THE KRUSKAL-KATONA THEOREM, SOME OF ITS ANALOGUES AND APPLICATIONS

P. FRANKL and N. TOKUSHIGE

1. Introduction

Let $\mathbb{N}=\{1,2,\ldots\}$ denote the set of all positive integers. Set $[i]=\{1,2,\ldots,i\}$. For a family $\mathcal{F}=\{F_1,\ldots,F_m\}$, consisting of finite subsets of \mathbb{N} let $\sigma(\mathcal{F})$ denote the *shadow* of \mathcal{F} , that is

$$\sigma(\mathcal{F}) = \{ G \subset \mathbb{N} : \exists F \in \mathcal{F}, \ G \subset F \}.$$

Set also .

$$\sigma_i(\mathcal{F}) = \{ G \in \sigma(\mathcal{F}) : |G| = i \}.$$

We use the notation

$$\binom{\mathbb{N}}{k} = \{H \subset \mathbb{N} : |H| = k\}.$$

If $\mathcal{F} \subset {\mathbb{N} \choose k}$, then \mathcal{F} is called *k-uniform*. A family \mathcal{F} is called a *complex* if $\sigma(\mathcal{F}) = \mathcal{F}$ hold. The *f*-vector $f = (f_0, f_1, \ldots, f_k, \ldots)$ of a family \mathcal{F} is defined by

$$f_i = \left| \mathcal{F} \cap inom{\mathbb{N}}{i}
ight|.$$

Set also $\mathcal{F}^{(i)} = \mathcal{F} \cap {\mathbb{N} \choose i}$.

Note that this differs slightly from the usual definition in combinatorial topology. An important problem in combinatorial topology is the characterisation of all possible f-vectors of complexes. This is done by the — by now classical — Kruskal-Katona Theorem. We shall present it together

with (one of) its proof in the next section. For the proof we use the following operation, called *shifting* and first defined by Erdős-Ko-Rado [7]. Given a family $\mathcal F$ and integers $1 \le i \le j \le n$ define

$$S_{ij}(F) = \begin{cases} F' = (F - \{j\}) \cup \{i\} & \text{if } j \in F, i \notin F \text{ and } F' \notin \mathcal{F} \\ F & \text{otherwise} \end{cases}$$

Set

$$S_{i,j}(\mathcal{F}) = \{S_{i,j}(F) : F \in \mathcal{F}\}.$$

Note that f-vectors of \mathcal{F} and $S_{ij}(\mathcal{F})$ are identical.

Proposition 1.1. (Katona [20]) If \mathcal{F} is a complex then $S_{ij}(\mathcal{F})$ is a complex, too.

Proof. Let $G \subset H$, |G| = |H| - 1, $H \in S_{ij}(\mathcal{F})$. Clearly, it is sufficient to prove, that for all such pairs, $G \in S_{ij}(\mathcal{F})$ holds. By definition $H = S_{ij}(F)$ holds for some $F \in \mathcal{F}$. We consider some cases according $F \cap \{i, j\}$.

(i) $\{i,j\} \subset F$

In this case $F = S_{ij}(F)$ and $F - \{i\}$, $F - \{j\}$ are both proper subsets of F. Consequently, $S_{ij}(F - \{i\}) = F - \{i\}$.

We infer $G \in S_{ij}(\mathcal{F})$ from this and the fact that \mathcal{F} is a complex.

(ii) $j \notin F$

In this case $S_{ij}(E) = E$ holds for all subsets E of F. In particular, $G \in S_{ij}(\mathcal{F})$.

(iii) $j \in F$, $i \notin F$ but F = H.

From the definition of S_{ij} it follows that $F' = (F - \{j\}) \cup \{i\}$ satisfies $F' \in \mathcal{F}$ and consequently $S_{ij}(E) = E$ for all subsets E of F. In particular, $G \in S_{ii}(\mathcal{F})$.

(iv) $j \in F, i \notin F, S_{ij}(F) = H = F'$

Define x by $G = F' - \{x\}$. If $x \neq i$ then $j \in F$ and the definition of S_{ij} implies $G \in S_{ij}(\mathcal{F})$ in view of $(F - \{x\}) \in \mathcal{F}$.

Finally, if $G=H-\{i\}$ then $G=F\cap F'.$ Thus $G\in \mathcal{F}$ and $S_{ij}(G)=G\in S_{ij}(\mathcal{F})$ follow. \blacksquare

For an integer i and for a family \mathcal{F} we define

$$\mathcal{F}(i) = \{F - \{i\} : i \in F \in \mathcal{F}\}$$
 and

$$\mathcal{F}(\bar{i}) = \{ F \in \mathcal{F} : i \notin \mathcal{F} \}.$$

Note that $|\mathcal{F}| = |\mathcal{F}(i)| + |\mathcal{F}(\bar{i})|$ holds.

2. THE COLEX ORDER AND THE KRUSKAL-KATONA THEOREM

The colex order $<_c$ is a total order on all finite subsets of \mathbb{N} defined by:

 $A <_{c} B$ if and only if either A is a proper subset of B or the maximal element of A - B is smaller than that of B - A.

The first few sets in the colex order are

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{1,2\}$, $\{3\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$, $\{4\}$.

The following fact easily follows from the definition but it is very important.

Fact 2.1. The sets in any initial segment of the colex order form a complex.

Proof. Suppose that $G \subset H$ and H is in the initial segment. Then $G <_c H$ by definition and therefore G belongs to the initial segment, too.

For positive integers m, k let $\mathcal{A}(k, m)$ denote the family of the first m sets of size k in the colex order.

Fact 2.2. $\sigma_i(\mathcal{A}(k,m)) = \mathcal{A}(i,|\sigma_i(\mathcal{A}(k,m))|)$, that is the i'th shadow of $\mathcal{A}(k,m)$ forms an initial segment among i-element sets in the colex order.

Proof. Let $A = \{a_1, \ldots, a_k\}$ be the largest element (in colex order) of $\mathcal{A}(k,m)$, $1 \leq a_1 < \ldots < a_k$. Set $B = \{a_{k-i+1}, \ldots, a_k\}$. If G is an i-set with $B <_c G$ then $A <_c G$ and consequently, $A <_c H$ follows for all sets H, containing G. Consequently, B is the largest element in $\sigma_i(\mathcal{A}(k,m))$. Let now D be an arbitrary i-set satisfying $D <_c B$. Suppose that $D = \{d_{k-i+1}, \ldots, d_k\}$ with $d_{k-i+1} < \ldots < d_k$. By definition of the colex order there is an $a k - i < a \leq k$ such that

$$d_a < b_a$$
 and

$$d_i = b_i$$
 for $a < j \le k$.

If $a < b_a$, then take an arbitrary a-element set $E \subset \{1, 2, \dots, b_a - 1\}$ containing $\{d_{k-i+1}, \dots, d_a\}$. Now $E \cup \{d_{a+1}, \dots, d_k\} <_c A$ and it contains D, proving $D \in \sigma_i(\mathcal{A}(k, m))$.

If
$$a = b_a$$
, then $A = \{1, 2, \dots, a\} \cup \{d_{a+1}, \dots, d_k\}$, implying $D \subset A$.

Kruskal-Katona Theorem. (Kruskal [23], Katona [20]) For all $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ one has

$$|\sigma_i(\mathcal{F})| \ge |\sigma_i(\mathcal{A}(k, |\mathcal{F}|))|, \quad 0 \le i < k.$$

233

Before giving the proof of the theorem let us explore the colex order.

