
Theoretical Computer Science 263 (2001) 345–354
www.elsevier.com/locate/tcs

When does a planar bipartite framework admit
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Abstract

Let K(X; Y ) denote the bipartite framework in the plane that realizes the complete bipartite
graph Km;n with partite sets X; Y ; |X | = m; |Y | = n. We show that for m¿3; n¿5, K(X; Y ) admits
a continuous deformation if and only if X lies on a line ‘ and Y lies on a line perpendicular
to ‘. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A framework in the plane is a graph whose vertices are points in the plane and
whose edges are line segments connecting two vertices. By a motion of a framework
G in the plane, we mean a continuous movement of the vertices of G in the plane that
preserves the length of every edge. If a motion of G changes the distance between a
pair of nonadjacent vertices, then the motion is called a continuous deformation (or
simply a deformation) of G. A framework in the plane is called &exible if it admits
a deformation, otherwise, it is called rigid. It is known that if a framework admits a
‘continuous’ deformation, then it admits a ‘smooth’ deformation, see [1]. So, we may
consider only ‘smooth’ deformations.
Throughout this paper, X; Y denote two, disjoint, nonempty, <nite-sets in the plane.

The cardinalities of X; Y are denoted by |X |; |Y |. Let K(X; Y ) denote the bipartite
framework, that is, the complete bipartite graph with partite sets X and Y . Since a
bipartite framework has no triangles, problems concerning its rigidity or >exibility are
considered with some interest. It is known [2, 3] that for almost all pair of sets X; Y with
|X |; |Y |¿3; K(X; Y ) is rigid. Then, exactly when does K(X; Y ) admit a deformation?
We prove the following.
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Theorem 1. For |X |¿3; |Y |¿5; the bipartite framework K(X; Y ) admits a continuous
deformation if and only if X lies on a line ‘ and Y lies on a line perpendicular to ‘.

The if part of this theorem is easy. To see this, suppose that X = {p1; p2; : : :} lies
on the x-axis and Y = {q1; q2; : : :} lies on the y-axis, with no qj on the origin. Then,
we can put

pi = (�i
√
ai + t; 0); i = 1; 2; : : : ;

qj = (0; �j
√

bj − t); j = 1; 2; : : : ;

where �i; �j = ± 1 and ai; t¿0; bj¿0. Then the length of piqj is equal to ai + bj,
which is irrelevant to t. Hence by varying t, we can deform K(X; Y ).
The only if part of the theorem is Proposition 4 in Section 5. Actually, we prove

that unless X lies on a line ‘ and Y lies on a line perpendicular to ‘, there are
X ′ ⊂X; Y ′ ⊂Y; |X ′|= |Y ′|=3 such that K(X ′; Y ′) is rigid.

Remark. Bottema gave an example of K(X; Y ), |X |= |Y |=4, that admits a continuous
deformation, and neither X nor Y lies on a line, see e.g. [4] Thus, the above theorem
does not hold for |X |= |Y |=4. We include the example in the last section for the
self-completeness.

Problem 1. Characterize the >exible representations of K(3; 3); K(3; 4); K(4; 4) in the
plane.

2. In�nitesimal deformations

A vector 6eld f on X ⊂R2 is a map f :X →R2. When we want to show the domain
of f explicitly, we use the notation f|X . If the values of f are obtained as the velocity
vectors of a smooth rigid motion of the whole plane, then f is called trivial. The set
of all vector <elds on X naturally constitute a vector space.
An in6nitesimal motion of a framework G is a vector <eld f on the vertex set of

G that satis<es

(p− q) · (f(p)− f(q)) = 0

for all edges pq of G, where · denotes the inner product. A nontrivial in<nitesimal
motion of G is called an in6nitesimal deformation of G. If G admits an in<nitesimal
deformation, then G is called in6nitesimally &exible, otherwise, G is called in6nites-
imally rigid. If G admits a deformation, then the velocity vectors of the vertices at
some instant give an in<nitesimal deformation of G. Hence, if G is >exible, then it is
in<nitesimally >exible.

Lemma 1. Suppose that |X |; |Y |¿2 and no three points of X ∪Y are collinear. Let
f; g be two in6nitesimal motions of K(X; Y ). If the values of f and g coincide at
two vertices in X; then they are the same in6nitesimal motion.
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Proof. Let X = {x1; x2; : : :}; Y = {y1; y2; : : :} and suppose that f(x1)= g(x1); f(x2)=
g(x2). Then for any yj, we have

(xi − yj) · (f(xi)− f(yj)) = 0; (xi − yj) · (f(xi)− g(yj)) = 0 (i = 1; 2);

from which, we have

(xi − yj) · (f(yj)− g(yj)) = 0; i = 1; 2:

Since x1 − yj and x2 − yj are linearly independent, we have f(yj)= g(yj). Similarly
we have f(xi)= g(xi) for i¿2.

