AN L-SYSTEM ON THE SMALL WITT DESIGN
NORIHIDE TOKUSHIGE

ABSTRACT. We construct a 12-uniform hypergraph on n vertices
with size (n/12)% which satisfies |FF' N F’| € {0,1,2,3,4,6} for all
distinct edges F and F”.

1. INTRODUCTION

Let k and n be positive integers and let L C {0,1,...,k —1}. A
k-uniform hypergraph F is called a (k, L)-system (or an L-system for
short) if |FF' N F’| € L holds for all distinct F, F" € F. Let m(n,k, L)
be the maximum size of (k, L)-systems on n vertices. If there exist
positive constants «, ¢, ¢/, and ng depending only on k and L such that
en® < m(n, k, L) < ¢n® holds for n > ng, then we define a(k, L) = «
and we say that (k, L)-systems have exponent a. In [4] the following
upper bound for the size of (k, L)-systems is obtained.

Theorem 1. For n > ny(k, L) it follows that
n—I

kD)< || —.

min. kL) < [ =

leL

In particular, the above upper bound gives a(k, L) < |L| if a(k, L)
exists. In this note, we construct some (k, L)-systems satisfying a(k, L) =
|L|. Among other results, we show that a(12,{0,1,2,3,4,6}) = 6. The
corresponding system is related to the small Witt design S(5, 6, 12) and
our construction uses the embedding of the design into PG(5, 3).

In the next section we explain our main idea by solving a toy problem.
Then we state the general construction scheme in section 3. We deal
with the L-systems related to the small Witt designs in section 4, and
some other L-systems with geometric structures in section 5. Finally in
section 6 we consider “intersection structures” which control L-systems.
The results in section 6 together with previously known results give the
complete tables of exponents of (k, L)-systems for k = 11 and k = 12.
These tables are presented in the Appendix and settle all the open
cases in [7].
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2. A TOY PROBLEM

As a toy problem, let us consider a (7,{0,1,3})-system. Let A be
the following 3 x 7 matrix over GF'(2):

1001101
A= 01 01 0 11
00101T171

This is a parity check matrix of the Hamming [7,4,3]s-code. This
matrix has the following properties.

(i) Any two columns are linearly independent over GF'(2).

(ii) For any two columns ¢,, ¢, of A, the subspace spanned by ¢,, ¢,
contains precisely three columns c,,c, and ¢, of A. In fact,
Ccr = Cp + ¢y

?7)) = 35 choices. Among

those choices, (;) / (g) = 7 of them span 2-dimensional subspaces and
the other 28 span the entire 3-dimensional space. The triples (the
indices of 3 columns) corresponding to 2-dimensional subspaces form
the Steiner triple system S(2,3,7) = {124, 135, 167, 236, 257, 347,456}
or the Fano plane.

Now we shall construct a (7,{0,1,3})-system F using the matrix
A. This is going to be a 7-partite hypergraph on the vertex partition
X =ViU---UV; where V; 2 F§ for 1 <i < 7. For a,b,c € F2, define
the ordered 7-tuple F'(a,b,c) by

Let us choose 3 columns of A. There are (

F(a,b,c):(a,b,c)A:(a,b,c,a—i—b,a—i—c,b—l—c,a—i—b—i—c) S (Fg)7

Then define
F ={F(a,b,¢):a,b,ccFi}.

Let us check that F is a {0, 1, 3}-system. Choose F' = F'(a,b,c), F' =
F(a',V,cd) € F. Suppose that i := [FNF'| > 2 and F = F' on V,UV,.
Then by (ii), F' = F’ on V, as well, where r is given by ¢, = ¢, + ¢,.
This means ¢ > 3 (and i = 2 cannot happen). Next suppose that i > 4.
Then by (ii) we can choose p, q,s where 1 < p < ¢ < s < 7 such that
F =F'on V,UV,UV; and the 3 x 3 minor matrix B = (¢, ¢, ¢;) of
A is non-singular. Since (a —a',b —b',¢c — )B = 0 we have (a,b, c) =
(a',0/,¢) and F = F’. This means i = 7 (and i = 4,5, or 6 cannot
occur). Therefore, F is a (7,0, 1, 3})-system.