For positive integers k, m let $A = \{a_1, \ldots, a_k\}$, $a_1 < \ldots < a_k$ be the last element in $\mathcal{A}(k, m)$. Since A completely determines $\mathcal{A}(k, m)$ we shall use the notation:

$$A(B) = \{D : |D| = |B|, D \le_c B\}.$$

By definition of the colex order $\binom{[a_k-1]}{k} \subset \mathcal{A}(k,m)$ holds. Furthermore, $a_k \in B$ holds for the remaining members of $\mathcal{A}(A)$. This implies

Fact 2.3.

$$\mathcal{A}(A) = \binom{a_k - 1}{k} \bigcup \{\{a_k\} \cup B : B \in \mathcal{A}(\{a_1, \dots, a_{k-1}\})\}.$$

Applying this fact k times we obtain the following expression for m.

$$m = \binom{a_k - 1}{k} + \binom{a_{k-1} - 1}{k - 1} + \dots + \binom{a_1 - 1}{1} + \binom{0}{0}.$$

This is called the *inproper cascade* form of m.

Choose the minimal $j \ge 1$ with the property $a_j + 1 < a_{j+1}$. If no such j exist set j = k. Then

$$\binom{a_{j}-1}{j} + \dots + \binom{a_{1}-1}{1} + \binom{0}{0} =$$

$$= \binom{a_{j}-1}{j} + \binom{a_{j}-2}{j-1} + \dots + \binom{a_{j}-i}{1} + \binom{a_{j}-i-1}{0} = \binom{a_{j}}{j}.$$

That is,

$$m = \binom{a_k - 1}{k} + \ldots + \binom{a_{j+1} - 1}{j+1} + \binom{a_j}{j}.$$

This is called the (proper) cascade form of m.

Fact 2.4. The cascade form is unique among all representations of m in the form

$$m = inom{b_k}{k} + \ldots + inom{b_j}{j}$$
 satisfying $b_k > \ldots > b_j \geq j \geq 1$.

Proof. Suppose that $m=\binom{d_k}{k}+\ldots+\binom{d_i}{i}$ is another representation. Suppose by symmetry that $\{b_k,\ldots,b_j\}>_c\{d_k,\ldots,d_i\}$ holds. That is there

exist $l \leq k$ with $b_l > d_l$ and $b_u = d_u$ for all $l < u \leq k$. Then using the two representations, we obtain

$$0 = m - m = {b_l \choose l} + \dots + {b_j \choose j} - {d_l \choose l} - \dots - {d_i \choose i} \ge$$

$$\ge {b_l \choose l} - {b_l - 1 \choose l} - {b_l - 2 \choose l - 1} - \dots - {b_l - (l - 1) \choose 1} = 1$$

a contradiction.

For $m = \binom{a_k-1}{k} + \ldots + \binom{a_{j+1}-1}{j+1} + \binom{a_j}{j}$, written in proper cascade form define

$$\partial_l(m) = \binom{a_k-1}{l} + \ldots + \binom{a_{j+1}-1}{j+1-(k-l)} + \binom{a_j}{j-(k-l)}, \quad 0 \le l < k.$$

Similarly, for m written in inproper cascade form $m = \binom{a_k-1}{k} + \ldots + \binom{a_1-1}{1} + \binom{a_1}{k}$ we define

$$\bar{\partial}_l(m) = {a_k - 1 \choose l} + \ldots + {a_1 - 1 \choose 1 - (k - l)}.$$

Noting that $\binom{a+1}{b} = 0$ for b < 0 and using $\binom{a}{b} = \sum_{0 \le i \le b} \binom{a-i}{b-i}$ we obtain

Fact 2.5.

$$\partial_l(m) = \bar{\partial}_l(m).$$

From this and from the way we defined the inproper cascade form we obtain

Fact 2.6.

$$|\sigma_l(\mathcal{A}(k,m))| = \partial_l(m)$$

Thus the Kruskal-Katona theorem is equivalent to

$$|\sigma_l(\mathcal{F})| \ge \partial_l(m) \text{ for all } \mathcal{F} \subset \binom{\mathbb{N}}{k}.$$
 (2.1)

To avoid misunderstanding sometimes we write $\partial_l^{(k)}(m)$, to indicate that the function arose via k-sets.

Combining Facts 2.2 and 2.6 gives

$$\partial_l^{(k)}(m) = \partial_l^{(l+1)}(\dots \partial_{k-2}^{(k-1)}(\partial_{k-1}^{(k)}(m))\dots). \tag{2.2}$$

In view of (2.2) and monotonicity of $\partial_l(m)$ as a function of m, we see that it suffices to prove (2.1) for l = k - 1.

To do so we first apply the shifting operation S_{1j} to \mathcal{F} for $2 \leq j, j$ is contained in some member F of \mathcal{F} .

After repeated applications of S_{1j} we obtain a 1-shifted family \mathcal{G} , that is, $S_{1j}(\mathcal{G}) = \mathcal{G}$ for all $j \geq 2$. Moreover, $|\mathcal{G}| = |\mathcal{F}|$, $|\sigma_{\ell}(\mathcal{F})| \geq |\sigma_{\ell}(\mathcal{G})|$. To see this last inequality consider the complex \mathcal{F}_* generated by $\mathcal{F}: \mathcal{F}_* = \{F_*: \exists F \in \mathcal{F}, \ F_* \subset F\}$. Then

$$f_{\ell}(\mathcal{F}_*) = |\sigma_{\ell}(\mathcal{F})|.$$

In view of Proposition 1.1 the family $S_{1j}(\mathcal{F}_*)$ is a complex, too. Furthermore $f_{\ell}(\mathcal{F}_*) = f_{\ell}(S_{1j}(\mathcal{F}_*))$. Since $S_{1j}(\mathcal{F}_*)$ is a complex $|\sigma_{\ell}(\mathcal{F})| \geq |\sigma_{\ell}(S_{ij}(\mathcal{F}))|$ follows . Repeated applications yield the desired inequality $|\sigma_{\ell}(\mathcal{F})| \geq |\sigma_{\ell}(\mathcal{G})|$.

1-shifted families have the following nice property.

Fact 2.7. Suppose that $\mathcal{G} \subset \binom{\mathbb{N}}{k}$ is 1-shifted. Then

$$\sigma_{k-1}(\mathcal{G}) = \mathcal{G}(1) \cup \{H \cup \{1\} : H \in \sigma_{k-2}(\mathcal{G}(1))\}.$$

Proof. Clearly the RHS is a subset of the LHS. To prove the inclusion in the other direction, take $E \subset G \in \mathcal{G}$, |E| = k - 1. If $1 \in E$, then $E - \{1\}$ is a (k-2)-subset of $(G - \{1\}) \in \mathcal{G}(1)$. If $1 \notin E$ but $F = E \cup \{1\}$, then $E \in \mathcal{G}(1)$. Finally if $1 \notin E$ and $F = E \cup \{j\}$ for some $2 \le j$ then 1-shiftedness implies $S_{1j}(F) = F$ thus $(F - \{j\}) \cup \{1\} = E \cup \{1\}$ has to be in \mathcal{G} . That is, $E \in \mathcal{G}(1)$.

