
AN L-SYSTEM ON THE SMALL WITT DESIGN

NORIHIDE TOKUSHIGE

Abstract. We construct a 12-uniform hypergraph on n vertices
with size (n/12)6 which satisfies |F ∩ F ′| ∈ {0, 1, 2, 3, 4, 6} for all
distinct edges F and F ′.

1. Introduction

Let k and n be positive integers and let L ⊂ {0, 1, . . . , k − 1}. A
k-uniform hypergraph F is called a (k, L)-system (or an L-system for
short) if |F ∩ F ′| ∈ L holds for all distinct F, F ′ ∈ F . Let m(n, k, L)
be the maximum size of (k, L)-systems on n vertices. If there exist
positive constants α, c, c′, and n0 depending only on k and L such that
cnα < m(n, k, L) < c′nα holds for n > n0, then we define α(k, L) = α
and we say that (k, L)-systems have exponent α. In [4] the following
upper bound for the size of (k, L)-systems is obtained.

Theorem 1. For n > n0(k, L) it follows that

m(n, k, L) ≤
∏

l∈L

n− l

k − l
.

In particular, the above upper bound gives α(k, L) ≤ |L| if α(k, L)
exists. In this note, we construct some (k, L)-systems satisfying α(k, L) =
|L|. Among other results, we show that α(12, {0, 1, 2, 3, 4, 6}) = 6. The
corresponding system is related to the small Witt design S(5, 6, 12) and
our construction uses the embedding of the design into PG(5, 3).

In the next section we explain our main idea by solving a toy problem.
Then we state the general construction scheme in section 3. We deal
with the L-systems related to the small Witt designs in section 4, and
some other L-systems with geometric structures in section 5. Finally in
section 6 we consider “intersection structures” which control L-systems.
The results in section 6 together with previously known results give the
complete tables of exponents of (k, L)-systems for k = 11 and k = 12.
These tables are presented in the Appendix and settle all the open
cases in [7].
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2. A toy problem

As a toy problem, let us consider a (7, {0, 1, 3})-system. Let A be
the following 3× 7 matrix over GF (2):

A =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 .

This is a parity check matrix of the Hamming [7, 4, 3]2-code. This
matrix has the following properties.

(i) Any two columns are linearly independent over GF (2).
(ii) For any two columns cp, cq of A, the subspace spanned by cp, cq

contains precisely three columns cp, cq and cr of A. In fact,
cr = cp + cq.

Let us choose 3 columns of A. There are
(
7
3

)
= 35 choices. Among

those choices,
(
7
2

)
/
(
3
2

)
= 7 of them span 2-dimensional subspaces and

the other 28 span the entire 3-dimensional space. The triples (the
indices of 3 columns) corresponding to 2-dimensional subspaces form
the Steiner triple system S(2, 3, 7) = {124, 135, 167, 236, 257, 347, 456}
or the Fano plane.

Now we shall construct a (7, {0, 1, 3})-system F using the matrix
A. This is going to be a 7-partite hypergraph on the vertex partition
X = V1 ∪ · · · ∪ V7 where Vi

∼= Fd
2 for 1 ≤ i ≤ 7. For a, b, c ∈ Fd

2, define
the ordered 7-tuple F (a, b, c) by

F (a, b, c) = (a, b, c)A = (a, b, c, a + b, a + c, b + c, a + b + c) ∈ (Fd
2)

7.

Then define

F = {F (a, b, c) : a, b, c ∈ Fd
2}.

Let us check that F is a {0, 1, 3}-system. Choose F = F (a, b, c), F ′ =
F (a′, b′, c′) ∈ F . Suppose that i := |F ∩F ′| ≥ 2 and F = F ′ on Vp∪Vq.
Then by (ii), F = F ′ on Vr as well, where r is given by cr = cp + cq.
This means i ≥ 3 (and i = 2 cannot happen). Next suppose that i ≥ 4.
Then by (ii) we can choose p, q, s where 1 ≤ p < q < s ≤ 7 such that
F = F ′ on Vp ∪ Vq ∪ Vs and the 3 × 3 minor matrix B = (cp, cq, cs) of
A is non-singular. Since (a− a′, b− b′, c− c′)B = 0 we have (a, b, c) =
(a′, b′, c′) and F = F ′. This means i = 7 (and i = 4, 5, or 6 cannot
occur). Therefore, F is a (7, {0, 1, 3})-system.

The size of this hypergraph is |F| = (n/7)3 where n = |V (F)| = 7·2d.
We will generalize the construction in the next section.
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In this particular case, we can construct a larger (7, {0, 1, 3})-system
by taking F to be the set of projective planes in PG(d, 2). Then,

|F| = (2d+1 − 1)(2d+1 − 2)(2d+1 − 4)

(23 − 1)(23 − 2)(23 − 4)
=

n(n− 1)(n− 3)

7 · 6 · 4
where n = |PG(d, 2)| = 2d+1− 1. This size attains the upper bound in
Theorem 1, so this construction is best possible.

3. Generating matrix for a (k, L)-system

A (t, b, k)q-matrix is a (t + 1) × k matrix over GF (q) satisfying the
following properties:

(P1) Any t columns are linearly independent over GF (q).
(P2) For any t columns, the t-dimensional subspace spanned by these

columns contains precisely b columns of A.

The matrix in the previous section was a (2, 3, 7)2-matrix. For a (t, b, k)q-

matrix A, there are
(

k
b

)
ways of taking a (t + 1) × b minor matrix of

A. Among
(

k
b

)
ways,

(
k
t

)
/
(

b
t

)
of them have rank t, and the others have

rank t + 1. Each of those rank t minor matrices gives a b-set (block)
consisting of the indices of corresponding columns. The set of these
blocks is a Steiner system S(t, b, k). To represent this situation, we say
that a (t, b, k)q-matrix supports S(t, b, k).

