending induction on n that 8® = A(k, s1.) holds. For
k = m this holds trivially.

On the other hand, by definition,

SEY = gy (SWyu A,
Facts 2.2 and 2.6 together with the definition of sz—; imply
op-1(8®) = Ak — 1, 56-1 = fi1)-

Consequently, the sets in A(k— 1, 84-1) — Ak — 1,851 — fr—1) are not
contained in the other members of A, proving that A is an antichain. The
identity of the f-vectors of A and F is immediate from the definition. =

Even that this theorem is 2 simple consequence of the Kruskal-Katona
Theorem, it has many applications in extremal set theory. The family A(F)
is called a canonical antichain.

Let us mention the basic extremal theorem for antichains.

Theorem 3.3. (Sperner [30]) Suppose that H C oIl js an antichain. Then
|H] < ELT’;ZJ) = (rn’;ﬂ) holds with equality if and onlly ifH = (Lv[:;]ZJ) or
H = (f)z) holds.

Sperner’s proof is based upon Proposition 3.1 and the following Kruskal-
Katona type lemma.
Proposition 3.4. (Sperner [30]) Suppose that F C ([7,:]), 1<k <n.
Then |ox—1(F)|/ 1F] = (") / () holds with equality holding if and only
if 7= ().

Proof. Consider the bipartite graph B with parts ([g]), (k[fll) defined in a
way that a k-set F and a (k — 1)-set G are joined by an edge if and only if
G C F. Every k-set F" has degree k and every (k —1)-set degreen —k +1.
This implies

los—1(F)| = |FIk/ (n— k+1), (3.2)
with equality holding if and only if # and op-1(F) define a connected
component of B. Now the proposition is equivalent to (3.2) and uniqueness
follows from the fact that B is connected. m
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4. THE ErRDSs-K0-RADO THEOREM

A family F.C glnl is called intersecting if N F’ #  holds for all F, F' € F
Probably the sunplest_ result in extremal set theory is the following. .

Proposition 4.1. If F is intersecting then

[Fl<2n? (4.1)

holds.
Proof. One can partition 2" inge 97-1 complementary pairs (4, B)
4 ?

B =[n]- A Since ANB =0, at m
: = 0st one set out of each pai
belong to the intersecting family .7-7' . . o e cam

Suppose next that F is k-uniform, F r
C . I 2k i
automatically intersecting. ’ (k) S °

For 2k < n probably the most natural i i
For 2k < way of defi i
family is the following: Y Shmne an infersecting

- {re (). 1co

Clearly |E(k, n)| = (3°1) holds.

Erdés-Ko-Rado Theorem. ([7]) Suppose that F C ([Z]) is intersecting,

2k < n. Then
17l < (”‘1).
k-1

.Proof. (Daykin [4]) Consider ¢ = {[n] —F: F F} C (n[f]k) Since F is
1ntersect1‘ng, 0:(G) NF = P holds. Suppose now that |F | > (Z‘%) = ("_1
holds. Since |G| = |F|, the Kruskal-Katona Theorem implieg |a,c(g§°|—k>

("zY). Consequently, |F| < @ - (%) = (22D holds. w

(4.2)

5. ESTIMATING FUNCTIONALS ON COMPLEXES

Let g: {0,1,...,n,...} — R be an arbitrary function.
Problem 5.1.Given 1 < m < 2" and g, find a complex F C oln], [Fi=m
minimizing 3 per (1 f1)-

This problem was solved for some special case by Lindstrém (see [25])
without using the Kruskal-Katona Theorem. Ahlswede-Katona [1] (see also
[21]) solved it for decreasing functions using the Kruskal-Katona Theorem.
Let A(m) be the family consisting of the first m sets in the colex order.

Theorem 5.2. {Ahlswede-Katona [1]) Suppose that g is decreasing, then
the family A{m) gives a solution to Problem 5.1.

Proof. Let (fo, f1,---,fn) be the f-vector of some complex 7 C 2l
|F| = m and let (ag, ..., an) be the f-vector of A(m).

Claim. For all 0 < k < n one has

ZﬂiZ Zfi

KSigm  kZign

(5.1)

Proof of the claim. Suppose the contrary and let k be the smallest
integer for which (5.1) fails. Then a; < f holds.