Now we prove (2.1) by the proof given in [8], for the case l=k-1, by double introduction on m and k. The cases m=1 or k=1 are trivial. Suppose that $|\mathcal{G}|=\binom{a_k}{k}+\ldots+\binom{a_j}{j}$ in proper cascade form.

Claim.

$$|\mathcal{G}(1)| \ge {a_k - 1 \choose k - 1} + \dots + {a_j - 1 \choose j - 1}.$$

Proof of the claim. Suppose the contrary, $|\mathcal{G}(\bar{1})| = |\mathcal{G}| - |\mathcal{G}(1)| \ge {a_k-1 \choose k} + \dots + {a_j-1 \choose j} + 1$ follows. If $a_j - 1 \ge j$ then the induction hypothesis, Fact 2.7 and monotonicity yields $|\mathcal{G}(1)| \ge |\sigma_{k-1}(\mathcal{G}(\bar{1}))| \ge {a_k-1 \choose k-1} + \dots + {a_j-1 \choose j-1}$, contradicting the indirect assumption.

If $a_j = j$ then let r be the greatest integer $j \le r \le k$ with $a_r = r$. We have

$$|\mathcal{G}(\overline{1})| \ge {a_k - 1 \choose k} + \ldots + {a_{r+1} - 1 \choose r+1} + 1.$$

Writing 1 as $\binom{\tau}{r}$ and using Fact 2.7 together with the induction hypothesis gives

$$\begin{split} |\mathcal{G}(1)| &\geq |\sigma_{k-1}(\mathcal{G}(\bar{1}))| \geq \binom{a_k-1}{k-1} + \ldots + \binom{a_{r+1}-1}{r} + \binom{r}{r-1} \geq \\ &\geq \binom{a_k-1}{k-1} + \ldots + \binom{a_{r+1}-1}{r} + \binom{r-1}{r-1} + \ldots + \binom{j-1}{j-1} \end{split}$$

in contradiction with the indirect assumption.

Now the proof of (2.1) is easy.

Set $\tilde{m} = \binom{a_k-1}{k-1} + \ldots + \binom{a_j-1}{j-1}$. This is a proper or inproper cascade form. Using the claim, Facts 2.5, 2.6, 2.7 and monotonicity gives

$$|\sigma_{k-1}(\mathcal{G})| \geq \tilde{m} + \partial_{k-2}^{(k-1)}(\tilde{m}) = \binom{a_k}{k-1} + \ldots + \binom{a_j}{j-1} = \partial_l(m). \quad \blacksquare \quad \blacksquare$$

As an immediate consequence we have

Corollary 2.8. A sequence $(f_0, f_1, ...)$ of non-negative integers is the f-vector of a complex if and only if

$$\partial_{k-1}^{(k)}(f_k) \le f_{k-1} \tag{2.3}$$

holds for all $k \geq 1$.

Proof. Suppose that \mathcal{F} is a complex with f-vector (f_0, \ldots) . Then

$$\sigma_{k-1}(\{F\in\mathcal{F}:|F|=k\})\subset\{F\in\mathcal{F}:|F|=k-1\}$$

holds. Thus (2.1) and the definition of $(f_0, ...)$ gives the inequality (2.3). Suppose next that (2.3) is satisfied and consider $A = \bigcup_k A(k, f_k)$. In view of Fact 2.2 and 2.6 we have

$$\sigma_{k-1}(\mathcal{A}(k, f_k)) = \mathcal{A}(k-1, \partial_{k-1}^{(k)}(f_k)),$$

that is, A is a complex.

3. Canonical antichains

A family $\mathcal{F}\subset 2^{[n]}$ is called an antichain if $F\not\subset G$ holds for all distinct $F,G\in\mathcal{F}.$

Let us introduce the notation

$$\mathcal{F}^{(k)} = \{ F \in \mathcal{F} : |F| = k \}.$$

Suppose that $f = (f_0, \ldots, f_n)$ is the f-vector of \mathcal{F} . Then $|\mathcal{F}^{(k)}| = f_k$ holds.

Claim. \mathcal{F} is an antichain if and only if for all $0 \le l < k \le n$ one has

$$\sigma_l(\mathcal{F}^{(k)}) \cap \mathcal{F}^{(l)} = 0.$$

Proposition 3.1. (Sperner [30]) Suppose that $\mathcal{F} \subset 2^{[n]}$ is an antichain with f-vector (f_0, \ldots, f_n) . If k is the maximal integer with $f_k > 0$, then

$$(\mathcal{F} - \mathcal{F}^{(k)}) \cup \sigma_{k-1}(\mathcal{F})$$

is an antichain, too.

Proof. A member, G of $\sigma_{k-1}(\mathcal{F})$ is of maximal size in the new family, so it cannot be properly contained in any other member. On the other hand the existence of $F \in \mathcal{F}$ with $G \subset F$ implies that G contains no member of \mathcal{F} .

Given the f-vector (f_0,\ldots,f_n) of an antichain define the sequence (s_0,\ldots,s_n) inductively, by setting $s_n=f_n$, and if s_k is defined set $s_{k-1}=\partial_{k-1}^{(k)}(s_k)+f_{k-1}$ for $k\geq 1$.

Repeated application of Proposition 3.1 together with the Kruskal-Katona Theorem gives that

$$s_i \le \binom{n}{i}. \tag{3.1}$$

Theorem 3.2. ([2], [6]) Let $\mathcal{F} \subset 2^{[n]}$ be an antichain. The family $\mathcal{A} = \mathcal{A}(\mathcal{F})$ defined by

$$\mathcal{A} = \bigcup_{0 \le i \le n} \left(\mathcal{A}(i, s_i) - \mathcal{A}(i, s_i - f_i) \right)$$

is an antichain of [n] having the same f-vector as \mathcal{F} .

Proof. From (3.1) it follows that $A \subset 2^{[n]}$. Define

$$\mathcal{S}^{(i)} = \{ S \in \binom{[n]}{i}, \ \exists A \in \mathcal{A}, \ S \subset A \}.$$

We prove by descending induction on n that $\mathcal{S}^{(k)} = \mathcal{A}(k, s_k)$ holds. For k = n this holds trivially.

On the other hand, by definition,

$$S^{(k-1)} = \sigma_{k-1}(S^{(k)}) \cup A^{(k-1)}.$$

Facts 2.2 and 2.6 together with the definition of s_{k-1} imply

$$\sigma_{k-1}(\mathcal{S}^{(k)}) = \mathcal{A}(k-1, s_{k-1} - f_{k-1}).$$

Consequently, the sets in $\mathcal{A}(k-1,s_{k-1}) - \mathcal{A}(k-1,s_{k-1}-f_{k-1})$ are not contained in the other members of \mathcal{A} , proving that \mathcal{A} is an antichain. The identity of the f-vectors of \mathcal{A} and \mathcal{F} is immediate from the definition.

Even that this theorem is a simple consequence of the Kruskal-Katona Theorem, it has many applications in extremal set theory. The family $\mathcal{A}(\mathcal{F})$ is called a *canonical* antichain.

Let us mention the basic extremal theorem for antichains.

Theorem 3.3. (Sperner [30]) Suppose that $\mathcal{H} \subset 2^{[n]}$ is an antichain. Then $|\mathcal{H}| \leq \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$ holds with equality if and only if $\mathcal{H} = \binom{[n]}{\lfloor n/2 \rfloor}$ or $\mathcal{H} = \binom{[n]}{\lfloor n/2 \rfloor}$ holds.