The size of this hypergraph is |F| = (n/7)? where n = |V (F)| = 7-2¢.
We will generalize the construction in the next section.
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In this particular case, we can construct a larger (7, {0, 1, 3})-system
by taking F to be the set of projective planes in PG(d,2). Then,
(24 — )27 = 2)(27 —4)  n(n—1)(n—3)
(23 —1)(28 —2)(28 —4) 7-6-4

where n = |PG(d,2)| = 2%*! — 1. This size attains the upper bound in
Theorem 1, so this construction is best possible.

7| =

3. GENERATING MATRIX FOR A (k, L)-SYSTEM

A (t,b, k),matrix is a (¢ + 1) x k matrix over GF(q) satisfying the
following properties:

(P1) Any ¢ columns are linearly independent over GF(q).

(P2) For any t columns, the ¢-dimensional subspace spanned by these

columns contains precisely b columns of A.

The matrix in the previous section was a (2, 3, 7),-matrix. Fora (¢,b,k),-
matrix A, there are (];) ways of taking a (¢ + 1) x b minor matrix of
A. Among (’Z) ways, (’:) / (IZ) of them have rank ¢, and the others have
rank ¢ + 1. Each of those rank ¢ minor matrices gives a b-set (block)
consisting of the indices of corresponding columns. The set of these
blocks is a Steiner system S(t, b, k). To represent this situation, we say
that a (¢, b, k),-matrix supports S(¢,b, k).

Theorem 2. If there exists a (t, b, k),-matriz then there exists a (k, L)-
system on n-vertices with size (n/k)*** where L = {0,1,...,t —1,b}.

Proof. Let A = (a;;) = (c1,...,¢c) 1 <1 <t4+1,1<j<k)
be a (t,b, k),-matrix. We shall construct a (k, L)-system F which is
k-partite on the vertex partition X = V3 U --- UV, where V; = Ffj
for 1 < i < k. For (z1,...,2441) € (F})"", let us define the k-set
F(x1,...,241) € (F)* by setting

t+1
F(Il, . 7$t+1) = (1’1, . ,ZEH_l)A = (Z aijxi)?zl eV x---x Vk
i=1
Then define
(1) f:{F(.fl,...,xt_i_l):fBl,...,fE,H_lng}.

By construction, F is k-partite and k-uniform. Let us check that F
is an L-system. Choose two edges F' = F(x1,...,2441) and F' =
F(ay, ... xy,) of F. Let i := |[FN F’| and let I be the corresponding
i-set such that F' = " on | J,.,; Vi. Set y = (x1 — o,..., 21 — 2341)
then y - ¢; = 0 holds for ¢ € I.
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Suppose that b > ¢ > t. Then by (P2) there exists B D I, |B| = b
such that ¢; = ), 7vi;¢; holds for j € B where v;; € F,. Thus for
j € B it follows that y - ¢; =y - >, 76 = ;% - ¢;) = 0. So we
have FF'= F' on V;, i € B. This means i = b.

Next suppose that ¢ > b+ 1. Then by (P2) we can choose ¢ + 1
columns from {¢; : @ € I} so that the corresponding (¢ + 1) x (t + 1)
minor matrix C' is non-singular. Then we have yC' = 0, which implies
y =0, ie., FF = F'. This means ¢ = k, which concludes that F is an
L-system.

The (k, L)-system F has n = k - ¢ vertices and size |F| = (¢?)""! =
(n/k)1, O

It is now appropriate to say that a (¢, b, k),-matrix is a generating
matrix for a (k, L)-system where L = {0,1,...,¢t — 1,b}. The row
vectors of a (t,b,k),-matrix span a (¢t + 1)-dimensional subspace in
a k-dimensional space. This fact together with (P2) implies that a
(t,b, k),-matrix is a parity check matrix of a [k, k — ¢ — 1,¢ + 1],-code.