Theorem 2. If there exists a (t, b, k)q-matrix then there exists a (k, L)-
system on n-vertices with size (n/k)t+1 where L = {0, 1, . . . , t− 1, b}.
Proof. Let A = (aij) = (c1, . . . , ck) (1 ≤ i ≤ t + 1, 1 ≤ j ≤ k)
be a (t, b, k)q-matrix. We shall construct a (k, L)-system F which is
k-partite on the vertex partition X = V1 ∪ · · · ∪ Vk where Vi

∼= Fd
q

for 1 ≤ i ≤ k. For (x1, . . . , xt+1) ∈ (Fd
q)

t+1, let us define the k-set

F (x1, . . . , xt+1) ∈ (Fd
q)

k by setting

F (x1, . . . , xt+1) = (x1, . . . , xt+1)A = (
t+1∑
i=1

aijxi)
k
j=1 ∈ V1 × · · · × Vk.

Then define

(1) F = {F (x1, . . . , xt+1) : x1, . . . , xt+1 ∈ Fd
q}.

By construction, F is k-partite and k-uniform. Let us check that F
is an L-system. Choose two edges F = F (x1, . . . , xt+1) and F ′ =
F (x′1, . . . , x

′
t+1) of F . Let i := |F ∩ F ′| and let I be the corresponding

i-set such that F = F ′ on
⋃

i∈I Vi. Set y = (x1 − x′1, . . . , xt+1 − x′t+1)
then y · ci = 0 holds for i ∈ I.
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Suppose that b ≥ i ≥ t. Then by (P2) there exists B ⊃ I, |B| = b
such that cj =

∑
i∈I γijci holds for j ∈ B where γij ∈ Fq. Thus for

j ∈ B it follows that y · cj = y ·∑i γijci =
∑

i γij(y · ci) = 0. So we
have F = F ′ on Vi, i ∈ B. This means i = b.

Next suppose that i ≥ b + 1. Then by (P2) we can choose t + 1
columns from {ci : i ∈ I} so that the corresponding (t + 1) × (t + 1)
minor matrix C is non-singular. Then we have yC = 0, which implies
y = 0, i.e., F = F ′. This means i = k, which concludes that F is an
L-system.

The (k, L)-system F has n = k · qd vertices and size |F| = (qd)t+1 =
(n/k)t+1. ¤

It is now appropriate to say that a (t, b, k)q-matrix is a generating
matrix for a (k, L)-system where L = {0, 1, . . . , t − 1, b}. The row
vectors of a (t, b, k)q-matrix span a (t + 1)-dimensional subspace in
a k-dimensional space. This fact together with (P2) implies that a
(t, b, k)q-matrix is a parity check matrix of a [k, k − t− 1, t + 1]q-code.

Note that Theorem 1 and Theorem 2 imply that α(k, L) = |L| where
L = {0, 1, . . . , t− 1, b} if a (t, b, k)q-matrix exists.

4. A (12, 012346)-system and its derived system

Let us construct a (5, 6, 12)3-matrix A. We use a geometric struc-
ture due to Havlicek[10] originated by Coxeter[2]. Let ϕ : PG(2, 3) →
PG(5, 3) be the Veronese mapping, that is, ϕ(x, y, z) = (x2, xy, xz, y2, yz, z2).
Choose a line ` in PG(2, 3), say, ` = {001, 010, 011, 012}. Its Veronese
image Γ := ϕ(`) = {000001, 000100, 000111, 000121} is a planar quad-
rangle with the diagonal triangle ∆ = {000101, 000211, 000221}. Now
we take (ϕ(PG(2, 3)) − Γ) ∪ ∆ as the 12 column vectors of A. More
concretely, we have

A =




1 1 1 1 1 1 1 1 1 0 0 0
0 1 0 2 0 1 2 2 1 0 0 0
0 0 1 0 2 2 1 2 1 0 0 0
0 1 0 1 0 1 1 1 1 1 2 2
0 0 0 0 0 2 2 1 1 0 1 2
0 0 1 0 1 1 1 1 1 1 1 1




.

The 12 points in PG(5, 3) determined by A have many interesting
geometric properties. In particular, A is a (5, 6, 12)3-matrix. See [2, 10]
for details.

The matrix is a parity check matrix of a [12, 6, 6]3-code. Noting
that this is the unique extended ternary Golay code G12, the following
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standard parity check matrix B of G12 is also a (5, 6, 12)3-matrix.

B =




1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 2 0 1 2 2 1
0 0 1 0 0 0 2 1 0 1 2 2
0 0 0 1 0 0 2 2 1 0 1 2
0 0 0 0 1 0 2 2 2 1 0 1
0 0 0 0 0 1 2 1 2 2 1 0




.

These matrices support the Witt design S(5, 6, 12).

By deleting the top row and the left-most column from A or B, we
obtain a (4, 5, 11)3-matrix. This corresponds to a (11, {0, 1, 2, 3, 5})-
system, S(4, 5, 11), and the perfect ternary Golay code G11.

Consequently, we have the following bounds for the size of L-systems
on the small Witt designs. (Lower bounds follow from the constructions
above and Theorem 2, while upper bounds follow from Theorem 1.)

Theorem 3. For n sufficiently large, we have

( n

12

)6

≤ m(n, 12, {0, 1, 2, 3, 4, 6}) ≤ n6

12 · 11 · 10 · 9 · 8 · 6 ,

( n

11

)5

≤ m(n, 11, {0, 1, 2, 3, 5}) ≤ n5

11 · 10 · 9 · 8 · 6 .