Sperner's proof is based upon Proposition 3.1 and the following Kruskal-Katona type lemma.

Proposition 3.4. (Sperner [30]) Suppose that $\mathcal{F} \subset {[n] \choose k}$, $1 \leq k \leq n$. Then $|\sigma_{k-1}(\mathcal{F})|/|\mathcal{F}| \geq {n \choose k-1}/{n \choose k}$ holds with equality holding if and only if $\mathcal{F} = {[n] \choose k}$.

Proof. Consider the bipartite graph B with parts $\binom{[n]}{k}$, $\binom{[n]}{k-1}$ defined in a way that a k-set F and a (k-1)-set G are joined by an edge if and only if $G \subset F$. Every k-set F has degree k and every (k-1)-set degree n-k+1. This implies

$$|\sigma_{k-1}(\mathcal{F})| \ge |\mathcal{F}|k/(n-k+1),\tag{3.2}$$

with equality holding if and only if \mathcal{F} and $\sigma_{k-1}(\mathcal{F})$ define a connected component of B. Now the proposition is equivalent to (3.2) and uniqueness follows from the fact that B is connected. \blacksquare

4. The Erdős-Ko-Rado Theorem

A family $\mathcal{F} \subset 2^{[n]}$ is called *intersecting* if $F \cap F' \neq \emptyset$ holds for all $F, F' \in \mathcal{F}$. Probably the simplest result in extremal set theory is the following.

Proposition 4.1. If \mathcal{F} is intersecting then

$$|\mathcal{F}| \le 2^{n-1} \tag{4.1}$$

holds.

Proof. One can partition $2^{[n]}$ into 2^{n-1} complementary pairs (A, B), B = [n] - A. Since $A \cap B = \emptyset$, at most one set out of each pair can belong to the intersecting family \mathcal{F} .

Suppose next that \mathcal{F} is k-uniform, $\mathcal{F}\subset \binom{[n]}{k}$. If 2k>n, then \mathcal{F} is automatically intersecting.

For $2k \le n$ probably the most natural way of defining an intersecting family is the following:

$$\mathcal{E}(k,n) = \left\{ E \in {[n] \choose k} : 1 \in E \right\}$$

Clearly $|\mathcal{E}(k,n)| = \binom{n-1}{k-1}$ holds.

Erdős-Ko-Rado Theorem. ([7]) Suppose that $\mathcal{F} \subset \binom{[n]}{k}$ is intersecting, $2k \leq n$. Then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.\tag{4.2}$$

Proof. (Daykin [4]) Consider $\mathcal{G} = \{[n] - F : F \in \mathcal{F}\} \subset \binom{[n]}{n-k}$. Since \mathcal{F} is intersecting, $\sigma_k(\mathcal{G}) \cap \mathcal{F} = \emptyset$ holds. Suppose now that $|\mathcal{F}| \geq \binom{n-1}{k-1} = \binom{n-1}{n-k}$ holds. Since $|\mathcal{G}| = |\mathcal{F}|$, the Kruskal-Katona Theorem implies $|\sigma_k(\mathcal{G})| \geq \binom{n-1}{k}$. Consequently, $|\mathcal{F}| \leq \binom{n}{k} - \binom{n-1}{k} = \binom{n-1}{k-1}$ holds.

5. ESTIMATING FUNCTIONALS ON COMPLEXES

Let $q:\{0,1,\ldots,n,\ldots\}\to\mathbb{R}$ be an arbitrary function.

Problem 5.1. Given $1 \le m < 2^n$ and g, find a complex $\mathcal{F} \subset 2^{[n]}$, |F| = m minimizing $\sum_{F \in \mathcal{F}} g(|f|)$.

This problem was solved for some special case by Lindström (see [25]) without using the Kruskal-Katona Theorem. Ahlswede-Katona [1] (see also [21]) solved it for decreasing functions using the Kruskal-Katona Theorem. Let $\mathcal{A}(m)$ be the family consisting of the first m sets in the colex order.

Theorem 5.2. (Ahlswede-Katona [1]) Suppose that g is decreasing, then the family A(m) gives a solution to Problem 5.1.

Proof. Let (f_0, f_1, \ldots, f_n) be the f-vector of some complex $\mathcal{F} \subset 2^{[n]}$, $|\mathcal{F}| = m$ and let (a_0, \ldots, a_n) be the f-vector of $\mathcal{A}(m)$.

Claim. For all $0 \le k \le n$ one has

$$\sum_{k \le i \le n} a_i \ge \sum_{k \le i \le n} f_i \tag{5.1}$$

Proof of the claim. Suppose the contrary and let k be the smallest integer for which (5.1) fails. Then $a_k < f_k$ holds.

Now we prove $a_i \leq f_i$ for all i < k by descending induction on i. If it is done we obtain the contradiction

$$m = a_0 + \ldots + a_{k-1} + \sum_{k \le i \le n} a_i < f_0 + \ldots + f_{k-1} + \sum_{k \le i \le n} f_i = m.$$

Suppose that $a_j \leq f_j$ for some j.

Then $\mathcal{A}(m)^{(j)}=\mathcal{A}(j,a_j)$ and $|\mathcal{F}^{(j)}|=f_j.$ By the Kruskal-Katona Theorem

$$a_{j-1} = |\sigma_{j-1}(\mathcal{A}(j, a_j))| \le |\sigma_{j-1}(\mathcal{F}^{(j)})| \le f_{j-1},$$

proving $a_{j-1} \leq f_{j-1}$. This concludes the proof of the claim.

Since $\sum a_i = \sum f_i = m$, (5.1) can be rewritten as

$$\sum_{0 \le i \le k} a_i \le \sum_{0 \le i < k} f_i \quad \text{for all} \quad 0 \le k \le n$$
 (5.2)

Using Abel-summation we can write setting g(n+1) = g(n)

$$\sum_{A \in \mathcal{A}(m)} g(|A|) = \sum_{0 \le i \le n} a_i g(i) = \sum_{k=0}^n \sum_{0 \le i \le k} a_i (g(k) - g(k+1)) + mg(n) \le$$

$$\sum_{k=0}^n \sum_{0 \le i \le k} f_i (g(k) - g(k+1)) + mg(n) =$$

$$\sum_{F \in \mathcal{F}} g(|F|).$$

For a family \mathcal{F} and a set Y, define the trace \mathcal{F}_Y by $\mathcal{F}_Y = \{F \cap Y : F \in$ \mathcal{F}

If $\mathcal{F} \subset 2^{[n]}$ is a complex, $1 \leq i \leq n, Y = [n] - \{i\}$, then $\mathcal{F}_Y = \mathcal{F}(\bar{i})$ that is $|\mathcal{F}_V| = |\mathcal{F}| - |\mathcal{F}(i)|$ holds.

Suppose that n=dt. Let $[n]=Y_1\cup\ldots\cup Y_d$ be a partition with $|Y_i|=$ $1 \leq i \leq d$. Define $D = 2^{Y_1} \cup \ldots \cup 2^{Y_d}$. Then $|D| = 1 + d(2^t - 1)$ and $|D(i)| = 2^{t-1}$ for all $i \in [n]$.

Theorem 5.2. was used in [12] to prove the following.