Note that Theorem 1 and Theorem 2 imply that «(k, L) = |L| where
L={0,1,...,t—1,b} if a (¢, b, k),-matrix exists.

4. A (12,012346)-SYSTEM AND ITS DERIVED SYSTEM

Let us construct a (5,6,12)s-matrix A. We use a geometric struc-
ture due to Havlicek[10] originated by Coxeter[2]. Let ¢ : PG(2,3) —
PG(5,3) be the Veronese mapping, that is, p(x,y, 2) = (2%, 2y, vz, 3y, yz, 22).
Choose a line ¢ in PG(2,3), say, £ = {001,010,011,012}. Its Veronese
image I" := ¢(¢) = {000001,000100,000111,000121} is a planar quad-
rangle with the diagonal triangle A = {000101,000211,000221}. Now
we take (p(PG(2,3)) —I') UA as the 12 column vectors of A. More
concretely, we have

111111111000
010201221000
A_|l00o1o022121000
010101111122
000002211012
001011111111

The 12 points in PG(5,3) determined by A have many interesting
geometric properties. In particular, A is a (5,6, 12)3-matrix. See [2, 10]
for details.

The matrix is a parity check matrix of a [12,6,6]3-code. Noting
that this is the unique extended ternary Golay code G5, the following
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standard parity check matrix B of Gy is also a (5,6, 12)3-matrix.

100000011111
010000201221
s_| 001000210122
000100221012
0000102227101
000001212210

These matrices support the Witt design S(5,6,12).

By deleting the top row and the left-most column from A or B, we
obtain a (4,5, 11)s3-matrix. This corresponds to a (11,{0,1,2,3,5})-
system, S(4,5,11), and the perfect ternary Golay code G1;.

Consequently, we have the following bounds for the size of L-systems
on the small Witt designs. (Lower bounds follow from the constructions
above and Theorem 2, while upper bounds follow from Theorem 1.)

Theorem 3. For n sufficiently large, we have

6

n\6 n
R 12.40.1.2.3.4.6}) <
(12) <m(n,12,{0,1,2,3,4,6}) < o7 7079 8 6’
n? 11.10.1.2.3.5 i
— < < .
(11) <m(n,11,{0,1,2,3,5) < 5707575 %

By deleting the first two rows and the first two columns from B,
we obtain a (3,4, 10)s-matrix C' which supports S(3,4,10). This gives
(n/10)* as lower bound for a (10,{0,1,2,4})-system on n vertices. In
[5], n*/65610 is obtained as lower bound by a construction using sec-
tions of elliptic quadrics over GF'(3). We can use quadrics to construct
generating matrices. In fact, each column vector (z,y, z, w) of the ma-
trix C' satisfies vy — xz + rw — yz — yw + zw = 0, which means the
10 points are on the Mobius plane. We will extend the construction in
the next section.

5. MORE EXAMPLES OF A GENERATING MATRIX

Let ¢ be a prime power. Here we present some examples of a (¢, b, k)4-
matrix and its corresponding (k, L)-system on n vertices. Similar con-
structions are also given in [5], but our constructions are simpler and
give better lower bounds for (k, L)-systems.
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5.1. Affine plane. Letd > mandsetn = ¢4 k=¢™, L =1{0,1,q,...,¢" '}.
Let F be the set of m-dimensional affine subspaces in IFZ. This is a
(k, L)-system on n vertices with size

- —q)- (¢ —q™")  yn—{

mgm = 1)(gm —q) - (qm —gqmY) k=L

17| =
q

Comparing to Theorem 1, it follows that |F| = m(n, k, L), in particu-
lar, a(¢™,{0,1,q,...,¢™'}) =m.