Let f; g be two in<nitesimal motions of G. If f−�g is trivial for some � �= 0, then
f is said to be equivalent to g, and we write as f∼ g. Note that ∼ is an equivalence
relation.

Lemma 2. All nontrivial vector 6elds on a 2-point-set X = {p; q} are equivalent.

Proof. Let f be the vector <eld on X such that f(p)= 0; f(q)= q−p. Let us show
that any nontrivial vector <eld g on X is equivalent to f. Let h be the trivial vector
<eld such that h(p)= h(q)= g(p), and let g′= g−h. Then g′ ∼ g and g′(p)= 0. Since
g′ is nontrivial, g′(q) �= 0 and g′(q) is not orthogonal to q− p. Represent g′(q) as

g′(q) = �(q− p) + C;

where C is a vector orthogonal to q − p. Then � �= 0. Let j|X be the vector <eld
such that j(p)= 0; j(q)= C. Then j is trivial. (It is a velocity vector <eld of a rotation
around p.) Hence, g∼ g′ ∼ g′ − j∼f.

The next lemma follows from Lemmas 1 and 2.

Lemma 3. Suppose that |X |; |Y |¿2 and no three points of X ∪Y lie on a line. If
K(X; Y ) is in6nitesimally &exible; then all in6nitesimal deformations of K(X; Y ) are
equivalent.

Lemma 4. Let X = {p1; p2; p3}. A non-trivial vector 6eld f|X can be extended to
an in6nitesimal motion of K({q}; X ); q =∈X; if and only if

rank




q− p1

q− p2

q− p3


 = rank




q− p1 (q− p1) · f(p1)
q− p2 (q− p2) · f(p2)
q− p3 (q− p3) · f(p3)


 :

Proof. Let (x; y)=f(q). Then, since

(q− pi) · (f(q)− f(pi)) = 0 (i = 1; 2; 3)
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⇔ (q− pi) · f(q) = (q− pi) · f(pi) (i = 1; 2; 3)

⇔



(q− p1)

(q− p2)

(q− p3)



(

x

y

)
=



(q− p1) · f(p1)
(q− p2) · f(p2)
(q− p3) · f(p3)


 ;

the lemma follows from the theory of linear equations.

Proposition 1. Suppose that |X |; |Y |¿3 and no three of X ∪Y are collinear. If
K(X; Y ) is in6nitesimally &exible; then X ∪Y lies on a conic.

Proof. Suppose that K(X; Y ) admits an in<nitesimal deformation f :X ∪Y →R2. Let
pi=(ai; bi); i=1; 2; 3, be some three vertices of X . Since f|{p1; p2; p3} can be ex-
tended to an in<nitesimal deformation of K(X; Y ), it follows from Lemma 4 that for
any vertex q=(x; y)∈Y ,∣∣∣∣∣∣∣∣

x − a1 y − b1 (x − a1; y − b1) · f(p1)
x − a2 y − b2 (x − a2; y − b2) · f(p2)
x − a3 y − b3 (x − a3; y − b3) · f(p3)

∣∣∣∣∣∣∣∣
= 0:

This gives a quadratic equation on x; y. Hence {p1; p2; p3}∪Y lies on a conic. Simi-
larly, for any qj ∈X−{p1; p2}, the set {p1; p2; pj}∪Y lies on a conic. Since a ‘proper’
conic is determined by any <ve points on it, we can conclude that X ∪Y lies on a
conic.

The following precise result is known [3].

Theorem 2 (Whiteley). The planar bipartite framework K(X; Y ); |X |¿3; |Y |¿3; is
in6nitesimally &exible if and only if one of the following holds:
(1) X and a point of Y lie on a line.
(2) Y and a point of X lie on a line.
(3) X ∪Y lie on a conic.

3. Parabola

It follows from elementary linear algebra that six points (xi; yi); i=1; : : : ; 6, lie on
a conic if and only if∣∣∣∣∣∣∣∣∣∣∣

x21 y21 x1y1 x1 y1 1

x22 y22 x2y2 x2 y2 1

· · · · · ·
x26 y26 x6y6 x6 y6 1

∣∣∣∣∣∣∣∣∣∣∣
= 0:
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Let us call the left-hand-side determinant the conic-discriminant of the six points.