Theorem 5.3. Suppose that $\mathcal{F} \subset 2^n$, $|\mathcal{F}| \leq 1 + n(2^t - 1)/t$. Then there exists some $i \in [n]$ such that

$$|\mathcal{F}_{[n]-\{i\}}| \ge |\mathcal{F}| - 2^{t-1}$$

holds.

For the proof we refer to [12].

6. Lovász's numerical version of the Kruskal-Katona THEOREM

This complexity of the form, makes the Kruskal-Katona Theorem often awkward for concrete applications. This following version is more handy for computations.

Theorem 6.1. (Lovász [24]) Suppose that $\mathcal{F} \subset \binom{\mathbb{N}}{k}$, $|\mathcal{F}| \geq \binom{x}{k}$ with $x \geq k$,

$$|\sigma_{k-1}(\mathcal{F})| \ge \binom{x}{k-1} \tag{6.1}$$

with equality holding if and only if x is an integer and $\mathcal{F} = \begin{pmatrix} x \\ L \end{pmatrix}$ for some x-element set X.

Proof. The cases k = 1, 2 are almost trivial, we may suppose that $k \geq 3$. As in the proof of the Kruskal-Katona Theorem we first use shifting to obtain a family \mathcal{F} , satisfying $S_{1i}(\mathcal{F}) = \mathcal{F}$ for all $j \geq 2$. To fully justify this we have to prove the following:

Proposition 6.2. Suppose that \mathcal{F} is not of the form $\binom{Y}{i}$ for |Y| = x but $S_{1i}(\mathcal{F}) = {x \choose k}$. Then

$$|\sigma_{k-1}(\mathcal{F})| > {x \choose k-1}.$$

Proof of the proposition. By the assumption $j \notin X$, $\binom{X-\{1\}}{k} \subset \mathcal{F}$. Define $\mathcal{G} = \mathcal{F}(1) \cap \binom{X-\{1\}}{k-1}$ and $\mathcal{H} = \mathcal{F}(j) \cap \binom{X-\{1\}}{k-1}$. Again by $S_{1j}(\mathcal{F}) = \binom{X}{k}$ the two families \mathcal{G} and \mathcal{H} form a partition of $\binom{X-\{1\}}{k-1}$. Since $|\sigma_{k-1}(\mathcal{F})| \geq$ $\binom{x-1}{k-1} + |\sigma_{k-2}(\mathcal{G})| + |\sigma_{k-2}(\mathcal{H})|$, all we have to show is

$$|\sigma_{k-2}(\mathcal{G})| + |\sigma_{k-2}(\mathcal{H})| > {x-1 \choose k-2}.$$
 (6.2)

Look at the bipartite graph with parts $\binom{X-\{1\}}{k-1}$ and $\binom{X-\{1\}}{k-2}$ the edges defined by containment. For $k \geq 2$ this graph is connected, consequently $\sigma_{k-2}(\mathcal{G}) \cap \sigma_{k-2}(\mathcal{H}) \neq \emptyset$. This implies (6.2).

Now we return to the proof of (6.1). We apply double induction on $|\mathcal{F}|$ and k. We claim that

$$|\mathcal{F}(1)| \ge \binom{x-1}{k-1}.\tag{6.3}$$

Otherwise $|\mathcal{F}(\bar{1})| = |\mathcal{F}(1)| > {x-1 \choose k}$ follows. Choose y such that $|\mathcal{F}(\bar{1})| = {y \choose k}$. Then y > x - 1 and by the induction hypothesis and 1shiftedness $|\mathcal{F}(1)| \ge \sigma_{k-1}(\mathcal{F}(\bar{1}))| \ge {y \choose k-1} > {x \choose k-1}$ follows proving (6.3). By the induction hypothesis and Fact 2.7 we infer

$$|\sigma_{k-1}(\mathcal{F})| = |\mathcal{F}(1)| + |\sigma_{k-2}(\mathcal{F}(1))| \ge {x-1 \choose k-1} + {x-1 \choose k-2} = {x \choose k-1},$$

as desired. If equality holds, then by the induction hypothesis $\mathcal{F}(1)$ $\binom{X-\{1\}}{k}$ follows. Now 1-shiftedness implies $\mathcal{F} \subset \binom{X}{k}$.

Theorem 6.1 shows the uniqueness of optimal families in the Kruskal-Katona Theorem for the case $|\mathcal{F}| = \binom{a}{k}, \ a \geq k$, integer. Applying the same result k-l times proves $\sigma_l(\mathcal{F}) \geq \binom{x}{l}$ and uniqueness for all $1 \leq l < k$.

The values of $|\mathcal{F}| = m$ for given k and l such that $\mathcal{A}(k, m)$ is the only optimal family in the Kruskal-Katona Theorem were determined independently by Füredi-Griggs [15] and Mörs [26].

Combining the full version of the Kruskal-Katona Theorem with Lo vász's version of it gives.

Theorem 6.3. Suppose that $\mathcal{F} \subset \binom{\mathbb{N}}{k}, |\mathcal{F}| = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_{l+1}}{l+1} + \binom{x}{l}$ with a_k, \ldots, a_{l+1} integers and x real, satisfying $a_k > \ldots > a_{l+1} \ge x + 1 \ge l+1$, then

$$|\sigma_{k-1}(\mathcal{F})| \ge {a_k \choose k-1} + \dots + {a_{l+1} \choose l} + {x \choose l-1}$$

holds.

7. A PRODUCT VERSION OF THE ERDŐS-KO-RADO THEOREM

Let $1 \leq k, l \leq n$ be integers, X an n-element set. Two families $\mathcal{F} \subset {X \choose k}$ and $\mathcal{G} \subset {X \choose l}$ are called *cross-intersecting* if $F \cap G \neq \emptyset$ holds for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$. The following observation is due to Katona [19].

Fact 7.1. For $n \ge k + l \mathcal{F}$, \mathcal{G} are cross-intersecting if and only if

$$\sigma_l(\{X - F : F \in \mathcal{F}\}) \cap \mathcal{G} = \emptyset.$$

This shows that for $|\mathcal{F}|=m$ fixed the maximum size of $|\mathcal{G}|$ is $\binom{n}{l}-\partial_l^{(n-k)}(m)$. Thus

$$\max |\mathcal{F}||\mathcal{G}| = \max_{0 \le m \le \binom{n}{k}} m \left(\binom{n}{l} - \partial_l^{(n-k)}(m) \right) \tag{7.1}$$

holds.

However, due to the complexity of computing and estimating ∂_l , (7.1) is difficult to use.

Theorem 7.2. (Matsumoto-Tokushige [27]) Suppose that $\mathcal{F} \subset {X \choose k}$, $\mathcal{G} \subset {X \choose k}$, $2k \leq n$, $2l \leq n$ and \mathcal{F} , \mathcal{G} are cross-intersecting. Then

$$|\mathcal{F}||\mathcal{G}| \le \binom{n-1}{k-1} \binom{n-1}{l-1} \tag{7.2}$$

holds; moreover, equality holds if and only if $|\mathcal{F}| = \binom{n-1}{k-1}$ and $|\mathcal{G}| = \binom{n-1}{l-1}$. Further, $\mathcal{F} = \left\{ G \in \binom{X}{k} : x \in F \right\}$ and $\mathcal{G} = \left\{ G \in \binom{X}{l} : \in G \right\}$ must hold for some $x \in X$, unless n = 2k = 2l.