Now let m = 2. Then the above F is a (¢% {0, 1, ¢})-system. By
taking ¢ points of an affine plane as column vectors, we obtain a
(2,¢,¢*),matrix. For example, the case ¢ = 3 gives the following
(2,3,9)3-matrix:

012012012
000111222
111111111
Taking m = 3, ¢ = 2, we get a (3,4, 8)y-matrix
01 010101
001 10O0T11
000O0T1TT1T1
1 1111111
5.2. Projective plane. Let d > m and set n = ¢! — 1, k = %,
L={0,1,g+1,..., q;n__ll}. Let F be the set of m-dimensional projec-

tive subspaces in PG(d, q). This is a (k, L)-system on n vertices with

size
(@' =D —q)--- (¢"" — q™)
(gm+t =)™t —q) - (g™ —qm)’
which gives |F| = Q(n™%!) as d (and hence n) grows. This together

with Theorem 1 implies oz(qnz;ll_l, {0,1,g+1,..., q;n__ll )=m+ 1.

Now let m = 2. Then the above construction gives a (¢* + ¢ +
1,{0,1,q + 1})-system. By taking p? + p + 1 points of the projective
plane as column vectors, we get a (2,¢ + 1,¢*> + ¢ + 1),-matrix. The
(2,3, 7)2-matrix in section 2 is one of the examples.

[F| =

5.3. Mobius plane. Set k =¢*+ 1, L ={0,1,2,¢q + 1}, and let
M ={(z,y,z,w) € PG(3,q) : f(z,y) + 2w = 0},

where f(z,y) is an F-irreducible quadratic form. Then M| = ¢* + 1
and we obtain a (3,¢ + 1,¢* 4+ 1),-matrix where the column vectors
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come from M (cf. Example 26.5 in [11]). Therefore we have a(q® +
1,{0,1,2,¢ + 1}) = 4.

For example, setting ¢ = 3, we consider 22 +y*+zw = 0 in PG(3, 3),
which has 10 solutions giving a (3,4, 10)s-matrix:

0

_ o0 O O
S = O

O = = O
)
N = O
[E N R e g
— e
DO DN = =
— =N
O DN DN —

: 7) -matrix (¢ = 4 and Fy = Fy(5)
= 2? + fay +y°):

The following examples are a (3,
where 32 + 3+ 1=0, and f(z,y

and a (3,6,26)s-matrix (¢ =5 and
00
00
01
10

Let F be a (k, L)-system on n vertices constructed by a (3,¢+1, ¢*+
1)g-matrix. Then we have |F| = (%)* where n = k¢%, k = ¢* + 1. For
fixed ¢ we have n — oo as d grows, and

i L RE=DE=-2)(k-g¢-1) ¢ -1 ~q) _ c,.

n—eo ngL Z—:E k4 (q2 + 1)3

Moreover we have lim,_.., C;, = 1. Therefore our construction is asymp-
totically best possible in this sense. In [5] an (n,k, L)-system (k =
¢ +1, L =1{0,1,2,qg+ 1}) F with lim, . |.7-"|/HéeL" L= (s
constructed. In [5] and [3] they claim that lim, ... C} = 1, but it seems

that their construction only gives lim, .., C; = %

5.4. Unital. Set k =¢>+1, L ={0,1,¢+ 1}, and let
U ={(z,9.2) € PG(2,?) : a7 + 71 4 2041 = 0},

Then [U| = ¢*+1 and we obtain a (2, ¢g+1, ¢*+1) 2-matrix (cf. Example
26.8 in [11], [1]). Therefore we have a(q® +1,{0,1,q + 1}) = 3.
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For example, setting ¢ = 2 and F, = Fy(3) where 32+ +1 =0, we
get the following (2, 3, 9),-matrix:
0 O
1 1
B B
The next example is a (2, 4

,28)g-matrix (¢ = 3 and Fg = F3() where
F+0+2=0,p"=2p3=1)

0000[3&3555711 1111111111111 11111
11110000833 3232323222280833 1111
2351322 351 522861

BB 30671 11 100003223 183
)-

Let F be a (k, L)-system on n vertices constructed by a (2, q+ 1, ¢+
1)gz-matrix. Then we have |F| = (£)® where n = k¢%, k = ¢* + 1. For
fixed ¢ we have n — oo as d grows, and

F E(k—1)(k—q—1 3(q3 —
i |H= ( )(3 q )IQ(?fI %)::Cq.
n=o [pep 7= k (¢°+1)
Moreover we have lim,_., C; = 1. Therefore our construction is asymp-
totically best possible in this sense.