By deleting the first two rows and the first two columns from B,
we obtain a (3, 4, 10)3-matrix C which supports S(3, 4, 10). This gives
(n/10)4 as lower bound for a (10, {0, 1, 2, 4})-system on n vertices. In
[5], n4/65610 is obtained as lower bound by a construction using sec-
tions of elliptic quadrics over GF (3). We can use quadrics to construct
generating matrices. In fact, each column vector (x, y, z, w) of the ma-
trix C satisfies xy − xz + xw − yz − yw + zw = 0, which means the
10 points are on the Möbius plane. We will extend the construction in
the next section.

5. More examples of a generating matrix

Let q be a prime power. Here we present some examples of a (t, b, k)q-
matrix and its corresponding (k, L)-system on n vertices. Similar con-
structions are also given in [5], but our constructions are simpler and
give better lower bounds for (k, L)-systems.
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5.1. Affine plane. Let d ≥ m and set n = qd, k = qm, L = {0, 1, q, . . . , qm−1}.
Let F be the set of m-dimensional affine subspaces in Fd

q . This is a
(k, L)-system on n vertices with size

|F| = qd(qd − 1)(qd − q) · · · (qd − qm−1)

qm(qm − 1)(qm − q) · · · (qm − qm−1)
=

∏

`∈L

n− `

k − `
.

Comparing to Theorem 1, it follows that |F| = m(n, k, L), in particu-
lar, α(qm, {0, 1, q, . . . , qm−1}) = m.

Now let m = 2. Then the above F is a (q2, {0, 1, q})-system. By
taking q2 points of an affine plane as column vectors, we obtain a
(2, q, q2)q-matrix. For example, the case q = 3 gives the following
(2, 3, 9)3-matrix:




0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1


 .

Taking m = 3, q = 2, we get a (3, 4, 8)2-matrix:



0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1


 .

5.2. Projective plane. Let d ≥ m and set n = qd+1 − 1, k = qm+1−1
q−1

,

L = {0, 1, q + 1, . . . , qm−1
q−1

}. Let F be the set of m-dimensional projec-

tive subspaces in PG(d, q). This is a (k, L)-system on n vertices with
size

|F| = (qd+1 − 1)(qd+1 − q) · · · (qd+1 − qm)

(qm+1 − 1)(qm+1 − q) · · · (qm+1 − qm)
,

which gives |F| = Ω(nm+1) as d (and hence n) grows. This together

with Theorem 1 implies α( qm+1−1
q−1

, {0, 1, q + 1, . . . , qm−1
q−1

}) = m + 1.

Now let m = 2. Then the above construction gives a (q2 + q +
1, {0, 1, q + 1})-system. By taking p2 + p + 1 points of the projective
plane as column vectors, we get a (2, q + 1, q2 + q + 1)q-matrix. The
(2, 3, 7)2-matrix in section 2 is one of the examples.

5.3. Möbius plane. Set k = q2 + 1, L = {0, 1, 2, q + 1}, and let

M = {(x, y, z, w) ∈ PG(3, q) : f(x, y) + zw = 0},
where f(x, y) is an Fq-irreducible quadratic form. Then |M| = q2 + 1
and we obtain a (3, q + 1, q2 + 1)q-matrix where the column vectors
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come from M (cf. Example 26.5 in [11]). Therefore we have α(q2 +
1, {0, 1, 2, q + 1}) = 4.

For example, setting q = 3, we consider x2+y2+zw = 0 in PG(3, 3),
which has 10 solutions giving a (3, 4, 10)3-matrix:




0 0 0 0 1 1 1 1 1 1
0 0 1 1 0 0 1 1 2 2
0 1 1 2 1 2 1 2 1 2
1 0 2 1 2 1 1 2 1 2


 .

The following examples are a (3, 5, 17)4-matrix (q = 4 and F4 = F2(β)
where β2 + β + 1 = 0, and f(x, y) = x2 + βxy + y2):




0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1 1 β β β β2 β2 β2

0 1 1 β β2 1 β β2 1 β β2 1 β β2 1 β β2

1 0 1 β2 β 1 β2 β β 1 β2 1 β2 β β 1 β2


 ,

and a (3, 6, 26)5-matrix (q = 5 and f(x, y) = x2 + xy + y2):



0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
0 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 0 4 2 3 1 4 2 3 1 2 1 4 3 3 4 1 2 2 1 4 3 4 2 3 1


 .

Let F be a (k, L)-system on n vertices constructed by a (3, q+1, q2+
1)q-matrix. Then we have |F| = (n

k
)4 where n = kqd, k = q2 + 1. For

fixed q we have n →∞ as d grows, and

lim
n→∞

|F|∏
`∈L

n−`
k−`

=
k(k − 1)(k − 2)(k − q − 1)

k4
=

q2(q2 − 1)(q2 − q)

(q2 + 1)3
=: Cq.

Moreover we have limq→∞ Cq = 1. Therefore our construction is asymp-
totically best possible in this sense. In [5] an (n, k, L)-system (k =
q2 + 1, L = {0, 1, 2, q + 1}) F ′ with limn→∞ |F ′|/∏

`∈L
n−`
k−`

= C ′
q is

constructed. In [5] and [3] they claim that limq→∞ C ′
q = 1, but it seems

that their construction only gives limq→∞ C ′
q = 1

2
.

5.4. Unital. Set k = q3 + 1, L = {0, 1, q + 1}, and let

U = {(x, y, z) ∈ PG(2, q2) : xq+1 + yq+1 + zq+1 = 0}.
Then |U| = q3+1 and we obtain a (2, q+1, q3+1)q2-matrix (cf. Example
26.8 in [11], [1]). Therefore we have α(q3 + 1, {0, 1, q + 1}) = 3.
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For example, setting q = 2 and F4 = F2(β) where β2 +β +1 = 0, we
get the following (2, 3, 9)4-matrix:




0 0 0 1 β β2 1 1 1
1 1 1 0 0 0 1 β β2

1 β β2 1 1 1 0 0 0


 .