Now we prove a; < f; for all £ < k by descending induction on 4. If it is
done we obtain the contradiction

m=ag+...+ax-1+ Z a<fot..-+ fe—1+ E fi=m.
k<Li<n k<i<n

Suppose that a; < f; for some j.
Then A(m)Y) = A(j,a;) and |FY| = f;. By the Kruskal'Katona
Theorem
aj-1 = oj-1(AG 6)| < log-1(FO) £ fi1,
proving aj—; < fj—1. This concludes the proof of the claim. m

Since ¥ ai = 3 fi = ™, (5.1) can be rewritten as

> < Y fi forall 0<k<n

0<i<k ogi<k

(5-2)
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Using Abel-summation we can write setting g(n + 1) = g(n)

Y, glah=Y" aigi) =) D" ailg(k) — g(k +1)) + mg(n) <

A€A(m) 0<i<n k=00<i<k .
D > filglk) = gk +1)) +mg(n) =
k=00<i<k
> 9(IF). N
Fer

For a family F and a set Y, define the trace Fyby Fy ={FNY:.Fe¢
F}.
IfFc2Misacomplex, 1 <i<n Y = [n] —
that is |Fy| = [F| — | F(4)] holds.
Suppose that n = dt. Let [n] = ¥ U...UY} be a partition with Y=t
1 <% < d Define D =2"%U...02%. Then [D| = 14d(2* - 1) and
[D@E)] = 2871 for all i € [n).

Theorem 5.2. was used in [12] to prove the following.

{}, then Fy = F(3),

Theorem Theorem 5.3. Suppose that F C 2, |F| < 1+ n(2® — 1)/t
Then there exists some i € [n] such that

[ Fpng— iyl = 7] — 281
holds.

For the proof we refer to [12],

6. LOVASZ’S NUMERICAL VERSION OF THE KRUSKAL-KATONA
THEOREM

This complexity of the form, makes the Kruskal-Katona Theorem often

awkward for concrete applications. This following version is more handy
for computations. )

Theorem 6.1. (Lovdsz [24]) Suppose that F C (XE), |72 (f) witha > k,

real. Then
lox-1(F)] > (kf 1) 6.1)

with equality holding if and only if © is an integer and F = (%) for some
z-element set X.

ivi that & > 3.
of. The cases k = 1,2 are almost trivial, we may suppose it k& >
i; oin the proof of the i{ruskal-Katona Theorem we first use 'shlff.mg t'o
obtain a family F, satisfying S1;(F) = F for all j > 2. To fully justify this
we have to prove the following:

Proposition 6.2. Suppose that F is not of the form (Z) for |Y| = = but
S1;(F) = (5). Then .
s> (,2)-

Proof of the proposition. By the assumption j ¢ X, (X_k{l}) C }f
Define G = F)N (X and # = FHN (K. Again by 515(F) = ()
the two families G and H form a partition of (Xk__{ll}). Since |ox—1(F)| >
(i:i) + |op—2(G)| + |ox—2(H)|, all we have to show is

z—1
Iok_z(g)l + jop-o(H)| > (k _ 2)' (6.2)

. X—{1 X —{1}
Look at the bipartite graph with parts ( k—{l }) and ( A ) the edges

defined by containment. For k > 2 this graph-is connected, consequently
ox—2(G) N ox—o(H) # 8. This implies (6.2). m

Now we return to the proof of (6.1). We apply double induction on |F|
and k. We claim that : o1
IHNZQ_J,

Otherwise |F(1) = |F] — |7 ()| > (*3Y) followg. Choose y §uch that
|F@| = (%). Then y > z — 1 and by the induction hypotihems andBl-
shiftedness |F(1)| 2 op_1(FINI = (Y1) > (,%,) foliows proving (6.3). By
the induction hypothesis and Fact 2.7 we infer

z
k—1)

as desired. If equality holds, then by the induction hypothesis F(1) =
R X
(Xk__{ll }) follows. Now 1-shiftedness implies 7 C (}). m =

(6.3)

los_1(F) = |F(1)] + lor_a(FO)| = (Z _ 1) + (: _ ;)
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Theorem 6.1 shows the uniqueness of optimal families in the Kruskald

Katona Theorem for the case [Fl=(}),a>F, integer. Applying the same
result k — [ times proves g

(F) 2 (9) and uniqueness for all 1 <<k
The values of [F| = m for given & and { such that A(k,m) is the only
optimal family in the Kruskal-Katona Theorem were determined indepen-
dently by Fiiredi-Griggs [15] and Mérs [26]. ) |
Combining the full version of the Kruskal-Katona Theorem with Lo-
vész’s version of it gives.