5.5. No (2,3, 13),-matrix exists. There are two non-isomorphic Steiner
triple systems S(2, 3, 13). But it is known [6] that there is no (2, 3, 13),-
matrix for any ¢. It would be interesting to know which Steiner systems
are supported by a generating matrix.

6. INTERSECTION STRUCTURE

In [7] the authors tried to determine all the exponents of (k, L)-
systems for £ < 12, but they could not find the exact values for 36 cases
(16 cases for k = 11, and 20 cases for k = 12) out of 3,7, 2¥~ = 4094
cases. In this section, we settle all the remaining cases completely.

Let k€ Nand L € {0,1,...,k — 1} be given. A family Z c 2l¥ is
called a closed L-system if |I| € L for all I € Z and I N1’ € Z for all
I,I' € T. Let us define the rank of Z by

rank(Z) := min{t € N: A,(Z) # (Uz]>},

where A; denotes the t-th shadow, i.e., Ay(Z) = {J € (W) :J C

t
I for some I € Z}. Then the rank of (k, L)-system is defined by

rank(k, L) := max{rank(Z) : Z C 2*! is a closed L-system}.
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We say that Z C 2/ is an intersection structure of a (k, L)-system if 7
is a closed L-system whose rank is rank(k, L). A generator set Z* of 7
is the collection of all maximal elements of Z, that is

I*:={Ie€Z: Al'cZsuchthat I CI'/I#1I}.

We can retrieve Z from Z* by taking all possible intersections.
For a family F C ([Z]) and an edge F' € F define

I(F,F)={FNF . FeF-{F}} c2t.

Moreover, if F is k-partite with k-partition [n] = X; U - U X} then
we define the projection w(I) of I € Z(F,F) by n({) :={i : IN X, #
0} c 2% and set n(Z(F,F)) := {n(I): I € I(F,F)}. Fiiredi[8] proved
the following fundamental result.

Theorem 4. Given k > 2 and L C {0,1,...,k — 1} there exists a
positive constant ¢ = c(k, L) such that every (k, L)-system F C ([Z})
contains a k-partite subfamily F* C F with k-partition [n] = X;U---U
Xy satisfying (1)—(3).

(1) |F7] > ¢ F].

(2) For any two edges Fy, Fy € F*, m(Z(Fy,F*)) = n(Z(Fz, F*)).

(3) For all F € F*, Z(F,F*) is a closed L-system.

In the above situation, we say that Z(F, F*) is the intersection struc-
ture of F*. Let us see how the rank is related to the exponent of a
(k, L)-system. Set Z = w(Z(F,F*)) and t = rank(Z), and consider F*
in the above theorem. We can find some A € (U:]) such that A & A(Z).
Then for every B € [[,.4 Vo with m(B) = A there is at most one mem-
ber F' of the family F* such that B C F. Thus the size |F*| is at
most the number of choices for B, that is [[ ., |Va| = O(n'). In other

words, if a(k, L) exists then we have
a(k, L) <rank(k, L).
On the other hand, Fiiredi[9] conjectures that
a(k, L) > rank(k, L) — 1.

This is true if rank(k,L) = 2 (cf. [9]). As we will see in the next
subsections, the conjecture is also true if k& < 12 for all L. If there
exists a Steiner system S(¢,b, k) then we have rank(k, L) =t + 1 for
L =1[0,t — 1] U {b}. Rodl and Tengan[12] found a construction which
shows a(k, L) > t in this situation. However there is no general lower
bound known for «(k, L) in terms of rank(k, L).
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6.1. The case k = 11. Let Ly = {0,1,2,3,5}. We consider (k, L)-
systems with £ = 11 and L listed below (16 cases).