The proof of (7.2) uses Fact 7.1, Theorem 6.3 and the following purely analytical inequality

Lemma 7.3. ([27]) For $1 \le t \le n - k$ and $n - k - t \le x \le n - t - 1$,

$$\begin{pmatrix} \binom{n-1}{n-k} + \binom{n-2}{n-k-1} + \ldots + \binom{n-t}{n-k-t+1} + \binom{x}{n-k-t} \end{pmatrix} \times \\ \begin{pmatrix} \binom{n}{l} - \binom{n-1}{l} - \binom{n-2}{l-1} - \ldots - \binom{n-t}{l-t+1} - \binom{x}{l} \end{pmatrix} < \binom{n-1}{k-1} \binom{n-1}{l-1}.$$

Let us mention that Theorem 7.2 was proved by Pyber [29] in the cases k=l and $2k+l \le n$, $k \ge l$. The proof of the second case is by a nice application of Katona's cyclic permutation method ([22]).

Setting k=l and $\mathcal{F}=\mathcal{G}$ in Theorem 7.2 we obtain the Erdős-Ko-Rado-Theorem (4.2).

In [17] the following inequalites for cross-intersecting families were obtained using the Kruskal-Katona Theorem.

For each inequality $0 < a \le b$, $a + b \le n$, $\mathcal{A} \subset \binom{[n]}{a}$ and $\mathcal{B} \subset \binom{[n]}{b}$ are nonempty cross-intersecting families

$$|\mathcal{A}| + |\mathcal{B}| \le \binom{n}{b} - \binom{n-a}{b} + 1 \tag{7.3}$$

Suppose that $|\mathcal{A}| \geq {x \choose n-a}$ where $n-a \leq x \leq n-1$. If

$$\binom{x}{n-a} \le |\mathcal{A}| \le \binom{n-1}{n-a}$$

 $_{
m then}$

$$|\mathcal{A}| + |\mathcal{B}| \le \begin{cases} \binom{n}{b} - \binom{x}{b} + \binom{x}{n-a} & \text{if } a < b \text{ or } x \le n-2\\ 2\binom{n-1}{a-1} & \text{if } a = b \text{ and } n-2 \le x. \end{cases}$$
(7.4)

Suppose that $|\mathcal{A}| \geq {n-1 \choose n-1}$ then

$$|\mathcal{A}| + |\mathcal{B}| \le \begin{cases} \binom{n}{a} - \binom{n-a}{a} + 1 & \text{if } a = b \ge 2\\ \binom{n-1}{a-1} - \binom{n-1}{b-1} & \text{otherwise.} \end{cases}$$
 (7.5)

Let us note that all these inequalities are best possible. In the case a=b To conclude the proof of (8.1) we only need to notice $|\mathcal{F}|=|\mathcal{F}(\bar{n})|+|\mathcal{F}(n)|$ inequality (7.3) was already proved by Hilton-Milner [18] using different and that the coefficient of $|\mathcal{F}(n)|$ is not less than that of $|\mathcal{F}(\bar{n})|$. This latter methods.

8. Katona's shadow theorem for intersecting families

A family $\mathcal F$ is called *t-intersecting* if $|F\cap F'|\geq t$ holds for all $F,F'\in\mathcal F$.

A simple example of t-intersecting families is $\binom{[2k-t]}{t}$. This shows that the following result is best possible.

Theorem 8.1. (Katona [19]) Suppose that $\mathcal{F} \subset \binom{[n]}{L}$ is t-intersecting and $k-t \le g < k$. Then

$$|\sigma_g(\mathcal{F})|/|\mathcal{F}| \ge {2k-t \choose g} / {2k-t \choose k}$$
 (8.1)

holds.

Proof. The proof is based upon shifting. By Proposition 1.1. it does not increase the size of the shadow, also it maintains the t-intersecting property (cf. [19], [7] for the easy proof). We apply induction on n. The case n=2k-t follows from Proposition 3.4. Suppose now that n>2k-t and that $S_{in}(\mathcal{F}) = \mathcal{F}$ for all $1 \leq i < n$.

Clearly, $\mathcal{F}(\bar{n}) \subset {[n-1] \choose t}$ is t-intersecting.

Claim. $\mathcal{F}(n) \subset {\binom{[n-1]}{k-1}}$ is t-intersecting, too.

Proof of the claim. Choose $E, E' \in \mathcal{F}(n)$. Then $E \cup \{n\}$, $E' \cup \{n\}$ are sets in the t-intersecting family \mathcal{F} , consequently $|E \cap E'| \ge t-1$. Suppose that we have equality. Than $|E \cup E'| = 2(k-1) - (t-1) = 2k - t - 1 < n - 1$. Therefore we can find $i \in ([n-1]-(E \cup E'))$. Since $S_{in}(\mathcal{F}) = \mathcal{F}$, $F' = E' \cup \{i\}$ is a member of \mathcal{F} . However, $|(E \cup \{n\}) \cap F'| = t - 1$, a contradiction.

To continue with the proof of (8.1) observe that

$$|\sigma_g(\mathcal{F})| \ge |\sigma_g(\mathcal{F}(\bar{n}))| + |\sigma_{g-1}(\mathcal{F}(n))|.$$

Applying the induction hypothesis to both $\mathcal{F}(\bar{n})$ and $\mathcal{F}(n)$ we obtain

$$(7.5) |\sigma_g(\mathcal{F})| \ge |\mathcal{F}(\bar{n})| \binom{2k-t}{g} / \binom{2k-t}{k} + |\mathcal{F}(n)| \binom{2k-t-2}{g-1} / \binom{2k-t-2}{k-1}.$$

fact is equivalent to

$$k(k-t) \le g(2k-t-g).$$

For a different proof of (8.1) and some sharpening of it see [9]

The inequality (8.1) was used by Katona [19] to give a short proof of the Erdős-Ko-Rado Theorem in its dual form: let $\mathcal{F} \subset \binom{[n]}{k}$, $2k \leq n$ and suppose that $F \cap F' \neq \emptyset$ holds for all $F, F' \in \mathcal{F}$. Then $|\mathcal{F}| \leq \binom{n-1}{k-1}$. The proof is as follows: the condition implies that $\mathcal{F}^c = \{[n] - F : F \in \mathcal{F}\}$ t-intersecting with t = n - 2k + 1. Apply now (8.1) with g = (n - k) - (t - 1) = k.

Since $\sigma_k(\mathcal{F}^c) \cap \mathcal{F} = \emptyset$ we obtain

$$\binom{n}{k} \geq |\mathcal{F}| \left(1 + \binom{n-1}{k} \middle/ \binom{n-1}{n-k}\right) = |\mathcal{F}| n/k,$$

that is $|\mathcal{F}| \leq \binom{n-1}{k-1}$, as desired.

Actually Katona invented (8.1) in order to determine the maximum size of a t-intersecting family $\mathcal{F} \subset 2^{[n]}$. For n+t even define

$$K(n,t) = \{K \subset [n] : |K| \ge (n+t)/2\}.$$

For n+t odd define

$$K(n,t) = \{F \subset [n] : |F \cap [n-1]| \ge ((n-1)+t)/2\}.$$

Katona Theorem. ([19]) Suppose that $\mathcal{F} \subset 2^{[n]}$ is t-intersecting. Then $|\mathcal{F}| \leq |\mathcal{K}(n,t)|$ holds. Moreover, for $t \geq 2$ equality is possible only for $\mathcal{K}(n,t)$.