Theorem 6.3. Suppose that F ¢ (IE), IFl = (F)+ () +. . o+ () +5)

with ag,...,a;) integers and z real, satisfying a;, > ... > Gy =>zc+1>
{41, then
ay a4 T
—1(F)| >
a2 () o (% )+(:5)
holds.

7. A PRODUCT VERSION OF THE ERDOS-KO-RADO THEOREM

"Let 1 <k, I < n be integers, X an n-element sct. Two families & c

and G C (Jf) are called cross-intersecting if F NG # § holds for all F eF
and G € G. The following observation is due to Katona [19]

Fact 7.1, Forn>k+1 F . G are cross-intersecting if and only if
a({X-F:FeF})ng=0.

This shows that for |F|

= m fixed the maximum size of |g] is & -
Bl(n_k) (m). Thus '

(()-t)

of computing and estimating (7.1)

max | F|G| = max m

o<m< (1)

(7.1)

holds.

" However, due to the complexity
is difficult to use.
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X
Theorem T.2. (Matsumoto-Tokushige [27]) Suppose that F C ($), 6 c
(’l(), 2k < n, 2l <n and F, § are cross-intersecting. Then

-1\ (n— 1)
—-1/\Il-1
. -1 _ {n—1
holds; moreover, equality holds if and only if |F] = (;21) and || = (377)-
; -
Further, F = {G e :ze F} and G = {G e(}):e G} must hold for
some x € X, unless n =2k = 2[.

The proof of (7.2) uses Fact 7.1, Theorem 6.3 and the following purely
analytical inequality

I71l] < (: (72)

Lemma 7.3. (27) For1<t<n—kandn—-k—-t<z<n—t-1,
() s (i) (amine)
(()-(79-G2) () -(0) <G ().

Let us mention that Theorem 7.2 was proved by Pyber [29] .in the cases
k=1and 2k+! < n, k > L. The proof of the second case is by a nice
application of Katona’s cyclic permutation method ([22]). )

Setting k = | and F = G in Theorem 7.2 we obtain the Erdés-Ko-Rado-
Theorem (4.2). ' ' N .

In [17] the following inequalites for cross-intersecting familics were ob-
tained using the Kruskal-Katona Theorem. o

For each inequality 0 <a < b, a+b<n, AC ([Z]) and B C () are
nonempty cross-intersecting families

n /n—a 3
s (5) - (") +2 (73)
Suppose that |A| > (,*,) wheren —a <z <n- 1.1
T n—1
(7o) == (20)
then )
(’;)—(""b)+(nf_a) ifa<borzr<n—2 (7.4)

fe=bandn—-2<z.

Al 1Bl < {2(2:})
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Suppose that 4] > (*71) then

@M= +1 ifa=b>2 5)

() N otherwise.
Let us note that all these inequalities are best possible. In the case a = bL

inequality (7.3) was already proved by Hilton-Milner [18] using different
methods.

W+m§{

8. KATONA’S SHADOW THEOREM FOR INTERSECTING FAMILIES

A family F is called ¢-intersecting if |F n B | 2 ¢ holds for all F,F' € F.

A simple example of t-intersecting families is ( [2’“,: t]). This shows that
the following result is best possible.

Theorem 8.1. (Katona [19]) Suppose that F C ([:]) is t-intersecting and
k—t<g<k Then

oAz (1) /()

Proof. The proof is based upon shifting. By Proposition 1.1. it does not
increase the size of the shadow, also it maintains the i-intersecting property
(cf. [19], [7] for the easy proof). We apply induction on n. The case
n = 2k —t follows from Proposition 3.4. Suppose now that n > 2k — ¢ and
that S;,(F)=F forall1 < i < n.

Clearly, F(7) C (I*;Y) is t-intersecting.

(8.1)
holds.

Claim. F(n) C ([',:j]) is t-intersecting, too.