(I) Lo, LOU{6}7 LOU{8}7 LOU{9}7 LOU{67 8}7 LOU{67 9}7 LOU{& 9}7
LyU{6,8,9}, LoU{11}, Lou{6,11}, LoU{8,11}, Lo U{9, 11},
LouU{6,8,11}, LouU{6,9,11}, Lo U{8,9,11}, Lo U {6,8,9,11}.

By computer search, we found that rank(11,L) = 5 for all L in (I),
and the Steiner system S(4,5,11) is the unique generator set of the

corresponding intersection structure. As we saw in section 4 that
a(11, Ly) = 5, we now have (11, L) =5 for all L in (I).

Next we consider the case L ={0,1,2,3,5,7}. By computer search,
we found that rank(11,L) = 5 and there are precisely two intersec-
tion structures — one is generated by S(4,5,11) and the other is Zy;
described below.

Let J; = {2i,2i+ 1} fori =1,...,5 and set

P={{1}UJ,U LU {abc}e ()} c Y,
Q = {{j1.J2s s, jar Js} + Ji € Ji and 3 i = even} € ().
Then we define Z7; = P U Q which is the generator set of Z;;.

Now we construct a 11-partite (11, L)-system F whose intersection
structure is Z17. Let A be the following generating matrix over GF'(2):

0000O0O0OO0OT1TI1

I

I
—_oo oo

(e}
_ O O
OO = O
— o Rk o
O ===
== = =
O = = O
=)

[
== = =

This is not a (¢, b, k),-matrix, but we can define the family F on V; U
-+~ UV where V; 2 F4, by (1) in section 3.

Let ¢; be the i-th column vector of A. We note the following two
properties of A. One is that

(2) Co; + Coj+1 = C1 for all 1 S 1 S 5.
The other is that for j; € J; = {2¢,2i + 1} (1 <14 <5) we have
(3) Cjy +¢jy + -+ ¢, =01iff > j; = even.

Let us check that F is a (11,{0,1,2,3,5,7})-system. Choose F, F’ €
F (F # F') and set I = w(F N F') where 7 is the projection. We
shall show that |I| € {0,1,2,3,5,7}. By construction, if ¢; is a linear
combination of ¢;, ¢ € I then we have ¢; € I.

First suppose that 1 € I. Then by (2) we must have |I N J;| =
0 or 2 for all 1 < i < 5, in particular, |I| = odd. We can accept
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|I| € {1,3,5,7}. Suppose that [I| = 9. Since |I N J;| # 1, I contains
precisely 4 of Ji,...,Js. But then by (3) and (2), I must contain all
of Ji,...,Js, which is a contradiction.

Next we suppose that 1 ¢ I. Then by (2) we must have |[I N J;| <1
for all 1 < ¢ <5, in particular, |I| < 5. By (3) we cannot have |I| = 4.
This concludes that F is a (11,{0,1,2, 3,5, 7})-system.

By construction, we have |F| = (n/11)°> = n®/161051 where n =
[V(F)| = 11 - 2% On the other hand, a (11,{0,1,2,3,5,7})-system
with size |F| = n®/(15 - 2'7) = n® /1966080 was already constructed in
[5]. (Unfortunately some of the values in the tables contained in [5]
seem to be inaccurate.) Both constructions use

V={(2,y,z,w,\) € F) — {0} : 2° + 2y + 3> + zw = 0}

In fact V coincides with the set of column vectors of the matrix A.