Lemma 5. Let (xi(t); yi(t)); i=1; 2; : : : ; 6; be six points moving on the plane; and let
(ai; bi); i=1; : : : ; 6; be their velocity vectors at t=0. Let

D(t) = �0 + �1t + �2t2 + · · ·+ �8t8

be the conic-discriminant of the uniformly moving six point

(xi(0) + ait; yi(0) + bit); i = 1; : : : ; 6:

If for each t ∈ [0; �); the six points (xi(t); yi(t)); i=1; 2; : : : ; 6; lie on a conic; then
�0 = �1 = 0.

Proof. Let F(t) be the conic-discriminant of the six points (xi(t); yi(t)); i=1; 2; : : : ; 6.
Since F(0)= 0, we have �0 = 0. Let

�i(t) = xi(t)− xi(0)− ait; �i(t) = yi(t)− yi(0)− bit; i = 1; : : : ; 6:

Then

lim
t→0

�i(t)
t
= lim

t→0
�i(t)
t
= 0:

Hence, from the expansion of the determinant we have

F(t) = D(t) + o(t) = �1t + · · ·+ �8t8 + o(t):

Since F(t)= 0 for 06t¡�, we get

0 = lim
t→0

F(t)
t
= �1:

Proposition 2. Suppose that |X |¿3; |Y |¿5 and X ∪Y lies on a parabola. Then
K(X; Y ) admits no deformation.

Proof. Suppose that X ∪Y lies on a parabola y= kx2 and that K(X; Y ) admits a de-
formation. Restricting the deformation within a small range, we may suppose that the
vertices are always in general position, that is, no three vertices are collinear. Then,
by Proposition 1, at any instant, the vertices of K(X; Y ) lie on a conic.
The in<nitesimal deformation of K(X; Y ) is unique up to equivalence by Lemma 3.

Hence, by superposing a certain smooth rigid motion and changing scale if necessary,
we may suppose that the velocity vectors of the vertices are given by the assignment:

X � (x; y) �→ (kx; 0); Y � (x′; y′) �→ (−kx′; 1): (1)

Since (x−x′; y−y′) · (kx+kx′;−1)= kx2−kx′2−y+y′=0, this assignment is indeed
an in<nitesimal deformation of K(X; Y ).
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Let

(a; ka2); (b; kb2); (c; kc2)

be the initial positions (at t=0) of some three vertices in X and let

(u; ku2); (v; kv2); (w; kw2)

be the initial positions of some three vertices in Y . Let D(t) be the conic-discriminant
of the six points

(a; ka2) + t(ka; 0); (b; kb2) + t(kb; 0); (c; kc2) + t(kc; 0);

(u; ku2) + t(−ku; 1); (v; kv2) + t(−kv; 1); (w; kw2) + t(−kw; 1):

Then D(t) is∣∣∣∣∣∣∣∣∣∣∣∣∣

(1 + kt)2a2 k2a4 (1 + kt)ka3 (1 + kt)a ka2 1
(1 + kt)2b2 k2b4 (1 + kt)kb3 (1 + kt)b kb2 1
(1 + kt)2c2 k2c4 (1 + kt)kc3 (1 + kt)c kc2 1
(1− kt)2u2 (ku2 + t)2 (1− kt)u(ku2 + t) (1− kt)u ku2 + t 1
(1− kt)2v2 (kv2 + t)2 (1− kt)v(kv2 + t) (1− kt)v kv2 + t 1
(1− kt)2w2 (kw2 + t)2 (1− kt)w(kw2 + t) (1− kt)w kw2 + t 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
:

We are going to show that for a certain choice of three vertices in Y , the coeIcient
�1 of t in D(t) is not zero. Then since the velocity vectors of the vertices are given
by (1), and since the vertices of K(X; Y ) are, at any instant, lying on a conic, we have
a contradiction by Lemma 5.
First, regarding �1 as a polynomial in w, let A be the coeIcient of w4. Next,

regarding A as a polynomial in v, let B be the coeIcient of v3. Then B is the coeIcient
of t in the expansion of

±k3(1− kt)

∣∣∣∣∣∣∣∣
(1 + kt)2a2 (1 + kt)a ka2 1
(1 + kt)2b2 (1 + kt)b kb2 1
(1 + kt)2c2 (1 + kt)c kc2 1
(1− kt)2u2 (1− kt)u ku2 + t 1

∣∣∣∣∣∣∣∣
;

which is equal to

±(a− b)(b− c)(c − a)(1 + 4k2u2)k3:

Since a; b; c are all distinct, we have B �=0. Then, as a polynomial in v, A=A(v) is
not identically zero. Hence, the equation A(v)= 0 is a nontrivial equation on v with
degree 3. Since |Y |¿5, we may suppose that A �=0 for our choice of v. (Note that if
v= u, then A=0. Hence A �=0 implies v �= u.) Thus, as an equation on w, �1 = 0 is a
nontrivial quatric equation. Since |Y |¿5, we may suppose that �1 �=0 for our choice
of w. Thus, the coeIcient of t in the expansion of D(t) is not zero, a contradiction.
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4. Ellipse and hyperbola

Proposition 3. Suppose that |X |¿3; |Y |¿5 and X ∪Y lies on an ellipse or a hyper-
bola. Then K(X; Y ) admits no deformation.