Proof of the claim. Choose E, E' € F(n). Then Eu{n}, E'U{n} are sets
in the t-intersecting family F, consequently [ENE'| > ¢—1. Suppose that we
have equality. Than [EUF'| = 2(k—1)—(¢—1) = 2k—t—1 < n~1. Therefore
we can find i € ([n — 1) — (EU E")). Since Sn(F)=F, F =F U{i}isa
member of F. However, |(EU{n}) N F'| =¢ — 1, a contradiction. m

To continue with the proof of (8.1) observe that
g (P = |og(F@))] + |og-1(F(n))].
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Applying the induction hypothesis to both F (%) and F(n) we obtain

st (1) (57 (7))

tice |F| = |F @)+ |F(n)]
nclude the proof of (8.1) we only need to no I i
ari(:l(ﬁ:at the coefficient of | (n)] is not less than that of |F(7)|. This latter

fact is equivalent to
k(k—t) < g(2k—t — g). u
For a different proof of (8.1) and some sharpening of it see [9].
The inequality (8.1) was used by Katona [19] to [g]ive a short proof of the
xd
Erdés-Ko-Rado Theorem in its dual form: let F C ( [ )1;;2179 < nand sufpose
that F'N F' # § holds for all F, F' € F. Then |¥| < (}2})- The. Proo 1ts_as
follows: the condition implies that F¢ = {[n] - F : F € F} t-mt_erksec ing
witht = n — 2k + 1. Apply now (8.1) withg=(n—-k)—-(t—-1)=4k.
Since o(F°) N F = § we obtain

()2 m (") /(2h)) = b

that is |[F| < (Z:i), as desired. ' . ‘
Actually Katona invented (8.1) in order to determine the maximum size
of a t-intersecting family F C 2[7l. For n + ¢ even define

K(n,t) = {K C [n]: |[K| 2 (n+1)/2}.
For n +t odd define
Knt)={Fcn:|Fnn-1] 2 {((n—1)+1)/2}.

Katona Theorem. ([19]) Suppose that F c 21 is t?interse.cting. Then
|F| < |K(n,t)| holds. Moreover, for t > 2 equality is possible only for
Kin,t).

We only give the proof in the case n + ¢ even. The other case is very

similar but slightly more complicated. Let (fo,...,[fn) l?e_the f—veci_;c?r of
F. Note that f; = 0 for § < t. For t < k < {n +1)/2 consider the families

ak_(t_l)(_’F(k)) and gle—t+1) e {['n,] _F.Fe J_-(n--k+(t—1))}.
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Since F is t-intersecting, they are disjoint. Now (8.1) implies
n
“kf(k—-t+1 kit <
fo b/ (k—t+1)+f, k+t1_(n_k+t_1)
Adding these inequalities and f, < 1, and using f; = 0 for ¢ < ¢ gives
n
(%) = kw0,

[F] = Z i

0<i<n j2(n+t)/2
proving the theorem. Uniqueness for ¢ > 2 follows from the fact that in thi;
case the coefficient of f}, in (8.2) is greater than 1. m

8.2

Let us mention that for

general n, k, ¢ the maximum size of t-intersectingg
families, 7 ()

is not always known.

Conjecture. ([10]) Suppose that F C (= i ¢
Then ].7:[ < MaXo<i<k—t B; where

B = {B c ([Z]) BN+ 2 > t+i}.
It is know (cf. [7], [10] and [32]) that [FI € |1Bo| holds forn > (b~t+1)(t+1)]

Let us note that (8.1) implies for all n,k, t the bound |F] € (k’it).

Let us also mention that in [13] an extension of (
linear algebra, while in [11]

-intersecting n > 2k — t|

8.1) is proved using
it is extended in other directions.

Let us also mention that a product version of the Katona Theorem is
proved in [28].

9. THE ORIGINAL APPLICATION: MATCHING k SETS INTO
(k — 1)-sETS

Katona’s discovery of the Kruskal-Katona Theorem, as so many other re-
sults in combinatorics, was motivated by a problem of Erdés. What is the
maximum number m = m(k) such that to any collection of at most m sets
of size k one can find a matching into the (k — I)-sets in a way that each
k-subset is matched onto a proper subset.

Theorem 9.1. (Katona [20]) Suppose that F = {A,...

»Fm} is a collec-
tion of distinct k-sets and
2k -1 2k —3 3 1
m< + E—1 +...+ +

<(7 ) 1) © (k). (9.1)

Then there exist m distinct sets G1y- .., G, each of size k — 1 such that
G; C F; holds for 1 < < m.