We only give the proof in the case n+t even. The other case is very similar but slightly more complicated. Let (f_0, \ldots, f_n) be the f-vector of \mathcal{F} . Note that $f_i = 0$ for i < t. For t < k < (n+t)/2 consider the families

$$\sigma_{k-(t-1)}(\mathcal{F}^{(k)})$$
 and $\mathcal{G}^{(k-t+1)} \stackrel{\text{def}}{=} \left\{ [n] - F : F \in \mathcal{F}^{(n-k+(t-1))} \right\}$.

Since \mathcal{F} is t-intersecting, they are disjoint. Now (8.1) implies

$$f_k \cdot k/(k-t+1) + f_{n-k+t-1} \le \binom{n}{n-k+t-1}$$
 (8.2)

Adding these inequalities and $f_n \leq 1$, and using $f_i = 0$ for i < t gives

$$|\mathcal{F}| = \sum_{0 \le i \le n} f_i \le \sum_{j \ge (n+t)/2} {n \choose j} = |\mathcal{K}(n,t)|,$$

proving the theorem. Uniqueness for $t \ge 2$ follows from the fact that in this case the coefficient of f_k in (8.2) is greater than 1.

Let us mention that for general n, k, t the maximum size of t-intersecting families, $\mathcal{F} \subset \binom{[n]}{\iota}$ is not always known.

Conjecture. ([10]) Suppose that $\mathcal{F} \subset {[n] \choose k}$ is t-intersecting $n \geq 2k - t$. Then $|\mathcal{F}| \leq \max_{0 \leq i \leq k-t} \mathcal{B}_i$ where

$$\mathcal{B}_i = \left\{ B \in \binom{[n]}{k} : |B \cap [t+2i]| \ge t+i \right\}.$$

It is know (cf. [7], [10] and [32]) that $|\mathcal{F}| \leq |\mathcal{B}_0|$ holds for $n \geq (k-t+1)(t+1)$

Let us note that (8.1) implies for all n, k, t the bound $|\mathcal{F}| \leq {n \choose k-t}$.

Let us also mention that in [13] an extension of (8.1) is proved using linear algebra, while in [11] it is extended in other directions.

Let us also mention that a product version of the Katona Theorem is proved in [28].

9. The original application: matching k sets into (k-1)-SETS

Katona's discovery of the Kruskal-Katona Theorem, as so many other results in combinatorics, was motivated by a problem of Erdős. What is the maximum number m = m(k) such that to any collection of at most m sets of size k one can find a matching into the (k-l)-sets in a way that each k-subset is matched onto a proper subset.

Theorem 9.1. (Katona [20]) Suppose that $\mathcal{F} = \{F_1, \dots, F_m\}$ is a collective tion of distinct k-sets and

$$m \le \binom{2k-1}{k} + \binom{2k-3}{k-1} + \dots + \binom{3}{2} + \binom{1}{1} \stackrel{\text{def}}{=} m(k). \tag{9.1}$$

Then there exist m distinct sets G_1, \ldots, G_m , each of size k-1 such that $G_i \subset F_i$ holds for $1 \leq i \leq m$.

Proof. In view of the Köning-Hall theorem it is sufficient to show that for all $\mathcal{F} \subset \binom{\mathbb{N}}{k}, |\mathcal{F}| \leq m(k)$ one has

$$|\sigma_{k-1}(\mathcal{F})| \geq |\mathcal{F}|$$
.

Now in view of the Kruskal-Katona Theorem, it suffices to show

$$\partial_{k-1}^{(k)}(m) \ge m \quad \text{for all } m \le m(k). \tag{9.2}$$

We prove (9.2) by induction on k. The case k=1 is trivial. In general, if $|\mathcal{F}| \leq {2k-1 \choose k}$ then $|\sigma_{k-1}(\mathcal{F})| \geq |\mathcal{F}|$ follows from Proposition 3.4. Suppose next that $m > {2k-1 \choose k}$

Let $m = \binom{a_k}{k} + \ldots + \binom{a_j}{i}$ be the proper cascade form of m. Then $m \leq m(k)$ implies that $a_k = 2k-1$ and that $m-\binom{2k-1}{k} = \binom{a_{k-1}}{k-1} + \ldots + \binom{a_j}{i} \leq m$ m(k-1). Using the induction hypothesis it gives

$$\begin{aligned} \partial_{k-1}^{(k)}(m) &= \binom{2k-1}{k-1} + \partial_{k-2}^{(k-1)} \left(m - \binom{2k-1}{k} \right) \\ &\geq \binom{2k-1}{k-1} + \left(m - \binom{2k-1}{k} \right) = m \end{aligned}$$

Let us remark that (9.1) is best possible. Namely for $\mathcal{A} = \mathcal{A}(m(k)+1,k)$ one has $|\sigma_{k-1}(\mathcal{A})| = m(k) < |\mathcal{A}|$.

Almost identical proof gives the following generalisation.

Theorem 9.2. Suppose that $\mathcal{F} = \{F_1, \dots, F_m\}$ is a collection of k-sets, 0 < l < k and

$$|\mathcal{F}| = m \le \binom{k+l}{k} + \binom{(k-1)+(l-1)}{k-1} + \dots + \binom{k-l}{k-l}.$$

Then there exist distinct l-sets $G_1, \ldots G_m$ satisfying $G_i \subset F_i, 1 \leq i \leq m$.

In Davkin-Frankl [5] Theorem 9.1 is extended in the following way. Define for integer $d \geq 2$

$$m(k,d) = {dk-1 \choose k} + {d(k-1)-1 \choose k-1} + \ldots + {2d-1 \choose 2} + {d-1 \choose 1}.$$

Then m(k,d) is the largest integer with the property $|\sigma_{k-1}(\mathcal{F})|/|\mathcal{F}| \geq$ 1/(d-1) holding for every collection \mathcal{F} of k-sets such that $|\mathcal{F}| \leq m(k,d)$.

10. The shadow function and the Takagi function

The results in this section explain to some extent, why is it difficult to use the Kruskal-Katona Theorem for computations. Let us define the excess function

$$e(m, k, l) = \partial_l^{(k)}(m) - m.$$

By the Kruskal-Katona Theorem if ${\mathcal F}$ is a collection of k-element sets $|{\mathcal F}|=m$ then

$$|\sigma_l(\mathcal{F})| \geq m + e(m, k, l)$$

holds.

The shadow function $s_k(x)$ is defined by normalizing the excess functions.

$$s_k(x) = k {2k-1 \choose k}^{-1} e\left(\left\lfloor {2k-1 \choose k} x \right\rfloor, k, k-1\right) \text{ for } 0 \le x \le 1.$$

In 1903, Takagi [31] constructed a nowhere differentiable continuous functions t(x), which is called the Takagi function. To define it, first set

$$\varphi_1(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1/2 \\ 2(1-x) & \text{if } 1/2 \le x \le 1 \end{cases},$$

 $\varphi_n(x) = \varphi_{n-1}(\varphi_1(x)).$

Now we can define t(x).

$$t(x) = \sum_{n=1}^{\infty} \varphi_n(x) 2^{-n}$$
 for $0 \le x \le 1$.