Proof. Proof goes along the similar line as the parabola case. The equation of an
ellipse or hyperbola is given by kx2 + y2 = 1. If k¿0, it is an ellipse, and if k¡0, it
is a hyperbola.
Suppose that X ∪Y lie on a conic kx2+y2 = 1 and that K(X; Y ) admits a deformation.

By Lemma 3, we may suppose that the velocity vectors of the vertices are given by
the following assignment:

X � (x; y) �→ (kx; y);
Y � (x′; y′) �→ −(kx′; y′):

Since (x − x′; y − y′) · (kx + kx′; y + y′)= kx2 − kx′2 + y2 − y′2 = 0, this assignment
is indeed an in<nitesimal deformation of K(X; Y ).
Let

(a; �1
√
1− ka2); (b; �2

√
1− kb2); (c; �3

√
1− kc2) (2)

be the initial positions of some three vertices in X , and let

(u; �4
√
1− ku2); (v; �5

√
1− kv2); (w; �6

√
1− kw2);

be the initial positions of some three vertices of Y , where �i=± 1.
Let D(t) be the conic-discriminant of the six points

((1 + kt)a; �1(1 + t)
√
1− ka2); ((1 + kt)b; �2(1 + t)

√
1− kb2);

((1 + kt)c; �3(1 + t)
√
1− kc2); ((1− kt)u; �4(1− t)

√
1− ku2);

((1− kt)v; �5(1− t)
√
1− kv2); ((1− kt)w; �6(1− t)

√
1− kw2):

To get a contradiction, we are going to show that the coeIcient �1 of t in the expansion
of D(t) is not zero.
Write �1 as

�1 = �6Aw
√
1− kw2 + �6B

√
1− kw2 + Cw2 + Dw + E

and write A as

A = �5P
√
1− kv2 + Qv2 + Rv+ S:

Then P is the coeIcient of t in the expansion of

±(1− kt)(1− t)2

∣∣∣∣∣∣∣∣
(1 + kt)2a2 (1 + t)2(1− ka2) (1 + kt)a 1
(1 + kt)2b2 (1 + t)2(1− kb2) (1 + kt)b 1
(1 + kt)2c2 (1 + t)2(1− kc2) (1 + kt)c 1
(1− kt)2u2 (1− t)2(1− ku2) (1− kt)u 1

∣∣∣∣∣∣∣∣
;
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which is equal to

±4(a− b)(b− c)(c − a)(1− ku2 + k2u2):

First, suppose that (a−b)(b− c)(c−a) �=0. Then, since 1− ku2¿0, we have P �=0,
and the equation A=0 is a nontrivial equation on v. Here, remark that since P �=0,
A changes its value according to �5 =+1 or �5 =−1, provided that √1− kv2 �=0. From
the equation A=0, we get the quatric equation

P2(1− kv2) = (Qv2 + Rv+ S)2

on v. Since |Y |¿5 and in view of the above remark, we may suppose A �=0 for our
choice of (v; �5

√
1− kv2). (Note that if (v; �5

√
1− kv2)= (u; �4

√
1− ku2), then A=0.

Hence A �=0 implies (v; �5
√
1− kv2) �=(u; �4

√
1− ku2).) Thus, as an equation on w,

�1 = 0 is a nontrivial equation. Note also that �1 changes its value according to �6 = +1
or �6 =−1, unless √1− kw2 = 0. The equation �1 = 0 yields the quatric equation

(Aw + B)2(1− kw2) = (Cw2 + Dw + E)2

on w, and since |Y |¿5, we can choose (w; �6
√
1− kv2) so that �1 �=0.