The next example is a (2, 4, 28)9-matrix (q = 3 and F9 = F3(β) where
β2 + β + 2 = 0, β4 = 2, β8 = 1):



0 0 0 0 β β3 β5 β7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 β β3 β5 β7 β2 β2 β2 β2 2 2 2 2 β6 β6 β6 β6 1 1 1 1
β β3 β5 β7 1 1 1 1 0 0 0 0 β2 2 β6 1 β2 2 β6 1 β2 2 β6 1 β2 2 β6 1


 .

Let F be a (k, L)-system on n vertices constructed by a (2, q+1, q3+
1)q2-matrix. Then we have |F| = (n

k
)3 where n = kqd, k = q3 + 1. For

fixed q we have n →∞ as d grows, and

lim
n→∞

|F|∏
`∈L

n−`
k−`

=
k(k − 1)(k − q − 1)

k3
=

q3(q3 − q)

(q3 + 1)2
=: Cq.

Moreover we have limq→∞ Cq = 1. Therefore our construction is asymp-
totically best possible in this sense.

5.5. No (2, 3, 13)q-matrix exists. There are two non-isomorphic Steiner
triple systems S(2, 3, 13). But it is known [6] that there is no (2, 3, 13)q-
matrix for any q. It would be interesting to know which Steiner systems
are supported by a generating matrix.

6. Intersection structure

In [7] the authors tried to determine all the exponents of (k, L)-
systems for k ≤ 12, but they could not find the exact values for 36 cases
(16 cases for k = 11, and 20 cases for k = 12) out of

∑12
k=2 2k−1 = 4094

cases. In this section, we settle all the remaining cases completely.
Let k ∈ N and L ⊂ {0, 1, . . . , k − 1} be given. A family I ⊂ 2[k] is

called a closed L-system if |I| ∈ L for all I ∈ I and I ∩ I ′ ∈ I for all
I, I ′ ∈ I. Let us define the rank of I by

rank(I) := min{t ∈ N : ∆t(I) 6=
(

[k]

t

)
},

where ∆t denotes the t-th shadow, i.e., ∆t(I) := {J ∈ (
[k]
t

)
: J ⊂

I for some I ∈ I}. Then the rank of (k, L)-system is defined by

rank(k, L) := max{rank(I) : I ⊂ 2[k] is a closed L-system}.
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We say that I ⊂ 2[k] is an intersection structure of a (k, L)-system if I
is a closed L-system whose rank is rank(k, L). A generator set I∗ of I
is the collection of all maximal elements of I, that is

I∗ := {I ∈ I : 6 ∃I ′ ∈ I such that I ⊂ I ′, I 6= I ′}.
We can retrieve I from I∗ by taking all possible intersections.

For a family F ⊂ (
[n]
k

)
and an edge F ∈ F define

I(F,F) := {F ∩ F ′ : F ′ ∈ F − {F}} ⊂ 2F .

Moreover, if F is k-partite with k-partition [n] = X1 ∪ · · · ∪ Xk then
we define the projection π(I) of I ∈ I(F,F) by π(I) := {i : I ∩Xi 6=
∅} ⊂ 2[k] and set π(I(F,F)) := {π(I) : I ∈ I(F,F)}. Füredi[8] proved
the following fundamental result.

Theorem 4. Given k ≥ 2 and L ⊂ {0, 1, . . . , k − 1} there exists a

positive constant c = c(k, L) such that every (k, L)-system F ⊂ (
[n]
k

)
contains a k-partite subfamily F∗ ⊂ F with k-partition [n] = X1∪· · ·∪
Xk satisfying (1)–(3).

(1) |F∗| > c|F|.
(2) For any two edges F1, F2 ∈ F∗, π(I(F1,F∗)) = π(I(F2,F∗)).
(3) For all F ∈ F∗, I(F,F∗) is a closed L-system.

In the above situation, we say that I(F,F∗) is the intersection struc-
ture of F∗. Let us see how the rank is related to the exponent of a
(k, L)-system. Set I = π(I(F,F∗)) and t = rank(I), and consider F∗

in the above theorem. We can find some A ∈ (
[k]
t

)
such that A 6∈ ∆t(I).

Then for every B ∈ ∏
a∈A Va with π(B) = A there is at most one mem-

ber F of the family F∗ such that B ⊂ F . Thus the size |F∗| is at
most the number of choices for B, that is

∏
a∈A |Va| = O(nt). In other

words, if α(k, L) exists then we have

α(k, L) ≤ rank(k, L).

On the other hand, Füredi[9] conjectures that

α(k, L) > rank(k, L)− 1.

This is true if rank(k, L) = 2 (cf. [9]). As we will see in the next
subsections, the conjecture is also true if k ≤ 12 for all L. If there
exists a Steiner system S(t, b, k) then we have rank(k, L) = t + 1 for
L = [0, t − 1] ∪ {b}. Rödl and Tengan[12] found a construction which
shows α(k, L) > t in this situation. However there is no general lower
bound known for α(k, L) in terms of rank(k, L).
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6.1. The case k = 11. Let L0 = {0, 1, 2, 3, 5}. We consider (k, L)-
systems with k = 11 and L listed below (16 cases).