This function has several interesting properties including self-similarity.

Theorem 10.1 ([16]) The shadow functions converge uniformly to the Takagi function, i.e.,

$$\lim_{n \to \infty} \sup_{0 \le x \le 1} |s_n(x) - t(x)| = 0.$$

The proof of this result uses rather involved computations and we refer the interested reader to the paper [16].

11. Some related and open problems

Clearly the general Kruskal-Katona problem is of the following type. Given a bipartite graph $\mathcal B$ with part X and Y, an integer $m,\ 1\leq m\leq |X|$, determine or estimate the function $\partial(m)=\partial(m,\mathcal B)$ such that for every $X_0\subset {X\choose m}$ the neighbourhood of X_0 consists of at least $\partial(m)$ vertices.

This problem is too difficult to have a general solution, e.g., it includes the problem of expanders. By considering non-bipartite graphs, we come to the isoperimetric problem which is the subject of another chapter of this volume.

Recently, the Kruskal-Katona problem was solved for some subclasses of the k-element sets of \mathbb{N} .

Let
$$r \geq k$$
 be an integer and define $\mathbb{N} = X_1 \cup \ldots \cup X_r$ where $X_i = \{j \in \mathbb{N} : j \equiv i \pmod{r}\}.$

Define K(k,r) the complete r-chromatic k-graph by

$$\mathcal{K}(k,r) = \{F \in \binom{\mathbb{N}}{k} : |F \cap X_i| \le 1\}.$$

Since $K(k,r) \subset {\mathbb{N} \choose k}$, the k-sets in K(k,r) are naturally ordered by the colex order. Let $\mathcal{A}_r(k,m)$ denote the first m sets in this induced order.

Theorem 11.1. ([14]) Suppose that $\mathcal{F} \subset \mathcal{K}(k,r)$, $|\mathcal{F}| = m$. Then $|\sigma_l(\mathcal{F})| \ge |\sigma_l(\mathcal{A}_r(k,m))|$ holds.

This result says that the Kruskal-Katona Theorem is "true" for $\mathcal{K}(k,r)$.

Problem. Find other subclasses of $\binom{\mathbb{N}}{k}$ for which the Kruskal-Katona Theorem is true.

Let us conclude this problem with another open problem. For a family $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ and integer $1 \leq l < k$ define the higher incidence matrix $M_l(\mathcal{F})$ as a $|\sigma_l(\mathcal{F})|$ by $|\mathcal{F}|$ matrix whose rows are indexed by $G \in \sigma_l(\mathcal{F})$, columns by $F \in \mathcal{F}$ and the entry m(G, F) by

$$m(G,F) = \begin{cases} 1 & \text{if } G \subset F \\ 0 & \text{if } G \not\subset F. \end{cases}$$

Problem. Determine or estimate the minimum of the rank of $M_l(\mathcal{F})$ over all \mathcal{F} with $|\mathcal{F}|=m$.

REFERENCES

- R. Ahlswede and G. O. H. Katona, Contributions to the geometry of Hamming spaces, Discrete Math. 17(1977), 1-22.
- [2] G. F. Clements, A minimization problem concerning subset of finite sets, Discrete Maths. 4(1973), 123-128.
- [3] D. E. Daykin, A simple proof of the Kruskal-Katona theorem, J. Comb. Th. ser. (A) 17(1974), 252-253.
- [4] D. E. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Comb. Th. ser. (A) 17(1974),
- [5] D. E. Daykin, P. Frankl, On Kruskal's cascades and counting containments in a set of subsets, Mathematika 20(1983), 133–141.
- [6] D. E. Daykin, J. Godfrey and A. J. W. Hilton, Existence theorems for Sperner families, J. Comb. Th. ser. (A) 17(1974), 245-251.
- [7] P. Erdős, C. Ko and R. Rado, Intersection theorem for systems of finite sets, Quart. J. Math. Oxford 12(1961), 313-320.
- [8] P. Frankl, A new short proof of the Kruskal-Katona theorem, Discrete Math. 48(1984), 327-329.
- [9] P. Frankl, New proofs for old theorems in extremal set theory, in: Proc Comb. Conf. Calcutta, 1982, 171–132.
- [10] P. Frankl, The Erdős-Ko-Rado theorem is true for n=ckt, in: Coll. Soc. Math. J. Bolyai 18(1978), 365–375.
- [11] P. Frankl, Shadows and shifting, Graphs and Comb. 7(1991), 23-29.

- [12] P. Frankl, On the trace of finite sets, J. Comb. Th. ser. (A) 34(1983), 41-45.
- [13] P. Frankl, and Z. Füredi, On Hypergraphs without two edges intersecting in a given number of vertices, J. Comb. Th. ser. (A) 36(1984), 230-236.
- [14] P. Frankl, Z. Füredi and G. Kalai, Shadows of colored Complexes. Math. Scandinavia **63**(1988), 169-178.
- [15] Z. Füredi and J. R. Griggs, Families of finite sets with minimum shadows, Combinatorica 6(1986), 335-354.
- [16] P. Frankl, M. Matsumoto and N. Tokushige, The Shadow function and the Takagi function, J. Comb. Th. ser. (A) submitted.
- [17] P. Frankl and N. Tokushige, Some best possible inequalities concerning crossintersecting families, J. Comb. Th. ser. (A) 61(1992), 87-97.
- [18] A. J. W. Hilton, and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18(1967), 369-384.
- [19] G. O. H. Katona, Intersection theorem for systems of finite sets, Acta Math. Hung. 15(1964), 329-337.
- [20] G. O. H. Katona, A theorem on finite sets, in: Theory of graphs, (eds.: P. Erdős and G. Katona), Akadémia Kiadó, Budapest, 1968, 187-207.
- [21] G. O. H. Katona, Optimization for order ideals under a weight assignment, Coll. Internat. CNRS 260 Paris, 1976, 257-258.
- [22] G. O. H. Katona, A simple proof of the EKR theorem, J. Comb. Th. 13(1972), 183-184.
- [23] J. B. Kruskal, The number of simplices in a complex, in: Math. Optim. Tecniques Univ. California Press, Berkeley, 1963, 251-278.
- [24] L. Lovász, Problem |3.3| in: Combinatorial Problems and Exercises, North Holland,
- [25] B. Lindström and M. O. Zetterström, A combinatorial problem in the k-adic number system, Proc. AMS 18(1967), 166-170.
- [26] M. Mörs, A generalization of a theorem of Kruskal, Graphs and Comb. 1(1985),
- [27]: M. Matsumoto and N. Tokushige, The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families, J. Comb. Th. ser. (A) 52(1989), 90-97.
- [28] M. Matsumoto and N. Tokushige, A generalization of the Katona Theorem for cross t-intersecting families, Graphs Comb. 5(1989), 159-171.
- [29] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Comb. Th. ser. (A) 43(1986), 85-90.
- [30] E. Sperner, Ein Satz über Untermenger einer endlichen Menge, Math. Z. 27(1928),
- [31] T. Takagi, A simple example of a continuous function without derivative, Proc. Japan Phys. Math. Soc. 1(1903), 176-177.
- [32] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4(1984), 247-257.

Péter Frankl

University of Paris VII 2 Place Juissieu Paris 75 005, France

N. Tokushige

Dept. of Computer Science Meiji University 1-1-1 Higashimita, Takamaku Kawasaki 214, Japan