Next, suppose that (a− b)(b− c)(c− a)= 0. Then, since the three points in (2) are
all distinct, we may assume that

a = b �= c; �1 = −�2: (3)

Then, A can be computed as

A= 2(c − a)u(−a− c + u+ acku− ack2u)

+ 2(c − a)(a+ c)(1− ku2 + k2u2)v

+2(c − a)(−1− ack + ack2 + aku+ cku− ak2u− ck2u2)v2:

If a �=−c then the coeIcient of v is not zero. If a=−c, then a �=0 by (3), and
A = 4a(−1 + a2k − a2k2)u2 + 4a(1− a2k + a2k2)v2;

which is also a nontrivial equation on v. Thus, the equation A=0 on v is always a
nontrivial equation of degree at most 2, and hence we can choose v so that A �=0. And
similarly we get �1 �=0 for some choice of w.

5. Collinear case

Lemma 6. In any deformation of K(X; Y ); |X |; |Y |¿2; any two nonadjacent vertices
change their mutual distance.

Proof. Suppose that the distance between two vertices x1; x2 ∈X is <xed under a de-
formation of K(X; Y ). Then, for any yi; yj ∈Y , the shapes of the (possibly degenerate)
triangles x1x2yi; x1x2yj are <xed under the deformation. Hence the distance between
yi; yj is <xed. Similarly, the distances among the vertices X are all <xed. This contra-
dicts the de<nition of a deformation.



H. Maehara, N. Tokushige / Theoretical Computer Science 263 (2001) 345–354 353

Proposition 4. Suppose that |X |¿3; |Y |¿5; and K(X; Y ) admits a deformation. Then
X lies on a line ‘ and Y lies on a line perpendicular to ‘.

Proof. If all points in X ∪Y are in general position, then X ∪Y lies on an ellipse or
a hyperbola or a parabola by Proposition 1. However, by Propositions 2, 3, such cases
are impossible. By the same reason, the vertices of K(X; Y ) cannot move into a general
position by a deformation. Hence there are three vertices that remain collinear during
a deformation. Let p1; p2; p3 be such three vertices. Then, these three vertices must
belong to the same partite set, for otherwise, two nonadjacent vertices are kept at the
same distance, contradicting Lemma 6. So, we may assume that they belong to X .
Now, by superposing a suitable smooth rigid motion, we may suppose that p1; p2; p3

are moving on the x-axis. Further, we may put p1 = (0; 0) (<xed), p2 = (-; 0) and
p3 = (.; 0), where -; . are functions of time t. Let q=(x; y)= (x(t); y(t)) be the po-
sition of a vertex in Y . The vertex q may cross the x-axis, but it cannot move on the
x-axis by Lemma 6. Hence we may assume y �=0. Since the nontrivial vector <eld

(0; 0) �→ (0; 0); (-; 0) �→ (-̇; 0); (.; 0) �→ (.̇; 0)
(where -̇; .̇ denote the derivatives by t) can be extended to an in<nitesimal motion of
K(X; Y ), it follows from Lemma 4 that

0 =

∣∣∣∣∣∣
x y 0

x − - y -̇(x − -)
x − . y .̇(x − .)

∣∣∣∣∣∣
=−y((.-̇− -.̇)x + -.(.̇ − -̇)):

By Lemma 1, we may suppose that -̇− .̇ �=0. Since y �=0 and -.(-̇− .̇) �=0, we must
have .-̇− -.̇ �=0, and

x =
-.(-̇− .̇)

.-̇− -.̇
:

Thus, all vertices of Y lie on a line perpendicular to the x-axis, and hence all vertices
of X lie on the x-axis.

6. The Bottema linkage

The following result is due to Bottema (see Wunderlich [4]):

Theorem 3. There is a &exible representation K(X; Y ) of K(4; 4) in the plane such
that the convex hulls of X and Y are both rectangles.

Proof. Consider the equation on x; y; z containing the parameter t:

(x − t)2 + (y − z)2 = a(x − l)2 + (y + z)2 = b

(x − t)2 + (y − z)2 = c(x + t)2 + (y + z)2 = d
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where a; b; c; d are positive constants such that a+d = b+c. We can choose a; b; c; d
suitably so that the above equation has real solutions for some range of t. For example,
letting a = 4; b = 6; c = 8 and d = 10, we have a solution

x(t) =
1
t
; y(t) =

√
8− f(t)±√6− f(t)

2
; z(t) =

1
2y(t)

;

where f(t) = (t4 + 1)=t2, which take real values for
√
2− 16t6

√
2 + 1. Let

p1 = (t; z(t)); p2 = (−t; z(t)); p3 = −p1; p4 = −p2;

q1 = (x(t); y(t)); q2(−x(t); y(t)); q3 = −q1; q4 = −q2;

and X = {p1; p2; p3; p4}; Y = {q1; q2; q3; q4}. Then, varying t from
√
2− 1 to √

2+ 1,
we have a continuous deformation of K(X; Y ). .

Fig. 1.
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