(I) L0, L0∪{6}, L0∪{8}, L0∪{9}, L0∪{6, 8}, L0∪{6, 9}, L0∪{8, 9},
L0∪{6, 8, 9}, L0 ∪{11}, L0 ∪{6, 11}, L0 ∪{8, 11}, L0 ∪{9, 11},
L0 ∪ {6, 8, 11}, L0 ∪ {6, 9, 11}, L0 ∪ {8, 9, 11}, L0 ∪ {6, 8, 9, 11}.

By computer search, we found that rank(11, L) = 5 for all L in (I),
and the Steiner system S(4, 5, 11) is the unique generator set of the
corresponding intersection structure. As we saw in section 4 that
α(11, L0) = 5, we now have α(11, L) = 5 for all L in (I).

Next we consider the case L = {0, 1, 2, 3, 5, 7}. By computer search,
we found that rank(11, L) = 5 and there are precisely two intersec-
tion structures — one is generated by S(4, 5, 11) and the other is I11

described below.
Let Ji = {2i, 2i + 1} for i = 1, . . . , 5 and set

P = {{1} ∪ Ja ∪ Jb ∪ Jc : {a, b, c} ∈ (
[5]
3

)} ⊂ (
[11]
7

)
,

Q = {{j1, j2, j3, j4, j5} : ji ∈ Ji and
∑

ji = even} ⊂ (
[11]
5

)
.

Then we define I∗11 = P ∪Q which is the generator set of I11.
Now we construct a 11-partite (11, L)-system F whose intersection

structure is I11. Let A be the following generating matrix over GF (2):

A =




0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1




.

This is not a (t, b, k)q-matrix, but we can define the family F on V1 ∪
· · · ∪ V11 where Vi

∼= Fd
2, by (1) in section 3.

Let ci be the i-th column vector of A. We note the following two
properties of A. One is that

(2) c2i + c2i+1 = c1 for all 1 ≤ i ≤ 5.

The other is that for ji ∈ Ji = {2i, 2i + 1} (1 ≤ i ≤ 5) we have

(3) cj1 + cj2 + · · ·+ cj5 = 0 iff
∑

ji = even.

Let us check that F is a (11, {0, 1, 2, 3, 5, 7})-system. Choose F, F ′ ∈
F (F 6= F ′) and set I = π(F ∩ F ′) where π is the projection. We
shall show that |I| ∈ {0, 1, 2, 3, 5, 7}. By construction, if cj is a linear
combination of ci, i ∈ I then we have cj ∈ I.

First suppose that 1 ∈ I. Then by (2) we must have |I ∩ Ji| =
0 or 2 for all 1 ≤ i ≤ 5, in particular, |I| = odd. We can accept
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|I| ∈ {1, 3, 5, 7}. Suppose that |I| = 9. Since |I ∩ Ji| 6= 1, I contains
precisely 4 of J1, . . . , J5. But then by (3) and (2), I must contain all
of J1, . . . , J5, which is a contradiction.

Next we suppose that 1 6∈ I. Then by (2) we must have |I ∩ Ji| ≤ 1
for all 1 ≤ i ≤ 5, in particular, |I| ≤ 5. By (3) we cannot have |I| = 4.
This concludes that F is a (11, {0, 1, 2, 3, 5, 7})-system.

By construction, we have |F| = (n/11)5 = n5/161051 where n =
|V (F)| = 11 · 2d. On the other hand, a (11, {0, 1, 2, 3, 5, 7})-system
with size |F| = n5/(15 · 217) = n5/1966080 was already constructed in
[5]. (Unfortunately some of the values in the tables contained in [5]
seem to be inaccurate.) Both constructions use

V = {(x, y, z, w, λ) ∈ F5
2 − {0} : x2 + xy + y2 + zw = 0}.

In fact V coincides with the set of column vectors of the matrix A.

6.2. The case k = 12. Let L0 = {0, 1, 2, 3, 4, 6}. We consider (k, L)-
systems with k = 12 and L listed below (16 + 4 = 20 cases).

(I) L0, L0 ∪ {7}, L0 ∪ {9}, L0 ∪ {10}, L0 ∪ {7, 9}, L0 ∪ {7, 10},
L0∪{9, 10}, L0∪{7, 9, 10}, L0∪{12}, L0∪{7, 12}, L0∪{9, 12},
L0 ∪ {10, 12}, L0 ∪ {7, 9, 12}, L0 ∪ {7, 10, 12}, L0 ∪ {9, 10, 12},
L0 ∪ {7, 9, 10, 12}.

(II) L0 ∪ {8}, L0 ∪ {8, 9}, L0 ∪ {8, 12}, L0 ∪ {8, 9, 12}.
By computer search, we found that rank(12, L) = 6 for all L in (I)
and (II). As we saw in section 4 that α(12, L0) = 6, we now have
α(12, L) = 6 for all L in (I) and (II). The Steiner system S(5, 6, 12)
is the unique generator set of the corresponding intersection structure
for all L in (I). There are precisely two intersection structures for all L
in (II) — one is generated by S(5, 6, 12) and the other is I12 described
below.

Let Ji = {2i− 1, 2i} for i = 1, . . . , 6 and set

P = {Ja ∪ Jb ∪ Jc ∪ Jd : {a, b, c, d} ∈ (
[6]
4

)} ⊂ (
[12]
8

)
,

Q = {{j1, j2, j3, j4, j5, j6} : ji ∈ Ji and
∑

ji = even} ⊂ (
[12]
6

)
.

Then we define I∗12 = P ∪ Q which is the generator set of I12. The
corresponding generating matrix over GF (2) is the following:

A =




1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1




.
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Let F be the 12-partite family generated by A with vertex partition
[n] = V1 ∪ · · · ∪ V12 where Vi

∼= Fd
2. Let ci be the i-th column vector of

A. We note the following two properties of A. One is that

(4) (c2s−1 + c2s) + (c2t−1 + c2t) = 0 for all 1 ≤ s < t ≤ 6.