6.2. The case k = 12. Let Ly = {0,1,2,3,4,6}. We consider (k, L)-
systems with £ = 12 and L listed below (16 + 4 = 20 cases).
(I) Lo, Lo U {7}, Lo U {9}, Lo U {10}, Lo U {7,9}, Loy U {7,10},
LoU{9,10}, LoU{7,9,10}, LoU{12}, LoU{7, 12}, Lou{9,12},
Lo U {10,12}, Lo U {7,9,12}, Lo U {7,10,12}, Lo U {9, 10, 12},
Lo U {7,9,10,12}.
(IT) Lo U {8}, Ly U{8,9}, Lo U{8,12}, LyU{8,9,12}.
By computer search, we found that rank(12, L) = 6 for all L in (I)
and (II). As we saw in section 4 that «(12,Ly) = 6, we now have
a(12,L) = 6 for all L in (I) and (II). The Steiner system S(5,6,12)
is the unique generator set of the corresponding intersection structure
for all L in (I). There are precisely two intersection structures for all L
in (II) — one is generated by S(5,6, 12) and the other is Z;5 described
below.
Let J; = {2i —1,2i} fori=1,...,6 and set

P={J,ULUJ.UJy:{abecd}e ()} c (i),
Q = {{jlaj27j37j4aj57j6} ]z (= Jz and Z]l — even} C ([162})‘

Then we define 77, = P U Q which is the generator set of Z;5. The
corresponding generating matrix over GF'(2) is the following:

11 1 11 1 11

(s en M s Rien @]
—_— oo oo o
O = OO O
=0 O O
OO = OO
— o = OO
O == O
=== = O
O~ O K
=== O
O = R ==
=== =
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Let F be the 12-partite family generated by A with vertex partition
[n] =ViU---UVjy where V; 2 F4. Let ¢; be the i-th column vector of
A. We note the following two properties of A. One is that

(4) (02371 + Czs) + (Czt,1 + Cgt) =0foralll <s<t<6.
The other is that for j; € J; = {20 — 1,2i} (1 <i < 6) we have
(5) cjy +cj+--+ci, =0iff Y j; = even.

Let us check that F is a (12,{0,1,2,3,4,6,8})-system. Choose
F F' € F (F # F') and set I = w(F N F’') where 7 is the projec-
tion. We shall show that |I| € {0,1,2,3,4,6,8}. By construction, if ¢;
is a linear combination of ¢;, ¢ € I then we have ¢; € 1.

If I contains one of Ji, ..., Js, then by (4) we must have |[IN.J;| = 0 or
2 for all 4, in particular, |I| = even. We can accept |I| € {0,2,4,6,8}.
Suppose that |I| = 10. Then I contains precisely 5 of Jy, ..., Js. But
then by (5) and (4), I must contain all of Ji, ..., Js, which is a contra-
diction.

Suppose now that |/| = odd. Then by (4) we need | U J;| < 1 for
all 1 <4 <6, which implies |I| < 5. But |I| = 5 is impossible because
of (5).

Therefore, F isa (12, {0, 1,2, 3,4, 6, 8})-system with size |F| = (n/12)°
where n = |V(F)| = 12 - 2%,
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APPENDIX: TABLES OF EXPONENTS

Here we present the complete tables of exponents for £ = 11 and

We found it convenient to present the exponents a(k, L) in
rectangular arrays with the rows indexed by subsets of [0, |£/2]] and
the columns by subsets of [| k/2] + 1,k — 1] and the (A, B) entry being

k=12
alk, AU B).

k=11

10101010101010101010101010101010

999999 99

999999 99

8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8

11121123112222341112112322223345
22222223222222342222222322223345
11221123222222341122112322223345
33333333333333343333333333333384F5
11222223112222341122222322223345
22222223222 233342222222322223345
22232223222322342223222322233345
4 4 4 4 4 4 4 4 4 4 4 4 4 4444444444444 444445

11221123122222341122112322223345
22222233222222342222223322223345
11221123223322341122112322333345
3 333333333333344333333333333334°5
22222233222223342222223322223345
22223333222233342222333322223345
33333334333333343333333433333345
5555555555555555555555555555565255