Proof. In view of the Kéning-Hall theorem it is sufficient to show that for
alil F C (l:), |F] < m(k) one has
lok-1(F) = | F].
Now in view of the Kruskal-Katona Theorem, it suffices to show
8™ (m) >m for all m < m(k). (9.2)

We prove (9.2) by induction on k. The case k =1 is trivial. In general,
if |F] < (2"; 1) then fo_1(F)| > |F] follows from Proposition 3.4. Suppose
next that m > (%k_ 1)

Let m = (%) +... + (‘?) be the proper cascade form of m. Then

—1 - i

m < m(k) implies that ar, = 2k—1 and that m-= (2kk )= (%4)+.. .+(»].1) <
m(k — 1). Using the induction hypothesis it gives

i () (o ()
() (o)

Let us remark that (9.1) is best possible. Namely for A = A(m(k)+1, k)
one has |ox—1(A)| = m(k) < | Al o
Almost identical proof gives the following generalisation.

Theorem 9.2. Suppose that F = {F,...,F,} is a collection of k-sets,

N e

Then there exist distinct I-sets Gh, . . . G, satisfying G; C F;,1 £ ¢ < m.
In Daykin-Frankl [5] Theorem 9.1 is extended in the following way.

Define for integer d > 2 .
dk —1 dlk—1)—1 2d—1 d-1
e (o s (4 e () ()

k k-1 2 1
Then m(k, d) is the largest integer with the property |ogx—1(F){/|F| 2
1/(d — 1) holding for every collection F of k-sets such that | 7| < m(k,d).

10. THE SHADOW FUNCTION AND THE TAKAGI FUNCTION

The results in this section explain to some extent, why is it difficult to use
the Kruskal-Katona Theorem for computations. Let us define the ezcess
Sfunction ®

e(m, k,1) = 8, (m) — m.
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By the Kruskal-Katona Theorem if F is a collection of k-element sets‘
|F| = m then

[oi{F)| > m + e(m, k,1)

holds.
The shadow function si(x) is defined by normalizing the excess func
tions.
2k -1\ 2k —1
sk(z):k( & ) e([( k )wJ ,k,k:—l) for0<z<1.

In 1903, Takagi [31] constructed a nowhere differentiable continuoug
functions ¢(z), which is called the Takagi function. To define it, first set
o if0<a<1/2
‘Pl(m)_{z(l—z) if1/2<z<1’
@n(2) =@n-1(p1(2))-
Now we can define #(z).
- 00

#z) = pa(®)2™ for 0<z <L
n=1

This function has several interesting properties including self-similarity.

Theorem 10.1 ([16]) The shadow functions converge uniformly to the
Takagi function, ie.,

lim sup |s —t = (),

Jim, sup [sn(c) = (o) =0

The proof of this result uses rather involved computations and we refer
the interested reader to the paper [16].

11. SOME RELATED AND OPEN PROBLEMS

Clearly the general Kruskal-Katona problem is of the following type. Given
a bipartite graph B with part X and Y, an integer m, 1 < m < X1}
determine or estimate the function 8(m) = 8(m, B) such that for every
XoC (i) the neighbourhood of Xy consists of at least &(mn) vertices.

This problem is too difficult to have a general solution, e.g., it includes
the problem of expanders. By considering non-bipartite graphs, we come
tolthe isoperimetric problem which is the subject of another chapter of this
volume.

Recently, the Kruskal-Katona problem was solved for some subclasses
of the k-element sets of N.

Let r > k be an integer and define N=X; U...U X, where
Xi={jeN:j=i{mod )}

Define K(k,7) the complete r-chromatic k-graph by

N

K(k,»)={F € (k) PNX| <1}
Since K(k,r) C (I:), the k-sets in K(k,r) are naturally ordered by the

colex order. Let A,(k,m) denote the first m sets in this induced order.

Theorem 11.1. ([14]) Suppose that F C K(k, 7, |F| = m. Then |oy(F)| =
|a[(Ar(k,m))l holds.
This result says that the Kruskal-Katona Theorem is “true” for K(k,r).

Problem. Find other subclasses of (IE) for which the Kruskal-Katona The-
orem Is true.

Let us conclude this problem with another open problem. For a family
FcC (I:) and integer 1 < I < k define the higher incidence mafrix My(F) as
a jou(F)| by |F| matrix whose rows are indexed by G € o(F), columns by

F € F and the entry m(G, F) by
1 ifGCF
m(GF)=\y ¥G¢F.

Problem. Determine or estimate the minimum of the rank of My(F) over
all F with |F| =m.
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