The other is that for ji ∈ Ji = {2i− 1, 2i} (1 ≤ i ≤ 6) we have

(5) cj1 + cj2 + · · ·+ cj6 = 0 iff
∑

ji = even.

Let us check that F is a (12, {0, 1, 2, 3, 4, 6, 8})-system. Choose
F, F ′ ∈ F (F 6= F ′) and set I = π(F ∩ F ′) where π is the projec-
tion. We shall show that |I| ∈ {0, 1, 2, 3, 4, 6, 8}. By construction, if cj

is a linear combination of ci, i ∈ I then we have cj ∈ I.
If I contains one of J1, . . . , J6, then by (4) we must have |I∩Ji| = 0 or

2 for all i, in particular, |I| = even. We can accept |I| ∈ {0, 2, 4, 6, 8}.
Suppose that |I| = 10. Then I contains precisely 5 of J1, . . . , J6. But
then by (5) and (4), I must contain all of J1, . . . , J6, which is a contra-
diction.

Suppose now that |I| = odd. Then by (4) we need |I ∪ Ji| ≤ 1 for
all 1 ≤ i ≤ 6, which implies |I| ≤ 5. But |I| = 5 is impossible because
of (5).

Therefore, F is a (12, {0, 1, 2, 3, 4, 6, 8})-system with size |F| = (n/12)6

where n = |V (F)| = 12 · 2d.
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Appendix: Tables of exponents

Here we present the complete tables of exponents for k = 11 and
k = 12. We found it convenient to present the exponents α(k, L) in
rectangular arrays with the rows indexed by subsets of [0, bk/2c] and
the columns by subsets of [bk/2c+1, k− 1] and the (A,B) entry being
α(k, A ∪B).

k = 11

6 7 6 8 6 7 6 9 6 7 6 8 6 7 6 10 6 7 6 8 6 7 6 9 6 7 6 8 6 7 6 11
4 5 4 6 4 5 4 7 4 5 4 6 4 5 4 8 4 5 4 6 4 5 4 7 4 5 4 6 4 5 4 9
3 4 4 5 3 4 4 6 3 4 5 5 3 4 5 7 3 4 4 5 3 4 4 6 3 4 5 5 3 4 5 8
3 4 4 5 3 4 4 6 3 4 4 5 3 4 4 7 3 4 4 5 3 4 4 6 3 4 4 5 3 4 4 8
3 3 4 4 3 3 4 5 3 3 4 4 3 3 4 6 3 3 4 4 3 3 4 5 3 3 4 4 3 3 4 7
2 3 3 4 3 3 3 5 2 3 3 4 3 3 3 6 2 3 3 4 3 3 3 5 2 3 3 4 3 3 4 7
2 3 3 4 2 3 3 5 2 3 3 4 2 3 3 6 2 3 3 4 2 3 3 5 2 3 3 4 3 3 4 7
2 3 3 4 2 3 3 5 2 3 3 4 2 3 3 6 2 3 3 4 2 3 3 5 2 3 3 4 3 3 4 7
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6
3 3 3 3 3 3 3 4 3 3 4 4 3 4 4 5 3 3 3 3 3 3 3 4 3 3 4 4 3 4 4 6
3 3 4 4 3 3 4 4 3 3 5 5 3 3 5 5 3 3 4 4 3 3 4 4 3 3 5 5 3 3 5 6
2 2 3 3 2 3 3 4 2 2 4 4 2 3 4 5 2 2 3 3 2 3 3 4 2 2 4 4 3 3 4 6
3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 5 3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 6
2 2 2 3 3 3 3 4 2 2 3 3 3 3 3 5 2 2 2 3 3 3 3 4 2 2 3 3 3 3 4 6
2 3 2 3 2 3 2 4 2 3 3 3 2 3 3 5 2 3 2 3 2 3 2 4 2 3 3 3 3 3 4 6
1 2 2 3 2 2 2 4 1 2 3 3 2 3 3 5 1 2 2 3 2 2 2 4 2 2 3 3 3 3 4 6
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 4 3 3 3 3 3 3 4 5
2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 4 2 2 2 2 3 3 3 3 2 2 2 2 3 3 4 5
2 2 2 2 2 2 3 3 2 2 2 2 2 3 3 4 2 2 2 2 2 2 3 3 2 2 2 2 3 3 4 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5
1 1 2 2 1 1 2 3 2 2 3 3 2 2 3 4 1 1 2 2 1 1 2 3 2 2 3 3 3 3 4 5
2 2 2 2 2 2 3 3 2 2 2 2 2 2 3 4 2 2 2 2 2 2 3 3 2 2 2 2 3 3 4 5
1 1 2 2 1 1 2 3 1 2 2 2 2 2 3 4 1 1 2 2 1 1 2 3 2 2 2 2 3 3 4 5
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 4 2 2 2 3 2 2 2 3 2 2 2 3 3 3 4 5
2 2 2 2 2 2 2 3 2 2 2 2 3 3 3 4 2 2 2 2 2 2 2 3 2 2 2 2 3 3 4 5
1 1 2 2 2 2 2 3 1 1 2 2 2 2 3 4 1 1 2 2 2 2 2 3 2 2 2 2 3 3 4 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5
1 1 2 2 1 1 2 3 2 2 2 2 2 2 3 4 1 1 2 2 1 1 2 3 2 2 2 2 3 3 4 5
2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 4 2 2 2 2 2 2 2 3 2 2 2 2 3 3 4 5
1 1 1 2 1 1 2 3 1 1 2 2 2 2 3 4 1 1 1 2 1 1 2 3 2 2 2 2 3 3 4 5