12232224123323351223222422333346¢6
2323232423332335232323242333334°€6
22233334223333352223333422333346
3334333433343335333433343334334E€6
22332334224423452233233422443346
3344334433553355334433443355335€6
3333333433443 445333333343344344¢6
555555555555555555555555555552525€6
23342335233423362334233523343347
233423352334233623342335233433247
23343335233433362334333523343347

3344334533443 3463344334533443347
3445344634453 447 3445344634453 448
344534463455 34573445344634553458

4546 454745 464548454645 47 454645409

6 76 867 6 967686761067 68676967686 7611

01

012

01

23
0123

01

012 4
34
34
234
01234

01

5
5
5
5

01

012

3 5

23 5
0123 5
45

01

45

01

45

45
345
345

2345

012

01
0

012345
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k=12

10101010101010101010101010101010

99999999

999999 99

8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8

12121223121222341212232322233345
22232223222322342223232322233345
22222323222223342222232322233345
33343334333433343334333433343345
2323232324242 4342323232324243445
23232323242 424342323232334343445
2323233324242 4342323233324243445
4 4 4 4 4 4 45 444444465 44444445 44444445

22223333222233342222343422233445
22233333222333342223343422233445
343435353434353534343613634343614€6

34343535343435353434363634344614°€6
23233333242 434342323343424243445

3333533335343 434343334343434353445

34343545343435453434364634343614€6
56 56565656565656565656562565¢65¢67°5¢6

1223132412232335122323242223334¢6
2223233422232335222323342223334€6
22232324222323352233233422333346
33343334333433453334333433343346

2323232424242 435232323342424344¢6
2323233424242 435232333343434344¢6
232325334242 4343523332533 43434344¢6
4 4 4 4 4 445444444465 44444445 44444456

23243435232 434362324343523343447

34343535343435363434363634343¢647

3434353534344546343436363434461417

343534363435 34473435343634365234438

343534363435 444734353436343544148

4546 454745 4645584546464 7 454646529

6 76 867 6 9676386761067 686769676867 611

01

012

3
23
0123

01

4
4

4

4

34
34
234
01234

01

012

01

5
5
5
5
5
5
5
5

45

01

012

3
23
0123

01

451253254 3 4 35253254 4 4 46253254 3 4352533 44447

01

45

45
345
345

2345

012

01
0

012345
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k =12 (continued)

1111111111111111111111111111111111111111111111111111111111111111

10101010101010101010101010101010

99999999

99999999

8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8

1212122312122234222223233333445%6
2223222322232234222323233333445€®6
2222232322222334222223233333445®6
3334333433343334333433343334445€6
2323232324242 43423232323343444586
2323232324242 434232323233434445€6
2323233324242 43423232333343444586
4 4 4 4 4 4 45 444444465 44444445 44444456

2222333322223334222234343333445@6
2223333322233334222334343333445€®6
34343535343435353434361363434465€6

34343535343435353434363634344615€6

23233333242 4343423233434343444586

3333533335343 43434333434343435445€®6

34343545343 435453434364634344625°€6
56 5656565656565 6565656563565¢65¢675¢©6

1223132412 23233522232324333344517
222323342223233522232334333344517
222323242223233522332334333344517
333433343334334533343334333444517

23232324242 4243523232334343444517
2323233424242 43523233334343444517
232325334242 4343523332533 4343444517
4 4 4 4 4 44544444445 44444445 44444457

232434352324343623243435333444538

3434353534343536343436363434461538

3434353534344546343436136343446258

343534363435 34473435343634365144529

343534363435 44473435343634354459

4546 4547 454645584546 4647 454646510
6 76 867 6 967686761067 68676 96768°6 7612

01

012

01

23
0123

4
4

4

34
34
234
01234

01

012

01

5
5
5
5

01

012

3 5

23 5
0123 5
45

01

451253254 3 435253254 4 4 462532543 43533344458

01

45

45
345
345

2345

012

01
0

012345
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