 6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
  7 7   7 7   7 7   7 7   7 7   7 7   7 7   7 7
    8 8 8 8     8 8 8 8     8 8 8 8     8 8 8 8
        9 9 9 9 9 9 9 9         9 9 9 9 9 9 9 9
                10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0 1 2 3 4 5
0  2 3 4 5
0 1  3 4 5
0   3 4 5
0 1 2  4 5
0  2  4 5
0 1   4 5
0    4 5
0 1 2 3  5
0  2 3  5
0 1  3  5
0   3  5
0 1 2   5
0  2   5
0 1    5
0     5
0 1 2 3 4  
0  2 3 4  
0 1  3 4  
0   3 4  
0 1 2  4  
0  2  4  
0 1   4  
0    4  
0 1 2 3   
0  2 3   
0 1  3   
0   3   
0 1 2    
0  2    
0 1     
0      
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k = 12

6 7 6 8 6 7 6 9 6 7 6 8 6 7 6 10 6 7 6 8 6 7 6 9 6 7 6 8 6 7 6 11
4 5 4 6 4 5 4 7 4 5 4 6 4 5 5 8 4 5 4 6 4 6 4 7 4 5 4 6 4 6 5 9
3 4 3 5 3 4 3 6 3 4 3 5 4 4 4 7 3 4 3 5 3 4 3 6 3 4 3 5 4 4 4 8
3 4 3 5 3 4 3 6 3 4 3 5 3 4 4 7 3 4 3 5 3 4 3 6 3 4 3 5 3 4 4 8
3 4 3 4 3 5 3 5 3 4 3 4 4 5 4 6 3 4 3 4 3 6 3 6 3 4 3 4 4 6 4 7
3 4 3 4 3 5 3 5 3 4 3 4 3 5 3 6 3 4 3 4 3 6 3 6 3 4 3 4 3 6 4 7

2.5 3 2.5 4 3 4 3 5 2.5 3 2.5 4 4 4 4 6 2.5 3 2.5 4 3 4 3 5 2.5 3 3 4 4 4 4 7
2 3 2 4 3 4 3 5 2 3 2 4 3 4 3 6 2 3 2 4 3 4 3 5 2 3 3 4 3 4 4 7
4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 5 6
2 3 2 3 2.5 3 3 4 2 4 2 4 3 4 3 5 2 3 3 3 2.5 3 3 4 3 4 3 4 3 4 4 6
2 3 2 3 2 3 3 4 2 4 2 4 2 4 3 5 2 3 2 3 3 3 3 4 3 4 3 4 3 4 4 6
2 3 2 3 2 3 2 4 2 4 2 4 2 4 3 5 2 3 2 3 2 3 3 4 2 4 2 4 3 4 4 6
3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 5 3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 6
2 2 2 3 2 3 2 4 2 2 2 3 2 3 3 5 2 2 3 3 2 3 3 4 2 2 3 3 3 3 4 6
2 2 2 3 2 3 3 4 2 2 2 3 2 3 3 5 2 2 2 3 2 3 3 4 2 2 2 3 3 3 4 6
1 2 2 3 1 3 2 4 1 2 2 3 2 3 3 5 1 2 2 3 2 3 2 4 2 2 2 3 3 3 4 6
5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
3 4 3 4 3 5 4 5 3 4 3 4 3 5 4 5 3 4 3 4 3 6 4 6 3 4 3 4 3 6 4 6
3 3 3 3.5 3 3 3 3.5 3 4 3 4 3 4 3 4 3 3 3 4 3 4 3 4 3 4 3 5 3 4 4 5
2 3 2 3 3 3 3 3 2 4 2 4 3 4 3 4 2 3 2 3 3 4 3 4 2 4 2 4 3 4 4 5
3 4 3 4 3 5 3 5 3 4 3 4 3 5 3 5 3 4 3 4 3 6 3 6 3 4 3 4 4 6 4 6
3 4 3 4 3 5 3 5 3 4 3 4 3 5 3 5 3 4 3 4 3 6 3 6 3 4 3 4 3 6 4 6
2 2 2 3 3 3 3 3 2 2 2 3 3 3 3 4 2 2 2 3 3 4 3 4 2 2 2 3 3 4 4 5
2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 4 2 2 2 2 3 4 3 4 2 2 2 3 3 4 4 5
4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5
2 3 2 3 2 3 3 3 2 4 2 4 2 4 3 4 2 3 2 3 2 3 3 3 2 4 2 4 3 4 4 5
2 3 2 3 2 3 2 3 2 4 2 4 2 4 3 4 2 3 2 3 2 3 2 3 3 4 3 4 3 4 4 5
2 3 2 3 2 3 2 3 2 4 2 4 2 4 3 4 2 3 2 3 2 3 2 3 2 4 2 4 3 4 4 5
3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 5
2 2 2 2 2 3 2 3 2 2 2 2 2 3 3 4 2 2 2 2 2 3 2 3 2 2 2 3 3 3 4 5
2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 4 2 2 2 3 2 3 2 3 2 2 2 3 3 3 4 5
1 2 1 2 1 2 2 3 1 2 1 2 2 2 3 4 1 2 1 2 2 3 2 3 2 2 2 3 3 3 4 5

 6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
  7 7   7 7   7 7   7 7   7 7   7 7   7 7   7 7
    8 8 8 8     8 8 8 8     8 8 8 8     8 8 8 8
        9 9 9 9 9 9 9 9         9 9 9 9 9 9 9 9
                10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0 1 2 3 4 5
0  2 3 4 5
0 1  3 4 5
0   3 4 5
0 1 2  4 5
0  2  4 5
0 1   4 5
0    4 5
0 1 2 3  5
0  2 3  5
0 1  3  5
0   3  5
0 1 2   5
0  2   5
0 1    5
0     5
0 1 2 3 4  
0  2 3 4  
0 1  3 4  
0   3 4  
0 1 2  4  
0  2  4  
0 1   4  
0    4  
0 1 2 3   
0  2 3   
0 1  3   
0   3   
0 1 2    
0  2    
0 1     
0      
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k = 12 (continued)

6 7 6 8 6 7 6 9 6 7 6 8 6 7 6 10 6 7 6 8 6 7 6 9 6 7 6 8 6 7 6 12
4 5 4 6 4 5 4 7 4 5 4 6 4 5 5 8 4 5 4 6 4 6 4 7 4 5 4 6 4 6 5 10
3 4 3 5 3 4 3 6 3 4 3 5 4 4 4 7 3 4 3 5 3 4 3 6 3 4 3 5 4 4 5 9
3 4 3 5 3 4 3 6 3 4 3 5 3 4 4 7 3 4 3 5 3 4 3 6 3 4 3 5 4 4 5 9
3 4 3 4 3 5 3 5 3 4 3 4 4 5 4 6 3 4 3 4 3 6 3 6 3 4 3 4 4 6 5 8
3 4 3 4 3 5 3 5 3 4 3 4 3 5 3 6 3 4 3 4 3 6 3 6 3 4 3 4 4 6 5 8

2.5 3 2.5 4 3 4 3 5 2.5 3 2.5 4 4 4 4 6 2.5 3 2.5 4 3 4 3 5 3 3 3 4 4 4 5 8
2 3 2 4 3 4 3 5 2 3 2 4 3 4 3 6 2 3 2 4 3 4 3 5 3 3 3 4 4 4 5 8
4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 5 7
2 3 2 3 2.5 3 3 4 2 4 2 4 3 4 3 5 2 3 3 3 2.5 3 3 4 3 4 3 4 4 4 5 7
2 3 2 3 2 3 3 4 2 4 2 4 2 4 3 5 2 3 2 3 3 3 3 4 3 4 3 4 4 4 5 7
2 3 2 3 2 3 2 4 2 4 2 4 2 4 3 5 2 3 2 3 2 3 3 4 3 4 3 4 4 4 5 7
3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 5 3 3 3 4 3 3 3 4 3 3 3 4 4 4 5 7
2 2 2 3 2 3 2 4 2 2 2 3 2 3 3 5 2 2 3 3 2 3 3 4 3 3 3 3 4 4 5 7
2 2 2 3 2 3 3 4 2 2 2 3 2 3 3 5 2 2 2 3 2 3 3 4 3 3 3 3 4 4 5 7
1 2 2 3 1 3 2 4 1 2 2 3 2 3 3 5 2 2 2 3 2 3 2 4 3 3 3 3 4 4 5 7
5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
3 4 3 4 3 5 4 5 3 4 3 4 3 5 4 5 3 4 3 4 3 6 4 6 3 4 3 4 4 6 5 6
3 3 3 3.5 3 3 3 3.5 3 4 3 4 3 4 3 4 3 3 3 4 3 4 3 4 3 4 3 5 4 4 5 6
2 3 2 3 3 3 3 3 2 4 2 4 3 4 3 4 2 3 2 3 3 4 3 4 3 4 3 4 4 4 5 6
3 4 3 4 3 5 3 5 3 4 3 4 3 5 3 5 3 4 3 4 3 6 3 6 3 4 3 4 4 6 5 6
3 4 3 4 3 5 3 5 3 4 3 4 3 5 3 5 3 4 3 4 3 6 3 6 3 4 3 4 4 6 5 6
2 2 2 3 3 3 3 3 2 2 2 3 3 3 3 4 2 2 2 3 3 4 3 4 3 3 3 3 4 4 5 6
2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 4 2 2 2 2 3 4 3 4 3 3 3 3 4 4 5 6
4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 5 4 4 4 4 4 4 5 6
2 3 2 3 2 3 3 3 2 4 2 4 2 4 3 4 2 3 2 3 2 3 3 3 3 4 3 4 4 4 5 6
2 3 2 3 2 3 2 3 2 4 2 4 2 4 3 4 2 3 2 3 2 3 2 3 3 4 3 4 4 4 5 6
2 3 2 3 2 3 2 3 2 4 2 4 2 4 3 4 2 3 2 3 2 3 2 3 3 4 3 4 4 4 5 6
3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 4 4 5 6
2 2 2 2 2 3 2 3 2 2 2 2 2 3 3 4 2 2 2 2 2 3 2 3 3 3 3 3 4 4 5 6
2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 4 2 2 2 3 2 3 2 3 3 3 3 3 4 4 5 6
1 2 1 2 1 2 2 3 1 2 1 2 2 2 3 4 2 2 2 2 2 3 2 3 3 3 3 3 4 4 5 6

 6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
  7 7   7 7   7 7   7 7   7 7   7 7   7 7   7 7
    8 8 8 8     8 8 8 8     8 8 8 8     8 8 8 8
        9 9 9 9 9 9 9 9         9 9 9 9 9 9 9 9
                10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

0 1 2 3 4 5
0  2 3 4 5
0 1  3 4 5
0   3 4 5
0 1 2  4 5
0  2  4 5
0 1   4 5
0    4 5
0 1 2 3  5
0  2 3  5
0 1  3  5
0   3  5
0 1 2   5
0  2   5
0 1    5
0     5
0 1 2 3 4  
0  2 3 4  
0 1  3 4  
0   3 4  
0 1 2  4  
0  2  4  
0 1   4  
0    4  
0 1 2 3   
0  2 3   
0 1  3   
0   3   
0 1 2    
0  2    
0 1     
0      
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